Generation of intermediate and partial map monoids of

 first-order structuresTom Coleman

28th NBSAN
14th June 2018

+ work part of PhD thesis, supervised by David Evans and Bob Gray

Examples of infinitely generated semigroups

- Infinitely generated free semigroup/rectangular band, infinite left/right zero semigroups
- Classical transformation semigroups on an infinite set \mathbb{N} :
- symmetric group Sym(\mathbb{N})
- full transformation monoid $\operatorname{End}(\mathbb{N})$
- symmetric inverse monoid $\operatorname{lnv}(\mathbb{N})$
- partial transformation monoid Part(\mathbb{N})
- injective (surjective) transformation monoid $\operatorname{Mon}(\mathbb{N})(\operatorname{Epi}(\mathbb{N}))$
- Baer-Levi semigroup $\mathcal{B L}(\mathbb{N})$ of injective transformations α where $|\mathbb{N} \backslash \mathbb{N} \alpha|=\aleph_{0}$
- Other examples exist (any uncountable semigroup)!

Cofinality, strong cofinality

Throughout this talk, S is an infinitely generated semigroup unless stated otherwise.

Definition (Cofinality)

The cofinality $\operatorname{cf}(S)$ of S is the least cardinal λ such that there exists a chain of proper subsemigroups $\left(U_{i}\right)_{i<\lambda}$ where $\bigcup_{i<\lambda} U_{i}=S$.

Definition (Strong cofinality)

The strong cofinality $\operatorname{scf}(S)$ of S is the least cardinal κ such that there exists a chain of proper subsets $\left(V_{i}\right)_{i<\kappa}$ such that for all $i<\kappa$ there exists a $j<\kappa$ such that $V_{i} V_{i} \subseteq V_{j}$ and $S=\bigcup_{i<\kappa} V_{i}$.

It is true that $\operatorname{cf}(S) \geq \operatorname{scf}(S) \geq \aleph_{0}$.

The Bergman property for semigroups

Definition (Cayley boundedness, Bergman property)

Say that S is semigroup Cayley bounded with respect to a set U that generates S as a semigroup if $S=U \cup U^{2} \cup \ldots \cup U^{n}$ for some $n \in \mathbb{N}$. S has the semigroup Bergman property (BP) if it is Cayley bounded for every generating set U of S.

Drop the 'semigroup' from now on!
Theorem 1 (Maltcev, Mitchell, Ruškuc '09)
(1) $\operatorname{scf}(S)>\aleph_{0}$ if and only if S has the BP and $\operatorname{cf}(S)>\aleph_{0}$.
(2) If $\operatorname{scf}(S)>\aleph_{0}$, then $\operatorname{scf}(S)=\operatorname{cf}(S)$.

Examples

(1) $\operatorname{cf}(S)=\operatorname{scf}(S)>\aleph_{0}, B P$

- $\operatorname{Sym}(\mathbb{N})$
- $\operatorname{End}(\mathbb{N}), \operatorname{lnv}(\mathbb{N}), \operatorname{Part}(\mathbb{N})$
- $\operatorname{Aut}(R), \operatorname{End}(R)$
(3) $\operatorname{cf}(S)=\operatorname{scf}(S)=\aleph_{0}, \mathrm{BP}$
- Infinitely generated rectangular band
- Infinite left zero semigroup
- $S=\langle X \mid x y z=x y\rangle$ with X infinite
(2) $\operatorname{cf}(S)>\operatorname{scf}(S)=\aleph_{0}, \neg \mathrm{BP}$
- bounded symmetric group of the rationals BSym (\mathbb{Q})
(4) $\operatorname{cf}(S)=\operatorname{scf}(S)=\aleph_{0}, \neg B P$
- Free semigroup X^{*} with X infinite
- Baer-Levi semigroup $\mathcal{B L}(\mathbb{N})$

Cofinality toolbox

Lemma 2 (TC+, 2017)

(1) If S is countable, then $\operatorname{cf}(S)=\aleph_{0}$.
(2) Let T be an infinitely generated subsemigroup of S and I an ideal of S such that $S=T \sqcup I$. Then $\operatorname{cf}(S) \leq \operatorname{cf}(T)$.

Definition (Relative rank)

Suppose that S is any semigroup and A is a subset of S. The relative rank $\operatorname{rank}(S: A)$ of S modulo A is the minimum cardinality of a set B such that $\langle A \cup B\rangle=S$.

Lemma 3 (2•Pech, 13)

Let T be an infinitely generated subsemigroup of S. If $\operatorname{cf}(T)>\aleph_{0}$ and $\operatorname{rank}(S: T)$ is finite then $\operatorname{cf}(S)>\aleph_{0}$.

Monomorphisms and epimorphisms

Look at $\operatorname{Mon}(\mathbb{N})$ and $\operatorname{Epi}(\mathbb{N})$.

```
Theorem 4 (Mitchell, Péresse 11)
rank}(\operatorname{Mon}(\mathbb{N}):\operatorname{Sym}(\mathbb{N}))=2\mathrm{ and rank(Epi}(\mathbb{N}):\operatorname{Sym}(\mathbb{N}))=5\mathrm{ . Both of
these semigroups do not have the Bergman property.
```

As $\operatorname{cf}(\operatorname{Sym}(\mathbb{N}))>\aleph_{0}$, we can conclude from Lemma 3 and Theorem 1:

Consequence

$\operatorname{cf}(\operatorname{Mon}(\mathbb{N}))>\operatorname{scf}(\operatorname{Mon}(\mathbb{N}))=\aleph_{0}$. Same holds for $\operatorname{Epi}(\mathbb{N})$.

So both $\operatorname{Mon}(\mathbb{N})$ and $\operatorname{Epi}(\mathbb{N})$ live in case (2).

Strong cofinality toolbox

Proposition 5 (TC+, 2017)

Suppose that S has an infinite descending chain of ideals
$S=I_{0} \supseteq I_{1} \supseteq I_{2} \supseteq \ldots$ and assume that $J=\bigcap_{i \in \mathbb{N}} I_{i}$ is non-empty. Let $L_{i}=I_{i} \backslash I_{i+1}$ and suppose also that $L_{i} L_{j} \subseteq\left(\bigcup_{n=0}^{h} L_{n}\right) \cup J$ for some $h \in \mathbb{N}$. Then $\operatorname{scf}(S)=\aleph_{0}$.

A trip to the shop is required!

Intermediate and partial map monoids

For \mathcal{M}, a countably infinite relational first-order structure:

Discrete linear order $1 / 2$

Let (\mathbb{N}, \leq) be the discrete linear order; $\operatorname{Emb}(\mathbb{N}, \leq)$ is the monoid of injective order-preserving transformations of \mathbb{N}. Here, $\operatorname{Aut}(\mathbb{N}, \leq)$ is the trivial group.

Fun fact!

For any coinfinite subset A of \mathbb{N}, there exists a unique embedding α such that $\mathbb{N} \backslash \mathbb{N} \alpha=A$.

For $k \in \mathbb{N}$, let α_{k} be the unique map such that $\mathbb{N} \backslash \mathbb{N} \alpha_{k}=\{k\}$.
Consequences of the fun fact

- $|\operatorname{Emb}(\mathbb{N}, \leq)|=2^{\aleph_{0}}$.
- Any generating set for $\operatorname{Emb}(\mathbb{N}, \leq)$ contains α_{k} for all $k \in \mathbb{N}$.

Discrete linear order 2/2

$$
\begin{aligned}
F & :=\left\{\beta \in \operatorname{Emb}(\mathbb{N}, \leq):|\mathbb{N} \backslash \mathbb{N} \beta|<\aleph_{0}\right\} \\
J_{\infty} & :=\left\{\gamma \in \operatorname{Emb}(\mathbb{N}, \leq):|\mathbb{N} \backslash \mathbb{N} \gamma|=\aleph_{0}\right\}
\end{aligned}
$$

Then $\operatorname{Emb}(\mathbb{N}, \leq)=F \sqcup J_{\infty}$, and the countable submonoid F is infinitely generated. So

Proposition 6 (TC+, 2017)
(1) $\operatorname{cf}(\operatorname{Emb}(\mathbb{N}, \leq))=\operatorname{scf}(\operatorname{Emb}(\mathbb{N}, \leq))=\aleph_{0}$.
(2) The generating set $X=\left\{\alpha_{k}: k \in \mathbb{N}\right\} \cup J_{\infty} \cup\{e\}$ of $\operatorname{Emb}(\mathbb{N}, \leq)$ is not Cayley bounded.

So $\operatorname{Emb}(\mathbb{N}, \leq)$ falls in case (4).

Random graph $1 / 3$

Figure: The random graph R
R is nice. Look at $\operatorname{Bi}(R), \operatorname{Emb}(R)$, and $\operatorname{Mon}(R)$.

Random graph 2/3

Ideals are important!

- Let $I_{k} \subseteq \mathrm{Bi}(R)$ (or Mon (R)) be the ideal of all bimorphisms (monomorphisms) that add in $\geq k$ edges for $k \in \mathbb{N} \cup\{\infty\}$.
- Let $J_{k} \subseteq \operatorname{Emb}(R)$ be the ideal of all embeddings that omit $\geq k$ vertices for $k \in \mathbb{N} \cup\{\infty\}$.

These form infinite descending chains of ideals that match the conditions of Proposition 4. So:

Proposition 7 (TC+)

Let R be the random graph and $T \in\{\operatorname{Bi}(R), \operatorname{Emb}(R), \operatorname{Mon}(R)\}$. Then $\operatorname{scf}(T)=\aleph_{0}$.

Random graph 3/3

$\mathrm{Bi}(R) \backslash I_{\infty}$ is generated by some bimorphism α that adds in a single edge together with $\operatorname{Aut}(R)$. Consequently:

Proposition 8 (TC+, 2017)
(1) $\operatorname{rank}\left(\operatorname{Bi}(R) \backslash I_{\infty}: \operatorname{Aut}(R)\right)=1$, and so $\operatorname{cf}\left(\operatorname{Bi}(R) \backslash I_{\infty}\right)>\aleph_{0}$.
(2) The generating set $X=\operatorname{Aut}(R) \cup\{\alpha\} \cup I_{\infty}$ of $\operatorname{Bi}(R)$ is not Cayley bounded.

Similarly, $\operatorname{cf}\left(\operatorname{Emb}(R) \backslash J_{\infty}\right)>\aleph_{0}$, and both $\operatorname{Emb}(R)$ and $\operatorname{Mon}(R)$ do not have the Bergman property. Also, $\operatorname{cf}(\operatorname{FMon}(R))>\aleph_{0}$, where $\operatorname{FMon}(R)$ is the monoid of monomorphisms of R that leave out finitely many (possibly zero) edges and vertices.

Question

Are $\mathrm{cf}(\mathrm{Bi}(R)), \operatorname{cf}(\operatorname{Emb}(R))$ and $\mathrm{cf}(\operatorname{Mon}(R))$ all uncountable?

A reminder

For a countably infinite relational first-order structure \mathcal{M} :

- $\operatorname{Inv}(\mathcal{M})$ is the symmetric inverse monoid of \mathcal{M}; the monoid of all isomorphisms between substructures of \mathcal{M}.
- Part (\mathcal{M}) is the partial homomorphism monoid of \mathcal{M}.
- $\operatorname{Inj}(\mathcal{M})$ is the partial monomorphism monoid of \mathcal{M}.

Fun aside!

Much like $\operatorname{Bi}(\mathcal{M}) \subseteq \operatorname{Sym}(M)$ is a group-embeddable monoid that isn't a group, $\operatorname{lnj}(\mathcal{M}) \subseteq \operatorname{Inv}(M)$ is a inverse semigroup-embeddable monoid that isn't an inverse semigroup.

Composition in Part(R)

$[\operatorname{dom} g \cap \operatorname{im} f] f^{*}$
$[\operatorname{dom} g \cap i m f] g \downarrow$

A trip to the hardware shop

Definition (Strong distortion)

A semigroup S is strongly distorted if there exists a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of natural numbers and $N_{S} \in \mathbb{N}$ such that for all sequences $\left(s_{n}\right)_{n \in \mathbb{N}}$ of elements from S there exist $t_{1}, t_{2}, \ldots, t_{N_{S}} \in S$ such that each s_{n} can be written as a product of length at most a_{n} in the elements $t_{1}, t_{2}, \ldots, t_{N_{S}}$.

Element of $\left(s_{n}\right)_{n \in \mathbb{N}}$	s_{1}	s_{2}	s_{3}	\ldots	s_{n}	\ldots
Length of product of t_{i} 's equal	a_{1}	a_{2}	a_{3}	\ldots	a_{n}	\ldots

Figure: Strong distortion

Theorem 9 (MMR 09)

If S is strongly distorted, then $\operatorname{scf}(S)>\aleph_{0}$.

Sierpiński rank

Definition (Sierpiński rank)

The Sierpiński rank (SR) of S is defined to be the smallest natural number n (if it exists; ∞ otherwise) such that any countable sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ of elements in S is contained in an n-generated subsemigroup of S.

Examples

$1(\mathbb{N},+)$ has SR 1.
$2 \operatorname{Inv}(\mathbb{N})$ has SR 2.
3 Semigroup of increasing functions $f:[0,1] \rightarrow[0,1]$ has SR 3.
$4+\operatorname{Mon}\left(\aleph_{n}\right)$ has SR $n+4$ for all $n \in \mathbb{N}_{0}$.
$\infty \mathcal{B L}(\mathbb{N})$ has infinite SR .

Every strongly distorted semigroup has finite SR; but converse is not true.

Big theorem

Theorem 10 (TC+, 2017)

Let \mathcal{M} be a countable first-order structure such that:
(a) \mathcal{M} contains substructures \mathcal{M}_{i} (where $i \in \mathbb{N}_{0}$) with $\mathcal{M}_{i} \cong \mathcal{M}$, and it also contains substructures $\mathcal{N}_{k}=\bigsqcup_{i \geq k} \mathcal{M}_{i}$;
(b) there exists an isomorphism from \mathcal{N}_{0} to \mathcal{N}_{1} mapping each \mathcal{M}_{i} to $\mathcal{M}_{\text {i }+1}$, and;
(c) for any countable sequence $\left(\hat{f}_{i}\right)_{i \in \omega}$ where each \hat{f}_{i} is a partial isomorphism of \mathcal{M}_{i}, the union $\bigcup_{i \in \omega} \hat{f}_{i}: \bigcup_{i \in \omega}$ dom $\hat{f}_{i} \rightarrow \bigcup_{i \in \omega}$ im \hat{f}_{i} is a partial isomorphism of \mathcal{M}.
Then $\operatorname{scf}(\operatorname{lnv}(\mathcal{M}))>\aleph_{0}$. Similarly, $\operatorname{scf}(\operatorname{lnj}(\mathcal{M})), \operatorname{scf}(\operatorname{Part}(\mathcal{M}))>\aleph_{0}$.
If conditions (a)-(c) hold, the $S R$ of $\operatorname{Inv}(\mathcal{M})$ is at most 3. Similarly, the $S R$ of $\operatorname{Inj}(\mathcal{M})$ and $\operatorname{Part}(\mathcal{M})$ are at most 5.

Examples and a non-example

Examples

- $(\mathbb{Q},<)$ satisfies conditions $(\mathrm{a})-(\mathrm{c})$, and so $\operatorname{Inv}(\mathbb{Q},<)=\operatorname{lnj}(\mathbb{Q},<)=$ $\operatorname{Part}(\mathbb{Q},<)$ has a SR of 3 and an uncountable strong cofinality.
- The generic digraph D without 2-cycles satisfies conditions (a)-(c): here, $\operatorname{Inv}(D)$ and $\operatorname{Inj}(D)=\operatorname{Part}(D)$ have uncountable strong cofinality.
- The random graph R and the generic poset \mathbb{P} satisfies conditions (a)-(c) for all types of finite partial map.

Non-example

- (\mathbb{N}, \leq) does not satisfy condition (c).

Semilattice of idempotents

For an inverse semigroup S there is a semilattice of idempotents $E(S)$. For $\operatorname{Inv}(\mathcal{M})$, the idempotents $E=E(\operatorname{lnv}(\mathcal{M}))$ are identity maps on substructures.

If \mathcal{M} is infinite, then $|E|=2^{\aleph_{0}}$ and is an infinitely generated semigroup; so you can subject it to the same analysis.

Like (\mathbb{N}, \leq), there is a unique element of E for every subset of \mathbb{N}.
Proposition 11 (TC+, 2017)
$\operatorname{cf}(E)=\operatorname{scf}(E)=\aleph_{0}$, and E does not have the Bergman property.

Questions (?)

- Work on cofinality of $\operatorname{Bi}(R)$ and others; are they uncountable? Do they have finite SR?
- What overgroup G of $\operatorname{Aut}(R) \leq G \leq \operatorname{Sym}(V R)$ is generated by $\mathrm{Bi}(R)$ and 'inverses'?
- Investigate semigroup theory of $\operatorname{Inj}(M)$ and $\operatorname{Part}(\mathcal{M})$. Is there a structural analogue for the binary relation monoid?
- If S is uncountable, is there a connection between uncountable cofinality and finite SR?

