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Automata

An automaton A is a triple (Q,B, δ), where
◮ Q is a finite set of states
◮ B is a finite alphabet
◮ δ is a transformation of the set Q × B

If (q, b)δ = (r, c) then if A is in state q, it can read b and move
to state r and output c.

a b1 | 1

0 | 0

1 | 0

0 | 0



Input and output of sequences
If A starts in state q0 and reads

α1α2 . . . αn ∈ B∗,

it outputs
β1β2 . . . βn,

where (qi−1, αi)δ = (qi, βi) for states q0, . . . , qn ∈ Q.
This defines an action of Q on B∗, with

α1α2 . . . αn · q = β1β2 . . . βn.

a b1 | 1

0 | 0

1 | 0

0 | 0

0110 · a = 0110 · a = 0(110 · b) 0110 · a = 00(10 · b)

0110 · a = 001(0 · a) 0110 · a = 0010



B∗ as a tree

ε

0 1

00 01 10 11

000 001 010 011 100 101 110 111



Action on B∗

Each q ∈ Q acts on B∗, so there is a map φ : Q → End B∗,
which extends to a homomorphism φ : Q+ → End B∗.

a b1 | 1

0 | 0

1 | 0

0 | 0

1110 · babb = 1110 · babb = 0110 · abb 1110 · babb = 0010 · bb

1110 · babb = 0000 · b 1110 · babb = 0000



The semigroup from the action

The image of φ : Q+ → End B∗, denoted Σ(A), is the
automaton semigroup defined by A.

Identify each q ∈ Q with its image under φ, so that Q becomes
a generating set for Σ(A).



The semigroup from the action

a b1 | 1

0 | 0

1 | 0

0 | 0

α · b must begin with a 0. Write α · b = 0β. Then

(0β) · a = 0(β · b) and (0β) · b = 0(β · b).

So α · ba = α · b2 for any α ∈ B∗; thus ba = b2.



Back to the example

a b1 | 1

0 | 0

1 | 0

0 | 0

Every element of Σ(A) can be written as aibj. Now,

0k1ω · a = 0k1ω · b = 0k+11ω.

Thus, for i, j ∈ N
0,

01ω · aibj = 0i+j+11ω.

Furthermore, for n > j,

1n0ω · a = 1n0ω,

and hence

1n0ω · aibj = 1n0ω · bj = 0j1n−j0ω.

So if aibj = akbl, then i + j + 1 = k + l + 1 and j = l, whence
i = k. The semigroup is therefore presented by

〈

a, b | (ba, b2)
〉

.



Another example

a b0 | 0

1 | 0

0 | 1

1 | 1

1. Having read symbol 0, the automaton enters a; on reading
1, it enters b.

2. Leaving state a the output is 0; leaving b the output is 1.

So the automaton remembers the last read symbol and output
its when the next symbol is read.
So a acts by shifting right and inserting 0 and b shifts right and
inserts 1.

Thus the word w ∈ Q+ is determined by the common prefix of
α · w for long α ∈ B∗. So Σ(A) is free with basis Q.



A generalization
Theorem
Every free semigroup of rank at least 2 is an automaton
semigroup.

qk

1
| k

| k

3
|
k n

| k

k | k



Wreath recursions

The endomorphism semigroup of B∗ decomposes as:

End B∗ = EndB∗ ≀ TB.

That is,

End B∗ =
(

EndB∗ × . . . × End B∗

︸ ︷︷ ︸

|B| times

)

⋊ TB

So if q ∈ End B∗, then

q = (x1, . . . , x|B|)τ

for xi ∈ End B∗ and τ ∈ TB. This is called the wreath recursion
associated to q.



B∗ as a tree

ε

0 1

00 01 10 11

000 001 010 011 100 101 110 111

p = (q, r)τ



Wreath recursions for automaton semigroups

Define τq : B → B and πq : B → Q such that
(q, b)δ = (bπq, bτq).

The wreath recursion associated to q ∈ Q is

q = (1πq, 2πq, . . . , nπq)τq.



Calculating with wreath recursions

Suppose
p = (x0, x1, · · · , xd−1)τ

and
q = (y0, y1, · · · , yd−1)ρ

Then
pq = (x0y0τ, x1y1τ, · · · , xd−1y(d−1)τ)τρ.

For example, let a = (b, c)λ and d = (e, f)ρ, where xλ = 0 and
xρ = 1. Then

ad = (be, ce)ρ, da = (ec, fc)λ.



Example of using wreath recursions

Automaton acting on {0, 1}∗:

a b

∗ | ∗

∗ | 0

Wreath recursions: a = id(b, b), b = λ(a, a).

a2 = (b2, b2) id = a

b2 = (a2, a2)λ = b

ab = (ba, ba)λ = Λ

ba = (ab, ab)λ = Λ

(αΛ = 0|α| for any α in{0, 1}∗.) Also 0k · a = 0k · b = 0k

Hence Λa = Λb = aΛ = bΛ = ΛΛ = Λ

So we have a three-element semilattice:

a b

Λ



Word problem

Let u, v ∈ Q+.

◮ Compute the wreath recursions for u and v:

u = (w
(u)

1 , . . . ,w
(u)
n )τu and v = (w

(v)

1 , . . . ,w
(v)
n )τv.

◮ Check whether τu = τv.
◮ Check whether w

(u)

i = w
(v)

i for each i ∈ B.

The algorithm terminates because |w
(u)

i | = |u| and |w
(v)

i | = |v|.



Free commutative semigroups

Theorem
Every free commutative semigroup of rank at least 2 is an
automaton semigroup.



Free commutative semigroups

q1

q2qn−1

qn
∗ | ∗

0 | 0

1 | 0

∗ | ∗

qi = id(qi+1, qi+1) for i = 1, . . . , n − 1, and qn = λ(q1, qn)

qiqj = id(qi+1qj+1, qi+1qj+1),

qjqi = id(qj+1qi+1, qj+1qi+1) for i, j = 1, . . . , n − 1,

qiqn = λ(qi+1q1, qi+1qn),

qnqi = λ(q1qi+1, qnqi+1) for i = 1, . . . , n − 1.



Free commutative semigroups

So every element of the semigroup is a product q
k1

1 · · ·qkn
n .

Need to show that every element has a unique such
expression.

The aim is to show that the action of q
k1

1 · · ·qkn
n determines

each ki.



Free commutative semigroups

q1

q2qn−1

qn
∗ | ∗

0 | 0

1 | 0

∗ | ∗

Let αi = 0n−i10i−1. Let ζ = 0n.

(αiβ) · qi = ζ(β · qi−1) for i = 1, . . . , n,

(αiβ) · qj = αi(β · qj) for i, j = 1, . . . , n with i 6= j,

(ζβ) · qi = ζ(β · qi) for i = 1, . . . , n.

Consequently,

αk
i · w = ζ|w|qi α

k−|w|qi

i .



Automaton groups

A = (Q,B, δ) is invertible if the action of every state q on B∗ is a
bijection.

A is invertible if and only if each τq is a bijection.

If A is invertible, there is a natural action of q−1 on B∗ and so a
natural map φ : (Q ∪ Q−1)+ → Aut B∗. The automaton group
Γ(A) is the image of φ.



Automaton groups

The lamplighter group Z2 wr Z is Γ(A), where A is:

a b1 | 0

0 | 1

1 | 1

0 | 0



Examples of 2-state 2-symbol automaton groups

Theorem (Grigorchuk et al.)
Let A be a 2-state 2-symbol invertible automaton. Then Γ(A) is
one of:

◮ the trivial group
◮ Z2

◮ Z2 × Z2

◮ Z

◮ the infinite dihedral group
◮ the lamplighter group Z2 wr Z



Examples of 2-state 2-symbol automaton semigroups

Let A be a 2-state 2-symbol automaton. Then Σ(A) may be:
◮ Trivial
◮ 2-element chain
◮ 2-element left zero semigroup
◮

〈

a, b | (a2, a), (b2, b), (ba, b)
〉

(3 elements)
◮ 3-element non-chain semilattice
◮

〈

a, b, 0 | (a3, a2), (ab, ba), (ab, 0)
〉

(4 elements)
◮ N ∪ {0}

◮ Free product of two trivial semigroups
◮ Free commutative semigroup of rank 2

◮ Free semigroup of rank 2

◮

〈

a, b | (ba, b2)
〉



Bicyclic monoid

Proposition
The bicyclic monoid is not an automaton semigroup.

Proof.
Suppose 〈b, c | (bc, ε)〉 is Σ(A), where A = (Q,B, δ).

So bc acts identically on B∗ and cb acts non-identically.

That is, bc acts identically on Bn for some n and cb acts
non-identically.

So b acts injectively and so bijectively on Bn.

Thus c and b are inverse mappings on Bn and so cb acts
identically on Bn.



Basic properties of automaton semigroups

Proposition
Every automaton semigroup is residually finite.

Proposition
Every automaton semigroup is hopfian.



Adjoining zeroes and identities

Proposition
If S is an automaton semigroup, then so is S0.

Proposition
If S is an automaton semigroup, then so is S1.

N ∪ {0} is an automaton semigroup but N is not.



Direct products

Proposition
Let S and T be automaton semigroups. Then S × T is an
automaton semigroup if and only if it is finitely generated.



Cayley automata

Let S be a finite semigroup. The Cayley automaton C(S) is
(S, S, δ), where (s, t)δ = (st, st):

s st
t | st

◮ C(S) acts on S∗.
◮ pq is ambiguous – a product or a sequence of two

symbols.
◮ Henceforth use overlines to distinguish: p q or pq.



An example

Suppose L is a finite left zero semigroup.
When C(L) is in state q and reads x, it moves to state qx = q

and outputs qx = q.

α1 α2 . . . αn · q =α1 α2 . . . αn · q = q (α2 . . . αn · q)α1 α2 . . . αn ·
q = qq(. . . αn · q)α1 α2 . . . αn · q = qq . . . q

So α · q = q|α|, and α · q r = r|α|.
Σ(C(L)) is a right zero semigroup of cardinality L.



A theorem and a generalization

Theorem (Silva & Steinberg)
If G is a finite non-trivial group, then Σ(C(G)) is a free
semigroup of rank |G|.

Theorem
If S is a finite Clifford semigroup with all maximal subgroups
non-trivial, then Σ(C(S)) is a strong semilattice of free
semigroups.



Characterization of groups arising from Cayley
automata

Theorem (Maltcev)
The following are equivalent:

1. Σ(C(S)) is a group

2. Σ(C(S)) is trivial

3. S is an inflation of right zero semigroups by null semigroups

Question
Is Σ(C(S)) always aperiodic (has trivial H-classes)?



Characterizing finite Cayley automata semigroups

Theorem
Σ(C(S)) is finite if and only if S is aperiodic.

There are three proofs of the ‘if’ part of this:
◮ Detailed calculations with wreath recursions (Maltcev).
◮ By considering a restricted action on sequences of

elements of an ideal of S (Mintz)
◮ Combinatorial arguments on the action on sequences (C).

Corollary
If Σ(C(S)) is infinite, it contains a free semigroup of rank 2.

Corollary
N ∪ {0} is not a Cayley automaton semigroup.



Σ(C(S)) ≃ S?

Proposition
If S is a semilattice, then Σ(C(S)) ≃ S.

Proposition
If S is an I × I rectangular band, then Σ(C(S1)) ≃ S1.

Conjecture
The semigroups S with Σ(C(S)) ≃ S are precisely the finite
bands wherein every rectangular band is ‘square’ and each
maximal D-class is a singleton.



Constructions on the underlying semigroup

Proposition
Σ(C(S0)) ≃ Σ(C(S))0.

Unfortunately, Σ(C(S1)) is not, in general, isomorphic to
Σ(C(S))1.

Proposition
Σ(C(S ∪0 T)) ≃ Σ(C(S)) ∪0 Σ(C(T)).



Open problems

Problem
Decision problems for automaton semigroups: given the
automaton A as input, what properties of Σ(A) can be decided?

Problem
Consider more general automata than can output zero or
multiple symbols for each input symbol (i.e.
δ : Q × B → Q × B∗).


