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Examples of infinitely generated semigroups

o Infinitely generated free semigroup/rectangular band, infinite
left/right zero semigroups

o Classical transformation semigroups on an infinite set N:

symmetric group Sym(N)

full transformation monoid End(N)

symmetric inverse monoid Inv(N)

partial transformation monoid Part(N)

injective (surjective) transformation monoid Mon(N) (Epi(N))

Baer-Levi semigroup BL(N) of injective transformations o where

IN \ Na| =R

@ Other examples exist (any uncountable semigroup)!
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Cofinality, strong cofinality

Throughout this talk, S is an infinitely generated semigroup unless stated
otherwise.

Definition (Cofinality)
The cofinality cf(S) of S is the least cardinal A such that there exists a
chain of proper subsemigroups (U;)i<x where | J;_, U; = S.

Definition (Strong cofinality)

The strong cofinality scf(S) of S is the least cardinal x such that there
exists a chain of proper subsets (V;);<, such that for all i < & there exists

a j < & such that V;V; C Vjand S = ;... Vi

It is true that cf(S) > scf(S) > No.
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The Bergman property for semigroups

Definition (Cayley boundedness, Bergman property)

Say that S is semigroup Cayley bounded with respect to a set U that
generates S as a semigroup if S = U U U?U...U U" for some n € N.

S has the semigroup Bergman property (BP) if it is Cayley bounded for
every generating set U of S.

Drop the ‘semigroup’ from now on!

Theorem 1 (Maltcev, Mitchell, Rugkuc '09)

(1) scf(S) > g if and only if S has the BP and cf(S) > No.
(2) If scf(S) > Wo, then scf(S) = cf(S).
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(1) cf(S) = scf(S) > Ny, BP (2) cf(S) > scf(S) = Ny, —BP

e Sym(N) @ bounded symmetric group of
e End(N), Inv(N), Part(N) the rationals BSym(Q)
e Aut(R), End(R)

A,

(4) cf(S) = scf(S) = Ny, —BP

(3) cf(S) = scf(S) = Ry, BP @ Free semigroup X* with X
infinite

@ Infinitely generated
rectangular band @ Baer-Levi semigroup BL(N)

v

@ Infinite left zero semigroup
o S = (X|xyz=xy) with X
infinite
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Lemma 2 (TC+, 2017)

1) If S is countable, then cf(S) = Ro.

(2) Let T be an infinitely generated subsemigroup of S and / an ideal of
S such that S = T U /. Then cf(S) < cf(T).

Cofinality toolbox
(

Definition (Relative rank)

Suppose that S is any semigroup and A is a subset of S. The relative
rank rank(S : A) of S modulo A is the minimum cardinality of a set B
such that (AU B) = S.

Lemma 3 (2-Pech, 13)

Let T be an infinitely generated subsemigroup of S. If cf(T) > Ny and
rank(S : T) is finite then cf(S) > No.
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Monomorphisms and epimorphisms

Look at Mon(N) and Epi(N).

Theorem 4 (Mitchell, Péresse 11)

rank(Mon(N) : Sym(N)) = 2 and rank(Epi(N) : Sym(N)) = 5. Both of
these semigroups do not have the Bergman property.

As cf(Sym(N)) > Ng, we can conclude from Lemma 3 and Theorem 1:

Consequence
cf(Mon(N)) > scf(Mon(N)) = Xg. Same holds for Epi(N).

So both Mon(N) and Epi(N) live in case (2).
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Strong cofinality toolbox

Proposition 5 (TC+, 2017)

Suppose that S has an infinite descending chain of ideals
S=1l2h2hk2... and assume that J =)oy /i is non-empty. Let

L; = I; \ ;11 and suppose also that L;L; C (UZ:O L,) U J for some h € N.
Then scf(S) = No.

A trip to the shop is required!
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Intermediate and partial map monoids

For M, a countably infinite relational first-order structure:
.. partial map monoids

endomorphism monoids."*.., Part(M)

PN

End(M) ™. Inj(M)

SN AN

Epi(M) Mon(M) ™. Inv(M)

intermediate monoids \ / \ /

Bi(M) Emb(M) ™

NS

Aut(M)
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Discrete linear order 1/2

Let (N, <) be the discrete linear order; Emb(N, <) is the monoid of
injective order-preserving transformations of N. Here, Aut(N, <) is the
trivial group.

For any coinfinite subset A of N, there exists a unique embedding a such
that N\ Na = A.

For k € N, let ax be the unique map such that N \ Nay = {k}.

Consequences of the fun fact
o |Emb(N, <)| = 2%,

@ Any generating set for Emb(N, <) contains «a for all k € N.
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Discrete linear order 2/2

F:={8e€ Emb(N,<) : INNNpj| <o}
Jo :={7y€ Emb(N,<) : INN Ny|=Rp}

Then Emb(N, <) = F Ul J5, and the countable submonoid F is infinitely
generated. So

Proposition 6 (TC+, 2017)

(1) cf(Emb(N, <)) = scf(Emb(N, <)) = Ry.

(2) The generating set X = {ay : k € N} U J U{e} of Emb(N, <) is
not Cayley bounded.

So Emb(N, <) falls in case (4).
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Random graph 1/3

Figure : The random graph R

R is nice. Look at Bi(R), Emb(R), and Mon(R).



Random graph 2/3

Ideals are important!

o Let /x C Bi(R) (or Mon(R)) be the ideal of all bimorphisms
(monomorphisms) that add in > k edges for k € NU {oc}.

o Let Jx C Emb(R) be the ideal of all embeddings that omit > k
vertices for k € NU {oo}.

These form infinite descending chains of ideals that match the conditions
of Proposition 4. So:

Proposition 7 (TC+)

Let R be the random graph and T € {Bi(R), Emb(R), Mon(R)}. Then
scf(T) = No.
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Random graph 3/3

Bi(R) \ I is generated by some bimorphism « that adds in a single edge
together with Aut(R). Consequently:

Proposition 8 (TC+, 2017)
(1) rank(Bi(R) \ Is : Aut(R)) =1, and so cf(Bi(R) \ /x) > No.

(2) The generating set X = Aut(R) U {a} U I of Bi(R) is not Cayley
bounded.

Similarly, cf(Emb(R) \ Jx) > Ro, and both Emb(R) and Mon(R) do not
have the Bergman property. Also, cf(FMon(R)) > Ng, where FMon(R) is
the monoid of monomorphisms of R that leave out finitely many (possibly

zero) edges and vertices.

Are cf(Bi(R)), cf(Emb(R)) and cf(Mon(R)) all uncountable?
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A reminder

For a countably infinite relational first-order structure M:

@ Inv(M) is the symmetric inverse monoid of M; the monoid of all
isomorphisms between substructures of M.

e Part(M) is the partial homomorphism monoid of M.

@ Inj(M) is the partial monomorphism monoid of M.

Much like Bi(M) C Sym(M) is a group-embeddable monoid that isn't a
group, Inj(M) C Inv(M) is a inverse semigroup-embeddable monoid that

isn't an inverse semigroup.
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Composition in Part(R)
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A trip to the hardware shop

Definition (Strong distortion)
A semigroup S is strongly distorted if there exists a sequence (a,)nen of
natural numbers and Ns € N such that for all sequences (sp)nen of

elements from S there exist t;,t,..., tns € S such that each s, can be
written as a product of length at most aj, in the elements t;, ts, ..., ty,.
Element of (sp)nen S1 S S3 ... S
Length of product of t;'s equal a; a a3 ... ap
to s,

Figure : Strong distortion

Theorem 9 (MMR 09)
If S is strongly distorted, then scf(S) > No.
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Sierpinski rank

Definition (Sierpinski rank)

The Sierpinski rank (SR) of S is defined to be the smallest natural
number n (if it exists; oo otherwise) such that any countable sequence
(Sn)nen of elements in S is contained in an n-generated subsemigroup of 5.)

Examples

1 (N,+) has SR 1.

2 Inv(N) has SR 2.

3 Semigroup of increasing functions f : [0, 1] — [0, 1] has SR 3.
4+ Mon(R,) has SR n+ 4 for all n € Np.
oo BL(N) has infinite SR.

Every strongly distorted semigroup has finite SR; but converse is not true.
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Big theorem

Theorem 10 (TC+, 2017)

Let M be a countable first-order structure such that:

(a) M contains substructures M, (where i € Ng) with M; = M, and it
also contains substructures N = |—|i2k Mi;

(b) there exists an isomorphism from Ny to N7 mapping each M; to
Mit1, and;

(c) for any countable sequence (7 )ic., where each f; is a partial
isomorphism of M;, the union {J;, fi : U;e,, dom f; — U
a partial isomorphism of M.

Then scf(Inv(M)) > Rg. Similarly, scf(Inj(M)), scf(Part(M)) > No.

icw IM fi is

If conditions (a)—(c) hold, the SR of Inv(M) is at most 3. Similarly, the
SR of Inj(M) and Part(M) are at most 5.

v
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Examples and a non-example

e (Q, <) satisfies conditions (a)—(c), and so Inv(Q, <) = Inj(Q, <) =
Part(Q, <) has a SR of 3 and an uncountable strong cofinality.

@ The generic digraph D without 2-cycles satisfies conditions (a)—(c):
here, Inv(D) and Inj(D) = Part(D) have uncountable strong
cofinality.

@ The random graph R and the generic poset P satisfies conditions
(a)—(c) for all types of finite partial map.

Non-example
o (N, <) does not satisfy condition (c).
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Semilattice of idempotents

For an inverse semigroup S there is a semilattice of idempotents E(S).
For Inv(M), the idempotents E = E(Inv(M)) are identity maps on
substructures.

If M is infinite, then |E| = 2% and is an infinitely generated semigroup; so
you can subject it to the same analysis.

Like (N, <), there is a unique element of E for every subset of N.

Proposition 11 (TC+, 2017)
cf(E) = scf(E) = No, and E does not have the Bergman property.
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Questions (?)

e Work on cofinality of Bi(R) and others; are they uncountable? Do
they have finite SR?

@ What overgroup G of Aut(R) < G < Sym(VR) is generated by Bi(R)
and ‘inverses'?

@ Investigate semigroup theory of Inj(M) and Part(M). Is there a
structural analogue for the binary relation monoid?

@ If S is uncountable, is there a connection between uncountable
cofinality and finite SR?
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