

The 0-rook monoid and friends

Florent Hivert - joint work with Joël Gay

LRI / Université Paris Sud 11 / CNRS

NBSAN / June 2018

Overview

A strange coincidence between

- Semigroup properties
- Partially ordered set and lattice properties
- Geometric properties

Outline

1 Background: The right Cayley graph of the symmetric group

- 2 From permutations to rooks
- 3 The 0-rook monoid
- 4 A little geometry: the stellar monoid

Background: The right Cayley graph of the symmetric group

Coxeter's presentation of the symmetric group \mathfrak{S}_n

 \mathfrak{S}_n is generated by the elementary transpositions:

$$s_i := (i, i+1)$$

with relations

$$\begin{split} s_i^2 &= \mathsf{Id} \\ s_i s_j &= s_j s_i \quad |i-j| \geq 2, \\ s_i s_{i+1} s_i &= s_{i+1} s_i s_{i+1} \end{split}$$

Cayley graph as the skeleton of a polytope

Convex hull of the orbit of (1, 2, 3, ..., n). Lives in a n - 1 dimensional hyperplane. 3D thanks to sage, ppl, threejs, jmol

Cayley graph as the Hasse diagram of a lattice

Cayley graph as the Hasse diagram of a lattice

Lattice \equiv partial order with

- meet (least upper bound)
- join (greatest lower bounds)

Is there a semigroup interpretation of this partial order ?

Symmetries and projections

The 0-hecke monoid as a transformation monoid

Transformation monoid generated by the elementary bubble sorting operators π_i

- **31**24 · π_1 = **31**24
- $3\mathbf{124} \cdot \pi_2 = 3\mathbf{214}$
- $3124 \cdot \pi_3 = 3142$

The 0-hecke monoid

The 0-Hecke monoid H_n^0 defined by presentation:

 $\pi_i^2 = \pi_i$ $\pi_i \pi_j = \pi_j \pi_i \quad |i - j| \ge 2,$ $\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1}$

Matsumoto theorem

Reduced word for a permutation σ :

- decomposition on the s_i of **minimal length**.
- **•** path from Id to σ going **down** in the Cayley graph of \mathfrak{S}_n .

Theorem (Matsumoto)

Two reduced words give the same permutation if and only if they can be related using only the braid relations:

$$s_i s_j = s_j s_i \quad |i-j| \geq 2,$$

 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$

Consequences of Matsumoto theorem

• if $s_{i_1} \dots s_{i_k} = s_{j_1} \dots s_{j_k} = \sigma$ are two reduced words for σ , then $\pi_{i_1} \dots \pi_{i_k} = \pi_{j_1} \dots \pi_{j_k}$ in H^0

in H_n^0 .

• $\pi_{\sigma} := \pi_{i_1} \dots \pi_{i_k}$ is independent of the chosen reduced word $\sigma = s_{i_1} \dots s_{i_k}$ and therefore well defined.

•
$$H_n^0 = \{\pi_\sigma \mid \sigma \in \mathfrak{S}_n\}$$
 in particular $Card(H_n^0) = n!$

Remarks

• If
$$s_{i_1} \dots s_{i_k}$$
 is reduced then

$$\mathsf{Id} \cdot s_{i_1} \dots s_{i_k} = \mathsf{Id} \cdot \pi_{i_1} \dots \pi_{i_k}$$

•
$$\pi_{\sigma}$$
 is characterized by Id $\cdot \pi_{\sigma} = \sigma$

• The action on permutation is nothing but right multiplication:

$$\pi_{\sigma}\pi_{i}=\pi_{(\sigma\cdot\pi_{i})}$$

Some more background on H_n^0

- Construction of H⁰_n generalizes to any Coxeter group [Norton 1979, Carter 1981].
- One can interpolate between CG_n and CH⁰_n [Iwahori 1964, Lascoux-Schützenberger 1987]:

$$T_i := q \, s_i + (1-q)(\pi_i - 1)$$

Iwahori-Hecke algebra $H_n(q)$ with $\mathbb{C}\mathfrak{S}_n \approx H_n(1)$ and $\mathbb{C}H_n^0 \approx H_n(0)$.

H_n^0 and representation theory

[Demazure 1974] Action of H⁰_n on polynomials via Newton's divided differences:

$$f(\ldots x_i, x_{i+1} \dots) \cdot \pi_i = \frac{x_i f(x_i, x_{i+1}) - x_{i+1} f(x_{i+1}, x_i)}{x_i - x_{i+1}}$$

Factorize Jacobi's symmetrizer (def. of Schur function) \equiv Weyl-character formula: Demazure character formula

- *R*-trivial and self opposite and thus *J*-trivial. Allows to analyse its representation theory [Denton-H.-Shilling-Thiéry 2011]
- Representation theory related to the Hopf algebras of quasi-symmetric and non commutative symmetric functions [Krob-Thibon 1997, H. 1999]

From permutations to rooks

Rook Matrix
$$\begin{pmatrix} 0 & 0 & 0 & 0 & \Xi \\ 0 & 0 & \Xi & 0 & 0 \\ 0 & 0 & 0 & \Xi & 0 \\ 0 & \Xi & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 $\begin{pmatrix} 0 & 0 & 0 & 0 & \Xi \\ 0 & 0 & 0 & 0 & 0 \\ 0 & \Xi & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$ Rook Vector0 4 2 3 10 3 0 4 1

Rooks = partial permutations of $\{1 \dots n\}$ (in vector 0 = undefined).

The product of two rook matrices is a rook matrix The compose of two partial permutation is a partial permutation. **Rook Monoid** R_n = submonoid of the rook matrices

$$\mathfrak{S}_n \subset R_n \subset M_n$$

Presentation of the Rook Monoid

Generators: elementary transpositions s_i , deletion π_0 .

$$s_1 = \mathbf{21}34, \quad s_2 = 1\mathbf{32}4, \quad s_3 = 12\mathbf{43}, \quad \pi_0 = \mathbf{0}234$$

Right multiplication:

$$(r_1 \dots r_n) \cdot s_i = r_1 \dots r_{i-1} r_{i+1} r_i r_{i+2} \dots r_n (r_1 \dots r_n) \cdot \pi_0 = 0 r_2 \dots r_n.$$

Example:

 $\begin{array}{l} 3610200 \cdot s_1 = {\bf 63}10200 \\ 3610200 \cdot s_3 = 6301200 \\ 3610200 \cdot s_6 = 3610200 \\ 3610200 \cdot \pi_0 = {\bf 0}610200 \\ 0610200 \cdot \pi_0 = 0610200 \end{array}$

Is it possible to define an analogue of H_n^0 for the rook monoid ?

[Solomon 2004] Iwahori-Hecke ring of M_n gives a deformation of the rook monoid.

The 0-rook monoid as a transformation monoid

Bubble sort operators π_1, \ldots, π_{n-1} :

$$(r_1 \dots r_n) \cdot \pi_i = \begin{cases} r_1 \dots r_{i-1} r_{i+1} r_i r_{i+2} \dots r_n & \text{if } r_i < r_{i+1}, \\ r_1 \dots r_n & \text{otherwise,} \end{cases}$$

Deletion operator π_0 : $(r_1 \dots r_n) \cdot \pi_0 = 0r_2 \dots r_n$.

Example:

 $3610200 \cdot \pi_1 = 6310200$ $6310200 \cdot \pi_1 = 6310200$ $3601200 \cdot \pi_3 = 6310200$ $3610200 \cdot \pi_3 = 6310200$ $3610200 \cdot \pi_6 = 3610200$ $3610200 \cdot \pi_0 = 0610200$ $0610200 \cdot \pi_0 = 0610200$

Presentation of the 0-Rook Monoid

$$\begin{aligned} \pi_i^2 &= \pi_i & 1 \le i \le n-1, & (\text{Idm}) \\ \pi_i \pi_j &= \pi_j \pi_i & 1 \le i, j \le n-1 & |i-j| \ge 2, & (\text{Com}) \\ \pi_i \pi_{i+1} \pi_i &= \pi_{i+1} \pi_i \pi_{i+1} & 1 \le i \le n-2. & (\text{Br}) \\ \pi_0^2 &= \pi_0 & & (\text{Idm0}) \\ \pi_0 \pi_i &= \pi_i \pi_0 & 2 \le i \le n-1. & (\text{Com0}) \\ \pi_0 \pi_1 \pi_0 \pi_1 &= \pi_1 \pi_0 \pi_1 \pi_0 & (\text{Br0}) \end{aligned}$$

$\pi_i^2 = \pi_i$	$0 \leq i \leq n-1$,	(ldm)
$\pi_i \pi_j = \pi_j \pi_i$	$1 \le i,j \le n-1$	$ i-j \ge 2$, (Com)
$\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1}$	$1\leq i\leq n-2.$	(Br)
$\pi_0\pi_i=\pi_i\pi_0$	$2\leq i\leq n-1.$	(Com0)
$\pi_0 \pi_1 \pi_0 \pi_1 = \pi_1 \pi_0 \pi_1 \pi_0 = \pi_0 \pi_1 \pi_0$		(Br0)

Warning !

The maps

$$(r_1 \ldots r_n) \cdot P_k = 0 \ldots 0 r_{k+1} \ldots r_n.$$

belongs to R_n and R_n^0 .

But, though the map

$$(r_1 \ldots r_n) \cdot K_2 = r_1 0 r_3 \ldots r_n.$$

belongs to R_n , it doesn't belongs to R_n^0 !

Idea of the proof

$$\begin{bmatrix} n\\ \vdots\\ i \end{bmatrix} := \begin{cases} 1 & \text{if } i > n, \\ \pi_n \dots \pi_i & \text{if } 0 \le i \le n, \\ \pi_n \dots \pi_1 \pi_0 \pi_1 \dots \pi_i & \text{if } i < 0, \end{cases}$$

Proposition

Given a rook r the shortest lexicographically minimal word for π_r has the form

$$\pi_r = \begin{bmatrix} 0 \\ \vdots \\ c_1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ \vdots \\ c_2 \end{bmatrix} \cdot \cdots \cdot \begin{bmatrix} n-1 \\ \vdots \\ c_n \end{bmatrix},$$

for some $c = (c_1, \ldots, c_n)$.

Canonical reduced expression

Example : 30240 Index the zeros by the missing letters in decreasing order : 30_5240_1

12345	1_{5}		
<mark>0</mark> 12345	$\cdot \pi_0$		
20 ₁ 345	$\cdot \pi_1$		
<mark>320</mark> 145	$\cdot \pi_2 \pi_1$		
3240 ₁ 5	$\cdot \pi_3$		
3 <mark>0</mark> 52401	$\cdot \pi_4 \pi_3 \pi_2 \pi_1 \pi_0 \pi_1$		
Conclusion : $1_5 \cdot [\pi_0 \cdot \pi_1 \cdot \pi_2 \pi_1 \cdot \pi_3 \cdot \pi_4 \pi_3 \pi_2 \pi_1 \pi_0 \pi_1] = 30240.$			
$\pi_{30240} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ \vdots \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ \vdots \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ \vdots \\ -1 \end{bmatrix}$			
Example : using coset R_5^0/R_4^0			
3	0145		

 π_4

Matsumoto theorem for rook monoids

Theorem

Two reduced words give the same rook if and only if they can be related using only the relations:

$s_i s_j = s_j s_i$	$ i-j \geq 2$,
$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$	$1\leq i\leq n-2.$
$\pi_0 s_i = s_i \pi_0$	$2 \le i \le n-1.$

Two reduced words give the same 0-rook if and only if they can be related using only the relations:

$$\pi_i \pi_j = \pi_j \pi_i \qquad |i - j| \ge 2, \pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1} \qquad 1 \le i \le n-2.$$

The right order of the 0-rook monoid

Theorem

The 0-rook monoid is \mathcal{R} -trivial and self-opposite therefore \mathcal{J} -trivial.

Theorem (Guilbaud-Rosenstiehl 1963)

The \mathcal{R} -order of the 0-rook monoid is a lattice.

The right order on permutations

$$\Delta := \{ (b, a) \mid n \ge b > a > 0 \}$$

$$\mathsf{Inv}(r) := \{(r_i, r_j) \mid i < j \text{ and } r_i > r_j > 0\} \subset \Delta.$$

Definition

 $I \subseteq \Delta$ is transitive if $(c, b) \in I$ and $(b, a) \in I$ implies $(c, a) \in I$.

Lemma

 $I = Inv(\sigma)$ for some σ if and only if I and $\Delta \setminus I$ are both transitive. When this holds the permutation σ is unique.

Lemma

Let $\sigma, \tau \in \mathfrak{S}_n$, then $\sigma \leq_{\mathcal{R}} \tau$ if and only if $Inv(\tau) \subseteq Inv(\sigma)$.

Rook triple of a rook

Definition

Rook triple associated to r: $(supp(r), Inv(r), Z_r)$

- supp(r) := the set of non-zero letters appearing in r.
- $Inv(r) := \{(r_i, r_j) | i < j and r_i > r_j > 0\}$
- \blacksquare $Z_r(\ell)$ the number of 0 which appear after ℓ in r

Example r = 2054001

•
$$supp(r) = \{1, 2, 4, 5\};$$

- $Inv(r) = \{(2,1), (4,1), (5,4), (5,1)\};$
- $Z_r(1) = 0$, $Z_r(2) = 3$ and $Z_r(4) = Z_r(5) = 2$.

Characterization of rooks by their rook triple

A rook is characterized by its associated rook triple:

Proposition

A triple (S, I, Z) is the rook triple of a rook r if and only if:

- $I \subset \Delta \cap S^2$ and I and $(\Delta \cap S^2) \setminus I$ are both transitive.
- for $\ell \in S$, $0 \leq Z(\ell) \leq n |S|$;
- if $(b, a) \in I$ then $Z(b) \ge Z(a)$ else $Z(b) \le Z(a)$.

When this holds the rook r is unique.

The $\mathcal R\text{-}\mathsf{order}$ thanks to rook triples

Theorem

Let $r, u \in R_n$. Then $\pi_r \leq_{\mathcal{R}} \pi_u$ if and only if

•
$$supp(r) \subseteq supp(u)$$

•
$$\{(b, a) \in \operatorname{Inv}(u) \mid b \in \operatorname{supp}(r)\} \subseteq \operatorname{Inv}(r)$$

•
$$Z_u(\ell) \leq Z_r(\ell)$$
 for $\ell \in \operatorname{supp}(r)$.

In particular $\leq_{\mathcal{R}}$ is an order. R_n^0 is \mathcal{R} -trivial.

Note: meet and join thanks to rook triples.

The rook monoid in 3D (Note \mathcal{L} -graph)

Geometric point of view

Remark: Interpreting rook vectors as coordinates leads to a graph drawn on a polytope.

Definition

Stellohedron : convex hull of the rooks. Extremal points:

$$\mathsf{Stell}_n := \{\mathfrak{S}_n(0 \dots 0k \dots n) \mid k = 1, \dots, n\}$$

[Manneville-Pilaud] Graph associahedron of a star graph.

Is there an associated semigroup ? It there lattice ?

The stellar lattice

The stellar monoid is \mathcal{J} -trivial (quotient of a \mathcal{J} -trivial).

Theorem

The \mathcal{L} -order of the stellar monoid is a sub-lattice (i.e. stable by join and meet) of the \mathcal{L} -order of the 0-rook monoid.

The stellar Monoid

Modify π_0 : kills the first letter and all the smaller letters:

 $361452 \cdot \pi_0 = 060450$ $460503 \cdot \pi_0 = 060500$ $060500 \cdot \pi_0 = 060500$

Theorem

The stellar monoid S_n^0 is the quotient of the 0-rook monoid by the relations

$$\pi_i \pi_{i-1} \dots \pi_1 \pi_0 \pi_i \equiv \pi_i \pi_{i-1} \dots \pi_1 \pi_0$$

for i < n - 1.

Experiments thanks to James Mitchell's libsemigroups.

Some intermediate steps

Sequence of lattices inclusion

$$\{0^n\} = \operatorname{St}_0(R_n) \subset \operatorname{St}_1(R_n) \subset \operatorname{St}_2(R_n) \subset \cdots \subset \operatorname{St}_n(R_n) = R_n$$

Sequence of monoid quotients

$$\{0^n\} = \operatorname{St}_0(R_n^0) \leftarrow \operatorname{St}_1(R_n^0) \leftarrow \operatorname{St}_2(R_n^0) \leftarrow \cdots \leftarrow \operatorname{St}_n(R_n^0) = R_n^0$$

Thanks for your attention !

