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Why are fractions so hard?
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Question: Why are presentations so hard?

Answer: Because they are harder than fractions!



Presentations

Fact: There are lots of nasty finitely presented monoids out there.

Markov (1947), Post (1947): There exist finitely presented monoids for
which there is no algorithm to solve the word problem.

Idea

1. Identify a class C of “nice” finite presentations:
I finite complete rewriting systems

2. Try to gain understanding of those monoids that may be defined by
presentations from C:

I study properties of monoids defined by such rewriting systems:
I Finite derivation type (FDT)
I FPn



Rewriting systems

I A - non-empty set (the alphabet), A∗ - free monoid over A
I A rewriting system over A is a subset R ⊆ A∗ × A∗

I Rewrite rules: (r+1, r−1) ∈ R, also written as r+1 = r−1.
I Write u →R v if u ≡ w1r+1w2 and v ≡ w1r−1w2 where (r+1, r−1) ∈ R

and w1, w2 ∈ A∗.
I →∗

R = the reflexive transitive closure of →R

↔∗
R = the reflexive symmetric transitive closure of →R

= the congruence on A∗ generated by R
I 〈A|R〉 - monoid presentation with generators A and set of defining

relations R
I A∗/ ↔∗

R - the monoid defined by the presentation 〈A|R〉
I A rewriting system (presentation) is called finite if both A and R are

finite.



Noetherian rewriting systems

I R - a rewriting system on A

Definition
We say that R is noetherian if there is no infinite sequence

w1 →R w2 →R w3 →R · · ·

I A word w ∈ A∗ is called irreducible if there does not exist any word
v ∈ A∗ such that w →R v.

I If R is noetherian then for any w ∈ A∗ we can obtain an irreducible ŵ
with w →∗

R ŵ.



Example
Kupar and Narendran (1985)

I P1 = 〈a, b|aba = bab〉

If w1 →R w2 then
I w2 has strictly more bs than w1 and;
I w2 and w1 have the same length.
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There are only finitely many words over {a, b} of any given fixed length, so
there is no infinite sequence

w1 →R w2 →R w3 →R · · ·

Hence P1 is Noetherian.



Complete rewriting systems

I R - a rewriting system on A

Definition
We say that R is a complete rewriting system if R is noetherian and every
↔∗

R-class contains exactly one irreducible word.



The word problem

Definition
A monoid M with a finite generating set A has soluble word problem if there
is an algorithm which for any two words w1, w2 ∈ A∗ decides whether or not
they represent the same element of M.

Proposition

If M is presented by a finite complete rewriting system then M has soluble
word problem.

I Normal form algorithm: given u, v ∈ A∗, reduce u →∗ u0 and
v →∗ v0 to irreducible words u0 and v0, then check if u0 ≡ v0 in A∗.



Example
Kupar and Narendran (1985)

I P1 = 〈a, b|aba = bab〉
Is not a complete rewriting system since irreducibles not unique
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I P2 = 〈a, b, c|ab = c, ca = bc, bcb = cc, ccb = acc〉
I P2 is a complete rewriting system.
I P1 and P2 define the same monoid.

Question
Which monoids can be presented by finite complete rewriting systems?



Finite derivation type
a homotopical finiteness condition

I Is a property of finitely presented monoids.
I Introduced by Squier (1994).

Original motivation

To capture much of the information of a finite complete rewriting system for
a monoid in a property which is independent of the choice of presentation.



The derivation graph of a presentation
I P = 〈A|R〉 a monoid presentation
I Derivation graph: Γ = Γ(P) = (V, E, ι, τ,−1 ):

I Vertices: V = A∗
I Edges are 4-tuples:
{(u, r, ε, v) : u, v ∈ A∗, r = (r+1, r−1) ∈ R, and ε ∈ {+1,−1}}.

I Initial and terminal vertices: ι, τ : E → V for E = (u, r, ε, v) (with
r = (r+1, r−1) ∈ R):

I ιE = urεv
I τE = ur−εv

I Inverse edge mapping: −1 : E → E
I (u, r, ε, v)−1 = (u, r,−ε, v).
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E−1 = (u, r,−ε, v)



Paths and pictures
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Example. 〈x, y|xy = y, yx2 = y3〉︸ ︷︷ ︸
r

︸ ︷︷ ︸
s

A path is a sequence
P = E1 ◦ E2 ◦ . . . ◦ En where
τEi ≡ ιEi+1.

Gluing edge-pictures together we
obtain pictures for paths.

ι and τ can be defined for paths

In this example
ιP = yxyxxxx, τP = yyxxyy.



Paths and pictures
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Example. 〈x, y|xy = y, yx2 = y3〉︸ ︷︷ ︸
r

︸ ︷︷ ︸
s

(yx, s,+1, x2)

(y, r,+1, y2x2)

(y3, s,+1, 1)

(y, s,−1, y2)



Operations on pictures

P = 〈A|R〉, Γ = Γ(P)

Pictures ! Paths

I P(Γ) - of all paths in Γ
I Parallel paths: write P ‖ Q if ιP ≡ ιQ and τP ≡ τQ.
I ‖ ⊆ P(Γ)× P(Γ) - the set of all parallel paths
I X - set of pairs of paths (P1, P2) such that P1 ‖ P1

Idea
Want to regard certain paths as being equivalent to one another modulo X.



Operations on pictures
Basic operation (I): Deleting a cancelling pair

u r ε v

u vεr

−εr

E

 

E−1

u r ε v

u vεr

Basic operation (II): Interchanging disjoint discs

 



Operations on pictures

Basic operation (III): Replacing a subpicture using X
Replace a subpicture P1 by P2 provided (P1, P2) ∈ X.
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u · P1 · v  u · P2 · v



Homotopy bases

Note: Applications of these picture operations do not change the initial
vertex or the terminal vertex of the original path.

A homotopy base is...

a set X of parallel paths such that given an arbitrary pair (P1, P2) ∈‖ we can
transform P1 into P2 by a finite sequence of elementary picture operations
(and their inverses)

(I) cancelling pairs, (II) disjoint discs, (III) applying X.



Finite derivation type

Definition
P = 〈A|R〉 has finite derivation type (FDT) if there is a finite homotopy
base for Γ = Γ(P). A monoid M has FDT if it may be defined by a
presentation with FDT.

Theorem (Squier (1994))

I The property FDT is independent of choice of finite presentation.
I Let M be a finitely presented monoid. If M has a presentation by a finite

complete rewriting system then M has FDT.



Finite derivation type
some history

I Squier (1994): defines FDT and gives an example of a monoid with the
following properties:

I finitely presented with soluble word problem but
I does not have FDT

I hence has no presentation through a finite complete rewriting system.

I Kobayashi (2000): One-relator monoids have FDT
I Connections with diagram groups (which are fundamental groups of

Squier complexes of monoid presentations)
I Kilibarda (1997)
I Guba & Sapir (1997 AMS memoir),



Reducing semigroup theory to group theory

I P - property of monoids we are interested in

Idea

I Relate the problem of understanding the property for monoids with the
problem of understanding the property for groups.

I One approach: via the maximal subgroups of the monoid.



Monoids and their subgroups

I M - monoid
I Green’s relations R, L, and H

xRy ⇔ xM = yM, xLy ⇔ Mx = My, H = R∩ L.

I H = an H-class. If H contains an idempotent e then H is a group with
identity e.

I These are precisely the maximal subgroups of M.

General question: How do the properties of M relate to those of the
maximal subgroups of M?



Presentations for subgroups of monoids

Theorem (Ruskuc (1999))
Let M be a monoid and let H be a maximal subgroup of M. If the R-class of
H contains only finitely many H-classes then:

I M finitely generated ⇒ H finitely generated;
I M finitely presented ⇒ H finitely presented.

I Steinberg (2003): gave a quick topological proof in the special case of
inverse semigroups

I If the finiteness assumption on the R-class is removed then the result
no longer holds.
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Finite derivation type for subgroups of monoids
(joint work with A. Malheiro)

Theorem ((RG, Malheiro (2008)))
Let M be a monoid and let H be a maximal subgroup of M. If the R-class of
H contains only finitely many H-classes then:

I M has FDT ⇒ H has FDT.

Notes on proof. Given a homotopy base X for M we show how to construct
a homotopy base Y for H. Finiteness is preserved when the R-class has only
finitely many H-classes.



Regular monoids

I A semigroup is regular if every R-class (equivalently every L-class)
contains an idempotent.

Theorem (RG, Malheiro (2008))
Let M be a regular monoid with finitely many left and right ideals. Then M
has finite derivation type if and only if every maximal subgroup of M has
finite derivation type.

Notes on proof. We show in general how to construct a homotopy base for
M from homotopy bases of the maximal subgroups.

I Ruskuc (1999): Proved the corresponding result for finite generation
and presentability.

I Golubov (1975): Showed corresponding result holds for residual
finiteness.



Complete rewriting systems

Theorem (RG, Malheiro (in preparation))

Let M be a regular monoid with finitely many left and right ideals. If every
maximal subgroup of M has a presentation by a finite complete rewriting
system then so does M.

I The converse is still open.
I This relates to the following open problem from group theory:

Question. Is the property of having a finite complete rewriting system
preserved when taking finite index subgroups?



The finiteness condition FPn

I Wall (1965): introduced a (geometric) finiteness condition for groups
called Fn:

I F1 ≡ finite generation
I F2 ≡ finite presentability

I Issue: Fn not very tractable in terms of using algebraic machinery
I Bieri (1976): introduced FPn for groups.

Definition (in short!)
A monoid M is of type left-FPn if Z has a free resolution as a trivial left
ZM-module that is finite through dimension n.

I Kobayashi (1990): If a monoid M is presented by a finite complete
rewriting system then M is of type FPn for all n ∈ N.



ZM-modules

I M - monoid
I ZM - the integral monoid ring over Z:

ZM = {
∑

nuu : u ∈ M, nu ∈ Z and nu = 0 for all but finitely many u}

e.g. 4m1 − 2m2 + 3m3 ∈ ZM
I Addition: (

∑
nuu) + (

∑
puu) =

∑
(nu + pu)u

I Multiplication: (
∑

nuu)(
∑

puu) =
∑

quu, where qu =
∑

vw=u nvpw.

I (ZM,+) - a free abelian group, (ZM,+, ·) - ring
I ZM is a left ZM-module where the action is the above multiplication
I Free left ZM-module of rank r ∈ N:

ZM ⊕ ZM ⊕ · · · ⊕ ZM︸ ︷︷ ︸
r

with the natural action of ZM on the left.



The property FPn

Definition
A monoid M is of type left-FPn if there is a sequence:

Fn
∂n−→ Fn−1

∂n−1−−−→ · · · ∂2−→ F1
∂1−→ F0

∂0−→ Z → 0

such that for all i we have:
I Fi is a finitely generated free left ZM-module
I ∂i is a homomorphism
I the sequence is exact, i.e.

I ∂i(Fi) = ker(∂i−1), and
I ∂0(F0) = Z.

The monoid is of type left-FP∞ if it satisfies left-FPn for all n ∈ N.

I There is an obvious dual notion of partial free resolution of right
ZM-modules, and corresponding property of right-FPn.



FPn in group theory

I For groups (and more generally inverse semigroups)

left-FPn ≡ right-FPn

I FP1 ≡ finite generation
I Problem of whether

FP2 ≡ finite presentability ?

was open for 20 years.
I Bestvina & Brady (1997): answered the question in the negative



FPn for monoids
and the relationship to FDT

I Cohen (1992): example of a monoid that is left-FP∞ but not even
right-FP1!

I FP1 6≡ finite generation & FP2 6≡ finite presentability
I Kobayashi (1990):

M presented by a finite ⇒ M is of type
complete rewriting system (left and right)-FP∞

I Cremanns & Otto (1994) / Lafont (1995) / Pride (1995): For finitely
presented monoids

FDT ⇒ FP3.

I Cremanns & Otto (1996): for finitely presented groups

FDT ≡ FP3.



A corollary about FP3

Corollary (RG, Malheiro (2008))

Let M be a finitely presented regular monoid with finitely many left and right
ideals. If every maximal subgroup of M is of type FP3 then M is of type (left
and right)-FP3.

Proof. Every maximal subgroup FP3 ⇒ every maximal subgroup FDT
(Cremanns and Otto (1996)) ⇒ M has FDT ⇒ M satisfies FP3 (Cremanns
and Otto (1994)).

This leads naturally to the following questions:
I Can the finitely presented hypothesis be lifted?
I Does the converse hold?
I What about FPn for other values of n?



Understanding FP1
Kobayashi’s criterion

I M - monoid, A ⊆ M (may not be a generating set)
I Γr(M, A) - right Cayley graph of M with respect to A
I Vertex set: M
I Edge set: x a−→ y iff xa = y.

Theorem (Kobayashi (2007))

Let M be a monoid. Then M is of type left-FP1 if and only if
I there is a finite subset A of M such that Γr(M, A) is connected



FPn for monoids with zero

Corollary (Kobayashi (2007))

If a monoid M has a zero element z then M is of type left-FP1.

Proof. Consider Γr(M, A) where A = {z}.

Proposition (Kobayashi (preprint))

If a monoid M has a zero element z then M is if type left-FP∞

Example

G - any group, M = G0 - adjoin a zero (0g = g0 = 00 = 0).
I Maximal subgroups of M are: H1 = G, and H0 = {0}.
I Kobayashi ⇒ M is left-FP∞.
I G can have any properties we like

I e.g. can choose G not to be of type FPn for any given n.

Conclusion: The converse of our FP3 result does not hold.



Clifford monoids
(joint work with S. J. Pride)

I FPn holding in a monoid relates closely to FPn holding in the ideals of
that monoid.

Definition
Clifford monoid - a regular monoid whose idempotents are central

Theorem (RG, Pride (in preparation))

A Clifford monoid is of type left-FPn if and only if it has a minimal ideal G
(which is necessarily a group) and G is of type left-FPn.



Completely simple semigroups

Definition
A semigroup is called simple if it has no proper ideals.

Theorem (RG, Pride (in preparation))

Let S be a simple semigroup with finitely many left and right ideals, let G be
a maximal subgroup of S, and let M denote the monoid S1. Then M is of type
left-FPn if and only if G is of type left-FPn.



Combining the two results

I For FP1 we have:

Theorem (RG, Pride (in preparation))

Let S be a monoid with a minimal ideal J such that J is a completely simple
semigroup with finitely many left and right ideals. Let G be a maximal
subgroup of J. Then S is of type left-FP1 if and only if G is of type left-FP1.

Corollary

Let S be a monoid with finitely many left and right ideals. Let G be a
maximal subgroup of the unique minimal ideal of S. Then S is of type
left-FP1 if and only if G is of type left-FP1.

I We have a partial proof of these results for left-FPn in general.
I In particular we have a proof for left-FPn when J is a group.



Future work

I Finite derivation type
I extend results to non-regular monoids with Schützenberger groups in

place of maximal subgroups
I subsemigroups of monoids in general, Rees index, Green index.

I FPn
I Consider other related properties like:

bi-FPn, FHT, FDT2, FHT2, HFDTn, etc.
I Try to develop a better understanding of FPn for monoids without a

minimal ideal, or in the case that the minimal ideal is not completely
simple with finitely many left and right ideals (e.g. B–R extensions).
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