# Homotopical and homological finiteness properties of monoids and their subgroups

Robert Gray



#### NBSAN St Andrews, April 2009



Why are fractions so hard?



Question: Why are presentations so hard?

Answer: Because they are harder than fractions!

### Presentations

Fact: There are lots of *nasty* finitely presented monoids out there.

Markov (1947), Post (1947): There exist finitely presented monoids for which there is no algorithm to solve the word problem.

#### Idea

- 1. Identify a class C of "nice" finite presentations:
  - finite complete rewriting systems
- 2. Try to gain understanding of those monoids that may be defined by presentations from C:
  - study properties of monoids defined by such rewriting systems:
    - Finite derivation type (FDT)
    - ►  $FP_n$

### Rewriting systems

- A non-empty set (the alphabet),  $A^*$  free monoid over A
- A rewriting system over A is a subset  $R \subseteq A^* \times A^*$
- Rewrite rules:  $(r_{+1}, r_{-1}) \in R$ , also written as  $r_{+1} = r_{-1}$ .
- ▶ Write  $u \rightarrow_R v$  if  $u \equiv w_1 r_{+1} w_2$  and  $v \equiv w_1 r_{-1} w_2$  where  $(r_{+1}, r_{-1}) \in R$ and  $w_1, w_2 \in A^*$ .
- $\rightarrow_R^*$  = the reflexive transitive closure of  $\rightarrow_R$ 
  - $\leftrightarrow_R^*$  = the reflexive symmetric transitive closure of  $\rightarrow_R$ 
    - = the congruence on  $A^*$  generated by R
- $\langle A|R \rangle$  monoid presentation with generators A and set of defining relations R
- ►  $A^*/ \leftrightarrow_R^*$  the monoid defined by the presentation  $\langle A|R \rangle$
- ► A rewriting system (presentation) is called finite if both *A* and *R* are finite.

### Noetherian rewriting systems

► *R* - a rewriting system on *A* 

Definition

We say that R is noetherian if there is no infinite sequence

 $w_1 \rightarrow_R w_2 \rightarrow_R w_3 \rightarrow_R \cdots$ 

- A word w ∈ A\* is called irreducible if there does not exist any word v ∈ A\* such that w →<sub>R</sub> v.
- ▶ If *R* is noetherian then for any  $w \in A^*$  we can obtain an irreducible  $\hat{w}$  with  $w \to_R^* \hat{w}$ .



 $\blacktriangleright \mathcal{P}_1 = \langle a, b | aba = bab \rangle$ 

If  $w_1 \rightarrow_R w_2$  then

- $w_2$  has strictly more bs than  $w_1$  and;
- $w_2$  and  $w_1$  have the same length.



There are only finitely many words over  $\{a, b\}$  of any given fixed length, so there is no infinite sequence

$$w_1 \rightarrow_R w_2 \rightarrow_R w_3 \rightarrow_R \cdots$$

Hence  $\mathcal{P}_1$  is Noetherian.

### Complete rewriting systems

► *R* - a rewriting system on *A* 

#### Definition

We say that *R* is a complete rewriting system if *R* is noetherian and every  $\leftrightarrow_R^*$ -class contains exactly one irreducible word.

### The word problem

#### Definition

A monoid *M* with a finite generating set *A* has soluble word problem if there is an algorithm which for any two words  $w_1, w_2 \in A^*$  decides whether or not they represent the same element of *M*.

#### Proposition

If M is presented by a finite complete rewriting system then M has soluble word problem.

▶ Normal form algorithm: given  $u, v \in A^*$ , reduce  $u \to^* u_0$  and  $v \to^* v_0$  to irreducible words  $u_0$  and  $v_0$ , then check if  $u_0 \equiv v_0$  in  $A^*$ .



 $\blacktriangleright \mathcal{P}_1 = \langle a, b | aba = bab \rangle$ 

Is not a complete rewriting system since irreducibles not unique



$$\blacktriangleright \mathcal{P}_2 = \langle a, b, c | ab = c, ca = bc, bcb = cc, ccb = acc \rangle$$

- $\mathcal{P}_2$  is a complete rewriting system.
- $\mathcal{P}_1$  and  $\mathcal{P}_2$  define the same monoid.

#### Question

Which monoids can be presented by finite complete rewriting systems?

## Finite derivation type

a homotopical finiteness condition

- Is a property of finitely presented monoids.
- ► Introduced by Squier (1994).

#### Original motivation

To capture much of the information of a finite complete rewriting system for a monoid in a property which is independent of the choice of presentation.

### The derivation graph of a presentation

- $\mathcal{P} = \langle A | R \rangle$  a monoid presentation
- Derivation graph:  $\Gamma = \Gamma(\mathcal{P}) = (V, E, \iota, \tau, ^{-1})$ :
  - Vertices:  $V = A^*$
  - Edges are 4-tuples:

 $\{(u, r, \epsilon, v): u, v \in A^*, r = (r_{+1}, r_{-1}) \in R, \text{ and } \epsilon \in \{+1, -1\}\}.$ 

▶ Initial and terminal vertices:  $\iota, \tau : E \to V$  for  $\mathbb{E} = (u, r, \epsilon, v)$  (with  $r = (r_{+1}, r_{-1}) \in R$ ):

•  $\iota \mathbb{E} = ur_{\epsilon}v$ 

• 
$$\tau \mathbb{E} = ur_{-\epsilon}v$$

• Inverse edge mapping:  $^{-1}: E \to E$ 

• 
$$(u, r, \epsilon, v)^{-1} = (u, r, -\epsilon, v).$$



### Paths and pictures



**Example.** 
$$\langle x, y | \underbrace{xy = y}_{r}, \underbrace{yx^2 = y^3}_{s} \rangle$$

A path is a sequence  $\mathbb{P} = \mathbb{E}_1 \circ \mathbb{E}_2 \circ \ldots \circ \mathbb{E}_n$  where  $\tau \mathbb{E}_i \equiv \iota \mathbb{E}_{i+1}$ .

Gluing edge-pictures together we obtain pictures for paths.

 $\iota$  and  $\tau$  can be defined for paths

In this example  $\iota \mathbb{P} = yxyxxxx, \ \tau \mathbb{P} = yyxxyy.$ 

### Paths and pictures



**Example.** 
$$\langle x, y | \underbrace{xy = y}_{r}, \underbrace{yx^2 = y^3}_{s} \rangle$$

 $(yx, s, +1, x^2)$ 

$$(y, r, +1, y^2 x^2)$$

$$(y^3, s, +1, 1)$$

$$(y, s, -1, y^2)$$

### Operations on pictures

$$\mathcal{P} = \langle A | R \rangle, \quad \Gamma = \Gamma(\mathcal{P})$$

Pictures +---> Paths

- ▶  $P(\Gamma)$  of all paths in  $\Gamma$
- Parallel paths: write  $\mathbb{P} \parallel \mathbb{Q}$  if  $\iota \mathbb{P} \equiv \iota \mathbb{Q}$  and  $\tau \mathbb{P} \equiv \tau \mathbb{Q}$ .
- $\| \subseteq P(\Gamma) \times P(\Gamma)$  the set of all parallel paths
- X set of pairs of paths  $(\mathbb{P}_1, \mathbb{P}_2)$  such that  $\mathbb{P}_1 \parallel \mathbb{P}_1$

#### Idea

Want to regard certain paths as being equivalent to one another modulo X.

### Operations on pictures



Basic operation (II): Interchanging disjoint discs



### Operations on pictures

Basic operation (III): Replacing a subpicture using **X** Replace a subpicture  $\mathbb{P}_1$  by  $\mathbb{P}_2$  provided  $(\mathbb{P}_1, \mathbb{P}_2) \in \mathbf{X}$ .



### Homotopy bases

**Note:** Applications of these picture operations do not change the initial vertex or the terminal vertex of the original path.

#### A homotopy base is...

a set **X** of parallel paths such that given an arbitrary pair  $(\mathbb{P}_1, \mathbb{P}_2) \in ||$  we can transform  $\mathbb{P}_1$  into  $\mathbb{P}_2$  by a finite sequence of elementary picture operations (and their inverses)

(I) cancelling pairs, (II) disjoint discs, (III) applying X.

### Finite derivation type

#### Definition

 $\mathcal{P} = \langle A | R \rangle$  has finite derivation type (FDT) if there is a **finite homotopy base** for  $\Gamma = \Gamma(\mathcal{P})$ . A monoid *M* has FDT if it may be defined by a presentation with FDT.

#### Theorem (Squier (1994))

- ▶ The property FDT is independent of choice of finite presentation.
- Let *M* be a finitely presented monoid. If *M* has a presentation by a finite complete rewriting system then *M* has FDT.

# Finite derivation type

some history

- **Squier** (1994): defines FDT and gives an example of a monoid with the following properties:
  - finitely presented with soluble word problem but
  - does not have FDT
    - hence has no presentation through a finite complete rewriting system.
- Kobayashi (2000): One-relator monoids have FDT
- Connections with diagram groups (which are fundamental groups of Squier complexes of monoid presentations)
  - Kilibarda (1997)
  - Guba & Sapir (1997 AMS memoir),

### Reducing semigroup theory to group theory

 $\blacktriangleright \ \mathcal{P}$  - property of monoids we are interested in

#### Idea

- Relate the problem of understanding the property for monoids with the problem of understanding the property for groups.
- One approach: via the maximal subgroups of the monoid.

### Monoids and their subgroups

 $\blacktriangleright$  *M* - monoid

• Green's relations  $\mathcal{R}$ ,  $\mathcal{L}$ , and  $\mathcal{H}$ 

$$x\mathcal{R}y \Leftrightarrow xM = yM, \ x\mathcal{L}y \Leftrightarrow Mx = My, \ \mathcal{H} = \mathcal{R} \cap \mathcal{L}.$$

- $H = an \mathcal{H}$ -class. If H contains an idempotent e then H is a group with identity e.
  - These are precisely the maximal subgroups of *M*.

**General question:** How do the properties of *M* relate to those of the maximal subgroups of *M*?

### Presentations for subgroups of monoids

#### Theorem (Ruskuc (1999))

Let M be a monoid and let H be a maximal subgroup of M. If the  $\mathcal{R}$ -class of H contains only finitely many  $\mathcal{H}$ -classes then:

- *M* finitely generated  $\Rightarrow$  *H* finitely generated;
- *M* finitely presented  $\Rightarrow$  *H* finitely presented.
- Steinberg (2003): gave a quick topological proof in the special case of inverse semigroups
- ► If the finiteness assumption on the *R*-class is removed then the result no longer holds.



Η

# Finite derivation type for subgroups of monoids (joint work with A. Malheiro)

#### Theorem ((RG, Malheiro (2008)))

Let M be a monoid and let H be a maximal subgroup of M. If the  $\mathcal{R}$ -class of H contains only finitely many  $\mathcal{H}$ -classes then:

• *M* has  $FDT \Rightarrow H$  has FDT.

**Notes on proof.** Given a homotopy base **X** for *M* we show how to construct a homotopy base **Y** for *H*. Finiteness is preserved when the  $\mathcal{R}$ -class has only finitely many  $\mathcal{H}$ -classes.

### **Regular monoids**

► A semigroup is regular if every *R*-class (equivalently every *L*-class) contains an idempotent.

#### Theorem (RG, Malheiro (2008))

Let *M* be a regular monoid with finitely many left and right ideals. Then *M* has finite derivation type if and only if every maximal subgroup of *M* has finite derivation type.

**Notes on proof.** We show in general how to construct a homotopy base for *M* from homotopy bases of the maximal subgroups.

- Ruskuc (1999): Proved the corresponding result for finite generation and presentability.
- **Golubov** (1975): Showed corresponding result holds for residual finiteness.

### Complete rewriting systems

#### Theorem (RG, Malheiro (in preparation))

Let M be a regular monoid with finitely many left and right ideals. If every maximal subgroup of M has a presentation by a finite complete rewriting system then so does M.

- The converse is still open.
- ► This relates to the following open problem from group theory:

**Question.** Is the property of having a finite complete rewriting system preserved when taking finite index subgroups?

### The finiteness condition $FP_n$

- ▶ Wall (1965): introduced a (geometric) finiteness condition for groups called  $\mathcal{F}_n$ :
  - $\mathcal{F}_1 \equiv \text{finite generation}$
  - $\mathcal{F}_2 \equiv \text{finite presentability}$
- ► Issue:  $\mathcal{F}_n$  not very tractable in terms of using algebraic machinery
- **Bieri** (1976): introduced  $FP_n$  for groups.

#### Definition (in short!)

A monoid *M* is of type left-FP<sub>n</sub> if  $\mathbb{Z}$  has a free resolution as a trivial left  $\mathbb{Z}M$ -module that is finite through dimension *n*.

► Kobayashi (1990): If a monoid *M* is presented by a finite complete rewriting system then *M* is of type  $FP_n$  for all  $n \in \mathbb{N}$ .

#### $\mathbb{Z}M$ -modules

- $\blacktriangleright$  *M* monoid
- $\mathbb{Z}M$  the integral monoid ring over  $\mathbb{Z}$ :

 $\mathbb{Z}M = \{\sum n_u u : u \in M, n_u \in \mathbb{Z} \text{ and } n_u = 0 \text{ for all but finitely many } u\}$ 

e.g.  $4m_1 - 2m_2 + 3m_3 \in \mathbb{Z}M$ 

- Addition:  $(\sum n_u u) + (\sum p_u u) = \sum (n_u + p_u)u$
- Multiplication:  $(\sum n_u u)(\sum p_u u) = \sum q_u u$ , where  $q_u = \sum_{vw=u} n_v p_w$ .
- ►  $(\mathbb{Z}M, +)$  a free abelian group,  $(\mathbb{Z}M, +, \cdot)$  ring
- $\blacktriangleright$  ZM is a left ZM-module where the action is the above multiplication
- Free left  $\mathbb{Z}M$ -module of rank  $r \in \mathbb{N}$ :

$$\underbrace{\mathbb{Z}M\oplus\mathbb{Z}M\oplus\cdots\oplus\mathbb{Z}M}_{r}$$

with the natural action of  $\mathbb{Z}M$  on the left.

### The property $FP_n$

#### Definition

A monoid *M* is of type left-FP<sub>*n*</sub> if there is a sequence:

$$F_n \xrightarrow{\partial_n} F_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} \mathbb{Z} \to 0$$

such that for all *i* we have:

- $F_i$  is a finitely generated free left  $\mathbb{Z}M$ -module
- $\partial_i$  is a homomorphism
- ► the sequence is **exact**, i.e.
  - $\partial_i(F_i) = \ker(\partial_{i-1})$ , and
  - $\blacktriangleright \ \partial_0(F_0) = \mathbb{Z}.$

The monoid is of type left-FP<sub> $\infty$ </sub> if it satisfies left-FP<sub>*n*</sub> for all  $n \in \mathbb{N}$ .

► There is an obvious dual notion of partial free resolution of right ℤ*M*-modules, and corresponding property of right-FP<sub>n</sub>.

### $FP_n$ in group theory

• For groups (and more generally inverse semigroups)

left-FP<sub>n</sub>  $\equiv$  right-FP<sub>n</sub>

- $FP_1 \equiv finite generation$
- Problem of whether

 $FP_2 \equiv$  finite presentability ?

was open for 20 years.

• Bestvina & Brady (1997): answered the question in the negative



- ► Cohen (1992): example of a monoid that is left-FP<sub>∞</sub> but not even right-FP<sub>1</sub>!
- ▶  $\mathbf{FP}_1 \not\equiv \mathbf{finite generation} \quad \& \quad \mathbf{FP}_2 \not\equiv \mathbf{finite presentability}$
- ► Kobayashi (1990): *M* presented by a finite complete rewriting system M is of type(left and right)-FP<sub>∞</sub>
- Cremanns & Otto (1994) / Lafont (1995) / Pride (1995): For finitely presented monoids

$$FDT \Rightarrow FP_3.$$

• Cremanns & Otto (1996): for finitely presented groups

 $FDT \equiv FP_3$ .

### A corollary about FP<sub>3</sub>

#### Corollary (RG, Malheiro (2008))

Let *M* be a finitely presented regular monoid with finitely many left and right ideals. If every maximal subgroup of *M* is of type  $FP_3$  then *M* is of type (left and right)-FP\_3.

**Proof.** Every maximal subgroup  $FP_3 \Rightarrow$  every maximal subgroup FDT (Cremanns and Otto (1996))  $\Rightarrow M$  has FDT  $\Rightarrow M$  satisfies FP<sub>3</sub> (Cremanns and Otto (1994)).

This leads naturally to the following questions:

- Can the finitely presented hypothesis be lifted?
- Does the converse hold?
- ▶ What about FP<sub>n</sub> for other values of n?

#### Understanding FP<sub>1</sub> Kobayashi's criterion

- M monoid,  $A \subseteq M$  (may not be a generating set)
- $\Gamma_r(M, A)$  right Cayley graph of M with respect to A
- ► Vertex set: M
- Edge set:  $x \xrightarrow{a} y$  iff xa = y.

#### Theorem (Kobayashi (2007))

Let M be a monoid. Then M is of type left-FP<sub>1</sub> if and only if

• there is a finite subset A of M such that  $\Gamma_r(M, A)$  is connected

### $FP_n$ for monoids with zero

Corollary (Kobayashi (2007))

If a monoid M has a zero element z then M is of type left-FP<sub>1</sub>.

**Proof.** Consider  $\Gamma_r(M, A)$  where  $A = \{z\}$ .

Proposition (Kobayashi (preprint))

If a monoid M has a zero element z then M is if type left-FP $_\infty$ 

#### Example

- G any group,  $M = G^0$  adjoin a zero (0g = g0 = 00 = 0).
  - Maximal subgroups of *M* are:  $H_1 = G$ , and  $H_0 = \{0\}$ .
  - Kobayashi  $\Rightarrow$  *M* is left-FP<sub> $\infty$ </sub>.
  - *G* can have any properties we like
    - e.g. can choose G not to be of type  $FP_n$  for any given n.

Conclusion: The converse of our FP<sub>3</sub> result does not hold.



FP<sub>n</sub> holding in a monoid relates closely to FP<sub>n</sub> holding in the ideals of that monoid.

#### Definition

Clifford monoid - a regular monoid whose idempotents are central

Theorem (RG, Pride (in preparation))

A Clifford monoid is of type left-FP<sub>n</sub> if and only if it has a minimal ideal G (which is necessarily a group) and G is of type left-FP<sub>n</sub>.

### Completely simple semigroups

#### Definition

A semigroup is called simple if it has no proper ideals.

#### Theorem (RG, Pride (in preparation))

Let *S* be a simple semigroup with finitely many left and right ideals, let *G* be a maximal subgroup of *S*, and let *M* denote the monoid  $S^1$ . Then *M* is of type left-FP<sub>n</sub> if and only if *G* is of type left-FP<sub>n</sub>.

### Combining the two results

► For FP<sub>1</sub> we have:

#### Theorem (RG, Pride (in preparation))

Let *S* be a monoid with a minimal ideal *J* such that *J* is a completely simple semigroup with finitely many left and right ideals. Let *G* be a maximal subgroup of *J*. Then *S* is of type left-FP<sub>1</sub> if and only if *G* is of type left-FP<sub>1</sub>.

#### Corollary

Let *S* be a monoid with finitely many left and right ideals. Let *G* be a maximal subgroup of the unique minimal ideal of *S*. Then *S* is of type left- $FP_1$  if and only if *G* is of type left- $FP_1$ .

- We have a partial proof of these results for left-FP<sub>n</sub> in general.
- In particular we have a proof for left-FP<sub>n</sub> when J is a group.

### Future work

- Finite derivation type
  - extend results to non-regular monoids with Schützenberger groups in place of maximal subgroups
  - subsemigroups of monoids in general, Rees index, Green index.
- $\blacktriangleright$  FP<sub>n</sub>
  - Consider other related properties like: bi-FP<sub>n</sub>, FHT, FDT<sub>2</sub>, FHT<sub>2</sub>, HFDT<sub>n</sub>, etc.
  - Try to develop a better understanding of FP<sub>n</sub> for monoids without a minimal ideal, or in the case that the minimal ideal is not completely simple with finitely many left and right ideals (e.g. B–R extensions).