Automaton semigroups

Alan J. Cain

16th April 2009

Automata

An automaton \mathcal{A} is a triple $(\mathrm{Q}, \mathrm{B}, \delta)$, where

- Q is a finite set of states
- B is a finite alphabet
- δ is a transformation of the set $\mathrm{Q} \times \mathrm{B}$

If $(\mathrm{q}, \mathrm{b}) \delta=(\mathrm{r}, \mathrm{c})$ then if \mathcal{A} is in state q , it can read b and move to state r and output c .

Input and output of sequences

If \mathcal{A} starts in state q_{0} and reads

$$
\alpha_{1} \alpha_{2} \ldots \alpha_{n} \in B^{*}
$$

it outputs

$$
\beta_{1} \beta_{2} \ldots \beta_{n}
$$

where $\left(q_{i-1}, \alpha_{i}\right) \delta=\left(q_{i}, \beta_{i}\right)$ for states $q_{0}, \ldots, q_{n} \in Q$.
This defines an action of Q on B^{*}, with

$$
\alpha_{1} \alpha_{2} \ldots \alpha_{n} \cdot q=\beta_{1} \beta_{2} \ldots \beta_{n}
$$

$0110 \cdot a=0110 \cdot a=0(110 \cdot b) 0110 \cdot a=00(10 \cdot b)$
$0110 \cdot a=001(0 \cdot a) 0110 \cdot a=0010$

B^{*} as a tree

Action on B*

Each $q \in Q$ acts on B^{*}, so there is a map $\phi: Q \rightarrow$ End B^{*}, which extends to a homomorphism $\phi: \mathrm{Q}^{+} \rightarrow$ End B^{*}.

$1110 \cdot \mathrm{babb}=1110 \cdot \mathrm{babb}=0110 \cdot \mathrm{abb} 1110 \cdot \mathrm{babb}=0010 \cdot \mathrm{bb}$
$1110 \cdot b a b b=0000 \cdot b 1110 \cdot b a b b=0000$

The semigroup from the action

The image of $\phi: \mathrm{Q}^{+} \rightarrow$ End B^{*}, denoted $\Sigma(\mathcal{A})$, is the automaton semigroup defined by \mathcal{A}.

Identify each $\mathrm{q} \in \mathrm{Q}$ with its image under ϕ, so that Q becomes a generating set for $\Sigma(\mathcal{A})$.

The semigroup from the action

$\alpha \cdot \mathrm{b}$ must begin with a 0 . Write $\alpha \cdot \mathrm{b}=0 \beta$. Then

$$
(O \beta) \cdot a=O(\beta \cdot b) \quad \text { and } \quad(O \beta) \cdot b=O(\beta \cdot b)
$$

So $\alpha \cdot b a=\alpha \cdot b^{2}$ for any $\alpha \in B^{*}$; thus $b a=b^{2}$.

Back to the example

Every element of $\Sigma(\mathcal{A})$ can be written as $a^{i} b^{j}$. Now,

$$
0^{k} 1^{\omega} \cdot a=0^{k} 1^{\omega} \cdot b=0^{k+1} 1^{\omega}
$$

Thus, for $i, j \in \mathbb{N}^{0}$,

$$
01^{\omega} \cdot a^{i} b^{j}=0^{i+j+1} 1^{\omega}
$$

Furthermore, for $n>j$,

$$
1^{\mathrm{n}} 0^{\omega} \cdot a=1^{\mathrm{n}} 0^{\omega}
$$

and hence

$$
1^{n} 0^{\omega} \cdot a^{i} b^{j}=1^{n} 0^{\omega} \cdot b^{j}=0^{j} 1^{n-j} 0^{\omega}
$$

So if $a^{i} b^{j}=a^{k} b^{l}$, then $i+j+1=k+l+1$ and $j=l$, whence $\mathfrak{i}=k$. The semigroup is therefore presented by $\left\langle a, b \mid\left(b a, b^{2}\right)\right\rangle$.

Another example

1. Having read symbol 0 , the automaton enters a; on reading 1 , it enters b.
2. Leaving state a the output is 0 ; leaving b the output is 1 .

So the automaton remembers the last read symbol and output its when the next symbol is read.
So a acts by shifting right and inserting 0 and b shifts right and inserts 1 .

Thus the word $w \in \mathrm{Q}^{+}$is determined by the common prefix of $\alpha \cdot w$ for long $\alpha \in B^{*}$. So $\Sigma(\mathcal{A})$ is free with basis Q .

A generalization

Theorem
Every free semigroup of rank at least 2 is an automaton semigroup.

Wreath recursions

The endomorphism semigroup of B^{*} decomposes as:

$$
\text { End } \mathrm{B}^{*}=\text { End }^{*} \mathrm{~B}^{*} \mathcal{T}_{\mathrm{B}}
$$

That is,

$$
\text { End } B^{*}=(\underbrace{\text { End } B^{*} \times \ldots \times \text { End } B^{*}}_{|B| \text { times }}) \rtimes \mathcal{T}_{\mathrm{B}}
$$

So if $q \in$ End B^{*}, then

$$
q=\left(x_{1}, \ldots, x_{|\mathrm{B}|}\right) \tau
$$

for $x_{i} \in$ End B^{*} and $\tau \in \mathcal{T}_{B}$. This is called the wreath recursion associated to q.

B^{*} as a tree

Wreath recursions for automaton semigroups

Define $\tau_{q}: B \rightarrow B$ and $\pi_{q}: B \rightarrow Q$ such that
$(\mathrm{q}, \mathrm{b}) \delta=\left(\mathrm{b} \pi_{\mathrm{q}}, \mathrm{b} \tau_{\mathrm{q}}\right)$.
The wreath recursion associated to $\mathrm{q} \in \mathrm{Q}$ is

$$
\mathrm{q}=\left(1 \pi_{\mathrm{q}}, 2 \pi_{\mathrm{q}}, \ldots, n \pi_{\mathrm{q}}\right) \tau_{\mathrm{q}} .
$$

Calculating with wreath recursions

Suppose

$$
p=\left(x_{0}, x_{1}, \cdots, x_{d-1}\right) \tau
$$

and

$$
q=\left(y_{0}, y_{1}, \cdots, y_{d-1}\right) \rho
$$

Then

$$
p q=\left(x_{0} y_{0 \tau}, x_{1} y_{1 \tau}, \cdots, x_{d-1} y_{(d-1) \tau}\right) \tau \rho
$$

For example, let $a=(b, c) \lambda$ and $d=(e, f) \rho$, where $x \lambda=0$ and $x \rho=1$. Then

$$
\mathrm{ad}=(\mathrm{be}, \mathrm{ce}) \rho, \quad \mathrm{da}=(e \mathrm{c}, \mathrm{fc}) \lambda
$$

Example of using wreath recursions

Automaton acting on $\{0,1\}^{*}$:

Wreath recursions: $a=i d(b, b), b=\lambda(a, a)$.

$$
\begin{aligned}
a^{2} & =\left(b^{2}, b^{2}\right) i d=a \\
b^{2} & =\left(a^{2}, a^{2}\right) \lambda=b \\
a b & =(b a, b a) \lambda=\Lambda \\
b a & =(a b, a b) \lambda \quad=\Lambda
\end{aligned}
$$

($\alpha \Lambda=0^{|\alpha|}$ for any α in $\{0,1\}^{*}$.) Also $0^{k} \cdot a=0^{k} \cdot b=0^{k}$
Hence $\Lambda \mathrm{a}=\Lambda \mathrm{b}=\mathrm{a} \Lambda=\mathrm{b} \Lambda=\Lambda \Lambda=\Lambda$
So we have a three-element semilattice:

Word problem

Let $u, v \in \mathrm{Q}^{+}$.

- Compute the wreath recursions for u and v :

$$
u=\left(w_{1}^{(u)}, \ldots, w_{n}^{(u)}\right) \tau_{u} \text { and } v=\left(w_{1}^{(v)}, \ldots, w_{n}^{(v)}\right) \tau_{v}
$$

- Check whether $\tau_{u}=\tau_{v}$.
- Check whether $w_{i}^{(u)}=w_{i}^{(v)}$ for each $i \in B$.

The algorithm terminates because $\left|w_{i}^{(u)}\right|=|\mathfrak{u}|$ and $\left|w_{i}^{(v)}\right|=|v|$.

Free commutative semigroups

Theorem
Every free commutative semigroup of rank at least 2 is an automaton semigroup.

Free commutative semigroups

$$
\begin{array}{rlrl}
q_{i} q_{j} & =\operatorname{id}\left(q_{i+1} q_{j+1}, q_{i+1} q_{j+1}\right), \\
q_{j} q_{i} & =\operatorname{id}\left(q_{j+1} q_{i+1}, q_{j+1} q_{i+1}\right) \\
q_{i} q_{n} & =\lambda\left(q_{i+1} q_{1}, q_{i+1} q_{n}\right), & \text { for } i, j=1, \ldots, n-1, \\
q_{n} q_{i} & =\lambda\left(q_{1} q_{i+1}, q_{n} q_{i+1}\right) & \text { for } i=1, \ldots, n-1 .
\end{array}
$$

Free commutative semigroups

So every element of the semigroup is a product $q_{1}^{k_{1}} \cdots q_{n}^{k_{n}}$.
Need to show that every element has a unique such expression.

The aim is to show that the action of $q_{1}^{k_{1}} \cdots q_{n}^{k_{n}}$ determines each k_{i}.

Free commutative semigroups

$$
\begin{aligned}
\left(\alpha_{i} \beta\right) \cdot q_{i} & =\zeta\left(\beta \cdot q_{i-1}\right) & & \text { for } i=1, \ldots, n \\
\left(\alpha_{i} \beta\right) \cdot q_{j} & =\alpha_{i}\left(\beta \cdot q_{j}\right) & & \text { for } i, j=1, \ldots, n \text { with } i \neq j \\
(\zeta \beta) \cdot q_{i} & =\zeta\left(\beta \cdot q_{i}\right) & & \text { for } i=1, \ldots, n .
\end{aligned}
$$

Consequently,

$$
\alpha_{i}^{k} \cdot w=\zeta^{|w|_{q_{i}}} \alpha_{i}^{k-|w|_{q_{i}}}
$$

Automaton groups

$\mathcal{A}=(\mathrm{Q}, \mathrm{B}, \delta)$ is invertible if the action of every state q on B^{*} is a bijection.
\mathcal{A} is invertible if and only if each τ_{q} is a bijection.
If \mathcal{A} is invertible, there is a natural action of q^{-1} on B^{*} and so a natural map $\phi:\left(\mathrm{Q} \cup \mathrm{Q}^{-1}\right)^{+} \rightarrow$ Aut B^{*}. The automaton group $\Gamma(\mathcal{A})$ is the image of ϕ.

Automaton groups

The lamplighter group $\mathbb{Z}_{2} w r \mathbb{Z}$ is $\Gamma(\mathcal{A})$, where \mathcal{A} is:

Examples of 2-state 2-symbol automaton groups

Theorem (Grigorchuk et al.)
Let \mathcal{A} be a 2-state 2-symbol invertible automaton. Then $\Gamma(\mathcal{A})$ is one of:

- the trivial group
- \mathbb{Z}_{2}
- $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- \mathbb{Z}
- the infinite dihedral group
- the lamplighter group \mathbb{Z}_{2} wr \mathbb{Z}

Examples of 2-state 2-symbol automaton semigroups

Let \mathcal{A} be a 2-state 2-symbol automaton. Then $\Sigma(\mathcal{A})$ may be:

- Trivial
- 2-element chain
- 2-element left zero semigroup
- $\left\langle a, b \mid\left(a^{2}, a\right),\left(b^{2}, b\right),(b a, b)\right\rangle$ (3 elements)
- 3-element non-chain semilattice
- $\left\langle a, b, 0 \mid\left(a^{3}, a^{2}\right),(a b, b a),(a b, 0)\right\rangle$ (4 elements)
- $\mathbb{N} \cup\{0\}$
- Free product of two trivial semigroups
- Free commutative semigroup of rank 2
- Free semigroup of rank 2
- $\left\langle\mathrm{a}, \mathrm{b} \mid\left(\mathrm{ba}, \mathrm{b}^{2}\right)\right\rangle$

Bicyclic monoid

Proposition

The bicyclic monoid is not an automaton semigroup.
Proof.
Suppose $\langle\mathrm{b}, \mathrm{c} \mid(\mathrm{bc}, \varepsilon)\rangle$ is $\Sigma(\mathcal{A})$, where $\mathcal{A}=(\mathrm{Q}, \mathrm{B}, \delta)$.
So bc acts identically on B^{*} and $c b$ acts non-identically.
That is, $b c$ acts identically on B^{n} for some n and $c b$ acts non-identically.

So b acts injectively and so bijectively on B^{n}.
Thus c and b are inverse mappings on B^{n} and so $c b$ acts identically on B^{n}.

Basic properties of automaton semigroups

Proposition

Every automaton semigroup is residually finite.
Proposition
Every automaton semigroup is hopfian.

Adjoining zeroes and identities

Proposition

If S is an automaton semigroup, then so is S^{0}.
Proposition
If S is an automaton semigroup, then so is S^{1}.
$\mathbb{N} \cup\{0\}$ is an automaton semigroup but \mathbb{N} is not.

Direct products

Proposition

Let S and T be automaton semigroups. Then $\mathrm{S} \times \mathrm{T}$ is an automaton semigroup if and only if it is finitely generated.

Cayley automata

Let S be a finite semigroup. The Cayley automaton $\mathcal{C}(S)$ is
(S, S, δ), where $(s, t) \delta=(s t, s t)$:

- $\mathcal{C}(S)$ acts on S^{*}.
- pq is ambiguous - a product or a sequence of two symbols.
- Henceforth use overlines to distinguish: $\bar{p} \bar{q}$ or $\overline{p q}$.

An example

Suppose L is a finite left zero semigroup.
When $\mathcal{C}(L)$ is in state \bar{q} and reads \bar{x}, it moves to state $\overline{q x}=\bar{q}$ and outputs $\overline{\mathrm{qx}}=\overline{\mathrm{q}}$.
$\overline{\alpha_{1}} \overline{\alpha_{2}} \ldots \overline{\alpha_{n}} \cdot \bar{q}=\overline{\alpha_{1}} \overline{\alpha_{2}} \ldots \overline{\alpha_{n}} \cdot \bar{q}=\bar{q}\left(\overline{\alpha_{2}} \ldots \overline{\alpha_{n}} \cdot \bar{q}\right) \overline{\alpha_{1}} \overline{\alpha_{2}} \ldots \overline{\alpha_{n}}$.
$\overline{\mathrm{q}}=\overline{\mathrm{q}} \overline{\mathrm{q}}\left(\ldots \overline{\alpha_{n}} \cdot \overline{\mathrm{q}}\right) \overline{\alpha_{1}} \overline{\alpha_{2}} \ldots \overline{\alpha_{n}} \cdot \overline{\mathrm{q}}=\overline{\mathrm{q}} \overline{\mathrm{q}} \ldots \overline{\mathrm{q}}$

So $\alpha \cdot \bar{q}=\bar{q}^{|\alpha|}$, and $\alpha \cdot \overline{\mathrm{q}} \overline{\mathrm{r}}=\overline{\mathrm{r}}^{|\alpha|}$.
$\Sigma(\mathcal{C}(\mathrm{L}))$ is a right zero semigroup of cardinality L .

A theorem and a generalization

Theorem (Silva \& Steinberg)
If G is a finite non-trivial group, then $\Sigma(\mathcal{C}(\mathrm{G}))$ is a free semigroup of rank|G|.

Theorem
If S is a finite Clifford semigroup with all maximal subgroups non-trivial, then $\Sigma(\mathcal{C}(S))$ is a strong semilattice of free semigroups.

Characterization of groups arising from Cayley automata

Theorem (Maltcev)
The following are equivalent:

1. $\Sigma(\mathcal{C}(S))$ is a group
2. $\Sigma(\mathbb{C}(S))$ is trivial
3. S is an inflation of right zero semigroups by null semigroups

Question
Is $\Sigma(\mathcal{C}(\mathrm{S}))$ always aperiodic (has trivial \mathcal{H}-classes)?

Characterizing finite Cayley automata semigroups

Theorem
$\Sigma(\mathcal{C}(S))$ is finite if and only if S is aperiodic.
There are three proofs of the 'if' part of this:

- Detailed calculations with wreath recursions (Maltcev).
- By considering a restricted action on sequences of elements of an ideal of S (Mintz)
- Combinatorial arguments on the action on sequences (C).

Corollary
If $\sum(\mathcal{C}(S))$ is infinite, it contains a free semigroup of rank 2.

Corollary

$\mathbb{N} \cup\{0\}$ is not a Cayley automaton semigroup.

$\Sigma(\mathcal{C}(S)) \simeq S ?$

Proposition
If S is a semilattice, then $\Sigma(\mathcal{C}(S)) \simeq S$.

Proposition
If S is an $\mathrm{I} \times \mathrm{I}$ rectangular band, then $\Sigma\left(\mathcal{C}\left(S^{1}\right)\right) \simeq \mathrm{S}^{1}$.

Conjecture

The semigroups S with $\Sigma(\mathcal{C}(S)) \simeq S$ are precisely the finite bands wherein every rectangular band is 'square' and each maximal \mathcal{D}-class is a singleton.

Constructions on the underlying semigroup

Proposition
$\Sigma\left(\mathcal{C}\left(S^{0}\right)\right) \simeq \Sigma(\mathcal{C}(S))^{0}$.

Unfortunately, $\Sigma\left(\mathcal{C}\left(S^{1}\right)\right)$ is not, in general, isomorphic to $\Sigma(\mathcal{C}(S))^{1}$.

Proposition
$\Sigma\left(\mathcal{C}\left(S \cup_{0} T\right)\right) \simeq \Sigma(\mathcal{C}(S)) \cup_{0} \Sigma(\mathcal{C}(T))$.

Open problems

Problem

Decision problems for automaton semigroups: given the automaton \mathcal{A} as input, what properties of $\Sigma(\mathcal{A})$ can be decided?

Problem
Consider more general automata than can output zero or multiple symbols for each input symbol (i.e.
$\left.\delta: Q \times B \rightarrow Q \times B^{*}\right)$.

