Automaton semigroups

Alan J. Cain

16th April 2009

Automata

An automaton \mathcal{A} is a triple (Q, B, δ) , where

- Q is a finite set of states
- B is a finite alphabet
- $\blacktriangleright \ \delta$ is a transformation of the set $Q \times B$

If $(q,b)\delta=(r,c)$ then if ${\cal A}$ is in state q, it can read b and move to state r and output c.

Input and output of sequences

If ${\mathcal A}$ starts in state q_0 and reads

$$\alpha_1 \alpha_2 \ldots \alpha_n \in B^*$$
,

it outputs

$$\beta_1\beta_2\ldots\beta_n,$$

where $(q_{i-1}, \alpha_i)\delta = (q_i, \beta_i)$ for states $q_0, \ldots, q_n \in Q$. This defines an action of Q on B^* , with

$$\alpha_1 \alpha_2 \ldots \alpha_n \cdot q = \beta_1 \beta_2 \ldots \beta_n.$$

B* as a tree

Action on B*

Each $q \in Q$ acts on B^* , so there is a map $\phi : Q \rightarrow \text{End } B^*$, which extends to a homomorphism $\phi : Q^+ \rightarrow \text{End } B^*$.

 $1110 \cdot babb = 1110 \cdot babb = 0110 \cdot abb \ 1110 \cdot babb = 0010 \cdot bb$ $1110 \cdot babb = 0000 \cdot b \ 1110 \cdot babb = 0000$

The semigroup from the action

The image of $\phi : Q^+ \to \text{End } B^*$, denoted $\Sigma(\mathcal{A})$, is the automaton semigroup defined by \mathcal{A} .

Identify each $q \in Q$ with its image under φ , so that Q becomes a generating set for $\Sigma(\mathcal{A})$.

The semigroup from the action

 $\alpha \cdot b$ must begin with a 0. Write $\alpha \cdot b = 0\beta$. Then

 $(0\beta) \cdot a = 0(\beta \cdot b)$ and $(0\beta) \cdot b = 0(\beta \cdot b)$.

So $\alpha \cdot ba = \alpha \cdot b^2$ for any $\alpha \in B^*$; thus $ba = b^2$.

Back to the example

Every element of $\Sigma(\mathcal{A})$ can be written as $a^i b^j$. Now,

$$0^k 1^\omega \cdot a = 0^k 1^\omega \cdot b = 0^{k+1} 1^\omega$$

Thus, for $i, j \in \mathbb{N}^0$,

$$01^{\omega} \cdot a^{i}b^{j} = 0^{i+j+1}1^{\omega}$$

Furthermore, for n > j,

$$1^n 0^\omega \cdot a = 1^n 0^\omega,$$

and hence

$$1^{n}0^{\omega} \cdot a^{i}b^{j} = 1^{n}0^{\omega} \cdot b^{j} = 0^{j}1^{n-j}0^{\omega}.$$

So if $a^i b^j = a^k b^l$, then i + j + 1 = k + l + 1 and j = l, whence i = k. The semigroup is therefore presented by $\langle a, b | (ba, b^2) \rangle$.

Another example

- 1. Having read symbol 0, the automaton enters a; on reading 1, it enters b.
- 2. Leaving state a the output is 0; leaving b the output is 1.

So the automaton remembers the last read symbol and output its when the next symbol is read.

So a acts by shifting right and inserting 0 and b shifts right and inserts 1.

Thus the word $w \in Q^+$ is determined by the common prefix of $\alpha \cdot w$ for long $\alpha \in B^*$. So $\Sigma(\mathcal{A})$ is free with basis Q.

A generalization

Theorem

Every free semigroup of rank at least 2 is an automaton semigroup.

Wreath recursions

The endomorphism semigroup of B* decomposes as:

End $B^* = End B^* \wr \mathfrak{T}_B$.

That is,

$$\operatorname{\mathsf{End}}\nolimits B^* = \big(\underbrace{\operatorname{\mathsf{End}}\nolimits B^* \times \ldots \times \operatorname{\mathsf{End}}\nolimits B^*}_{|B| \text{ times}}\big) \rtimes {\mathfrak T}_B$$

So if $q \in End B^*$, then

$$q = (x_1, \ldots, x_{|B|})\tau$$

for $x_i \in End B^*$ and $\tau \in T_B$. This is called the wreath recursion associated to q.

B* as a tree

 $p=(q,r)\tau$

Wreath recursions for automaton semigroups

Define $\tau_q : B \to B$ and $\pi_q : B \to Q$ such that $(q, b)\delta = (b\pi_q, b\tau_q)$.

The wreath recursion associated to $q \in Q$ is

$$\mathbf{q} = (\mathbf{1}\pi_{\mathbf{q}}, \mathbf{2}\pi_{\mathbf{q}}, \dots, \mathbf{n}\pi_{\mathbf{q}})\mathbf{\tau}_{\mathbf{q}}.$$

Calculating with wreath recursions

Suppose

$$\textbf{p}=(x_0,x_1,\cdots,x_{d-1})\tau$$

and

$$q = (y_0, y_1, \cdots, y_{d-1})\rho$$

Then

$$pq = (x_0y_{0\tau}, x_1y_{1\tau}, \cdots, x_{d-1}y_{(d-1)\tau})\tau\rho.$$

For example, let $a=(b,c)\lambda$ and $d=(e,f)\rho,$ where $x\lambda=0$ and $x\rho=1.$ Then

$$ad = (be, ce)\rho, \qquad da = (ec, fc)\lambda.$$

Example of using wreath recursions

Automaton acting on $\{0, 1\}^*$:

Wreath recursions: $a = id(b, b), b = \lambda(a, a).$

$$a^{2} = (b^{2}, b^{2}) \text{ id } = a$$

$$b^{2} = (a^{2}, a^{2})\lambda = b$$

$$ab = (ba, ba)\lambda = \Lambda$$

$$ba = (ab, ab)\lambda = \Lambda$$

 $(\alpha \Lambda = 0^{|\alpha|} \text{ for any } \alpha \text{ in}\{0, 1\}^*.)$ Also $0^k \cdot a = 0^k \cdot b = 0^k$ Hence $\Lambda a = \Lambda b = a\Lambda = b\Lambda = \Lambda\Lambda = \Lambda$

So we have a three-element semilattice:

Word problem

Let $u, v \in Q^+$.

Compute the wreath recursions for u and v:

$$\mathfrak{u} = (w_1^{(\mathfrak{u})}, \dots, w_n^{(\mathfrak{u})}) \tau_\mathfrak{u}$$
 and $\nu = (w_1^{(\nu)}, \dots, w_n^{(\nu)}) \tau_\nu$.

• Check whether
$$\tau_u = \tau_v$$
.

• Check whether $w_i^{(u)} = w_i^{(v)}$ for each $i \in B$.

The algorithm terminates because $|w_i^{(u)}| = |u|$ and $|w_i^{(v)}| = |v|$.

Free commutative semigroups

Theorem Every free commutative semigroup of rank at least 2 is an automaton semigroup.

Free commutative semigroups

 $q_{\mathfrak{i}}=\text{id}(q_{\mathfrak{i}+1},q_{\mathfrak{i}+1})$ for $\mathfrak{i}=1,\ldots,n-1,$ and $q_{\mathfrak{n}}=\lambda(q_1,q_{\mathfrak{n}})$

$$\begin{split} q_i q_j &= \text{id}(q_{i+1}q_{j+1}, q_{i+1}q_{j+1}), \\ q_j q_i &= \text{id}(q_{j+1}q_{i+1}, q_{j+1}q_{i+1}) & \text{for } i, j = 1, \dots, n-1, \\ q_i q_n &= \lambda(q_{i+1}q_1, q_{i+1}q_n), \\ q_n q_i &= \lambda(q_1q_{i+1}, q_nq_{i+1}) & \text{for } i = 1, \dots, n-1. \end{split}$$

So every element of the semigroup is a product $q_1^{k_1} \cdots q_n^{k_n}$.

Need to show that every element has a unique such expression.

The aim is to show that the action of $q_1^{k_1} \cdots q_n^{k_n}$ determines each k_i .

Free commutative semigroups $1 \mid 0$ $* \mid *$ q_{n-1} *

Let $\alpha_i = 0^{n-i} 10^{i-1}$. Let $\zeta = 0^n$.

$$\begin{aligned} & (\alpha_i\beta) \cdot q_i = \zeta(\beta \cdot q_{i-1}) & \text{ for } i = 1, \dots, n, \\ & (\alpha_i\beta) \cdot q_j = \alpha_i(\beta \cdot q_j) & \text{ for } i, j = 1, \dots, n \text{ with } i \neq j, \\ & (\zeta\beta) \cdot q_i = \zeta(\beta \cdot q_i) & \text{ for } i = 1, \dots, n. \end{aligned}$$

*

 q_2

Consequently,

$$\alpha_i^k \cdot w = \zeta^{|w|_{\mathfrak{q}_i}} \alpha_i^{k-|w|_{\mathfrak{q}_i}}.$$

 $\mathcal{A}=(Q,B,\delta)$ is invertible if the action of every state q on B^* is a bijection.

 \mathcal{A} is invertible if and only if each τ_q is a bijection.

If \mathcal{A} is invertible, there is a natural action of q^{-1} on B^* and so a natural map $\varphi : (Q \cup Q^{-1})^+ \to \text{Aut } B^*$. The automaton group $\Gamma(\mathcal{A})$ is the image of φ .

The lamplighter group \mathbb{Z}_2 wr \mathbb{Z} is $\Gamma(\mathcal{A})$, where \mathcal{A} is:

Examples of 2-state 2-symbol automaton groups

Theorem (Grigorchuk et al.)

Let \mathcal{A} be a 2-state 2-symbol invertible automaton. Then $\Gamma(\mathcal{A})$ is one of:

- the trivial group
- ► Z₂
- $\blacktriangleright \mathbb{Z}_2 \times \mathbb{Z}_2$
- ▶ ℤ
- the infinite dihedral group
- the lamplighter group \mathbb{Z}_2 wr \mathbb{Z}

Examples of 2-state 2-symbol automaton semigroups

Let $\mathcal A$ be a 2-state 2-symbol automaton. Then $\Sigma(\mathcal A)$ may be:

- Trivial
- 2-element chain
- 2-element left zero semigroup
- $\langle a, b | (a^2, a), (b^2, b), (ba, b) \rangle$ (3 elements)
- 3-element non-chain semilattice
- $\langle a, b, 0 | (a^3, a^2), (ab, ba), (ab, 0) \rangle$ (4 elements)
- $\blacktriangleright \mathbb{N} \cup \{0\}$
- Free product of two trivial semigroups
- Free commutative semigroup of rank 2
- Free semigroup of rank 2
- $\langle a, b | (ba, b^2) \rangle$

Bicyclic monoid

Proposition

The bicyclic monoid is not an automaton semigroup.

Proof.

Suppose $\langle b, c | (bc, \varepsilon) \rangle$ is $\Sigma(\mathcal{A})$, where $\mathcal{A} = (Q, B, \delta)$.

So bc acts identically on B* and cb acts non-identically.

That is, bc acts identically on B^n for some n and cb acts non-identically.

So b acts injectively and so bijectively on B^n .

Thus *c* and *b* are inverse mappings on B^n and so *cb* acts identically on B^n .

Basic properties of automaton semigroups

Proposition Every automaton semigroup is residually finite. Proposition

Every automaton semigroup is hopfian.

Adjoining zeroes and identities

Proposition

If S is an automaton semigroup, then so is S^0 .

Proposition If S is an automaton semigroup, then so is S^1 .

 $\mathbb{N} \cup \{0\}$ is an automaton semigroup but \mathbb{N} is not.

Direct products

Proposition

Let S and T be automaton semigroups. Then $S \times T$ is an automaton semigroup if and only if it is finitely generated.

Cayley automata

Let S be a finite semigroup. The Cayley automaton C(S) is (S, S, δ) , where $(s, t)\delta = (st, st)$: (s) $t \mid st$ (st)

▶ C(S) acts on S*.

- pq is ambiguous a product or a sequence of two symbols.
- Henceforth use overlines to distinguish: $\overline{p} \overline{q}$ or \overline{pq} .

An example

Suppose L is a finite left zero semigroup. When $\mathcal{C}(L)$ is in state \overline{q} and reads \overline{x} , it moves to state $\overline{qx} = \overline{q}$ and outputs $\overline{qx} = \overline{q}$.

$$\overline{\alpha_1} \overline{\alpha_2} \dots \overline{\alpha_n} \cdot \overline{q} = \overline{\alpha_1} \overline{\alpha_2} \dots \overline{\alpha_n} \cdot \overline{q} = \overline{q} (\overline{\alpha_2} \dots \overline{\alpha_n} \cdot \overline{q}) \overline{\alpha_1} \overline{\alpha_2} \dots \overline{\alpha_n} \cdot \overline{q}$$
$$\overline{q} = \overline{q} \overline{q} (\dots \overline{\alpha_n} \cdot \overline{q}) \overline{\alpha_1} \overline{\alpha_2} \dots \overline{\alpha_n} \cdot \overline{q} = \overline{q} \overline{q} \dots \overline{q}$$

So $\alpha \cdot \overline{q} = \overline{q}^{|\alpha|}$, and $\alpha \cdot \overline{q} \, \overline{r} = \overline{r}^{|\alpha|}$. $\Sigma(\mathbb{C}(L))$ is a right zero semigroup of cardinality L.

A theorem and a generalization

Theorem (Silva & Steinberg)

If G is a finite non-trivial group, then $\Sigma(\mathbb{C}(G))$ is a free semigroup of rank |G|.

Theorem

If S is a finite Clifford semigroup with all maximal subgroups non-trivial, then $\Sigma(\mathbb{C}(S))$ is a strong semilattice of free semigroups.

Characterization of groups arising from Cayley automata

Theorem (Maltcev)

The following are equivalent:

- 1. $\Sigma(\mathfrak{C}(S))$ is a group
- **2.** $\Sigma(\mathfrak{C}(S))$ is trivial
- 3. S is an inflation of right zero semigroups by null semigroups

Question

Is $\Sigma(\mathcal{C}(S))$ always aperiodic (has trivial \mathcal{H} -classes)?

Characterizing finite Cayley automata semigroups

Theorem

 $\Sigma(\mathbb{C}(S))$ is finite if and only if S is aperiodic.

There are three proofs of the 'if' part of this:

- Detailed calculations with wreath recursions (Maltcev).
- By considering a restricted action on sequences of elements of an ideal of S (Mintz)
- Combinatorial arguments on the action on sequences (C).

Corollary If $\Sigma(\mathbb{C}(S))$ is infinite, it contains a free semigroup of rank 2.

Corollary $\mathbb{N} \cup \{0\}$ is not a Cayley automaton semigroup.

$\Sigma(\mathfrak{C}(S)) \simeq S\mathbf{?}$

Proposition If S is a semilattice, then $\Sigma(\mathbb{C}(S)) \simeq S$.

Proposition

If S is an $I \times I$ rectangular band, then $\Sigma(\mathbb{C}(S^1)) \simeq S^1$.

Conjecture

The semigroups S with $\Sigma(\mathbb{C}(S)) \simeq S$ are precisely the finite bands wherein every rectangular band is 'square' and each maximal \mathfrak{D} -class is a singleton.

Constructions on the underlying semigroup

 $\frac{\text{Proposition}}{\Sigma(\mathfrak{C}(S^0)) \simeq \Sigma(\mathfrak{C}(S))^0}.$

Unfortunately, $\Sigma(\mathfrak{C}(S^1))$ is not, in general, isomorphic to $\Sigma(\mathfrak{C}(S))^1.$

 $\begin{array}{l} \text{Proposition} \\ \Sigma(\mathbb{C}(S \cup_0 T)) \simeq \Sigma(\mathbb{C}(S)) \cup_0 \Sigma(\mathbb{C}(T)). \end{array}$

Open problems

Problem

Decision problems for automaton semigroups: given the automaton A as input, what properties of $\Sigma(A)$ can be decided?

Problem

Consider more general automata than can output zero or multiple symbols for each input symbol (i.e.

 $\delta: Q \times B \to Q \times B^*).$