Generation of intermediate and partial map monoids of first-order structures

Tom Coleman

28th NBSAN 14th June 2018

+ work part of PhD thesis, supervised by David Evans and Bob Gray

Tom Coleman (St Andrews)

Examples of infinitely generated semigroups

- Infinitely generated free semigroup/rectangular band, infinite left/right zero semigroups
- Classical transformation semigroups on an infinite set ℕ:
 - symmetric group $\mathsf{Sym}(\mathbb{N})$
 - full transformation monoid $End(\mathbb{N})$
 - symmetric inverse monoid $Inv(\mathbb{N})$
 - partial transformation monoid $\mathsf{Part}(\mathbb{N})$
 - injective (surjective) transformation monoid $Mon(\mathbb{N})$ (Epi(\mathbb{N}))
 - Baer-Levi semigroup $\mathcal{BL}(\mathbb{N})$ of injective transformations α where $|\mathbb{N} \smallsetminus \mathbb{N}\alpha| = \aleph_0$
- Other examples exist (any uncountable semigroup)!

Throughout this talk, S is an infinitely generated semigroup unless stated otherwise.

Definition (Cofinality)

The **cofinality** cf(S) of S is the least cardinal λ such that there exists a chain of proper subsemigroups $(U_i)_{i < \lambda}$ where $\bigcup_{i < \lambda} U_i = S$.

Definition (Strong cofinality)

The **strong cofinality** scf(S) of S is the least cardinal κ such that there exists a chain of proper subsets $(V_i)_{i < \kappa}$ such that for all $i < \kappa$ there exists a $j < \kappa$ such that $V_i V_i \subseteq V_j$ and $S = \bigcup_{i < \kappa} V_i$.

It is true that $cf(S) \ge scf(S) \ge \aleph_0$.

Definition (Cayley boundedness, Bergman property)

Say that S is semigroup Cayley bounded with respect to a set U that generates S as a semigroup if $S = U \cup U^2 \cup ... \cup U^n$ for some $n \in \mathbb{N}$. S has the semigroup Bergman property (BP) if it is Cayley bounded for *every* generating set U of S.

Drop the 'semigroup' from now on!

Theorem 1 (Maltcev, Mitchell, Ruškuc '09)

(1) $\operatorname{scf}(S) > \aleph_0$ if and only if S has the BP and $\operatorname{cf}(S) > \aleph_0$.

(2) If $scf(S) > \aleph_0$, then scf(S) = cf(S).

Examples

$(1) \operatorname{cf}(S) = \operatorname{scf}(S) > leph_0, \operatorname{BP}$

- Sym(ℕ)
- $End(\mathbb{N})$, $Inv(\mathbb{N})$, $Part(\mathbb{N})$
- Aut(R), End(R)

(3) $\operatorname{cf}(S) = \operatorname{scf}(S) = \aleph_0$, BP

- Infinitely generated rectangular band
- Infinite left zero semigroup

(2) cf(S) > scf(S) = ℵ₀, ¬BP

 bounded symmetric group of the rationals BSym(Q)

$(4) \operatorname{cf}(S) = \operatorname{scf}(S) = \aleph_0, \ \neg \mathsf{BP}$

• Free semigroup X* with X infinite

• Baer-Levi semigroup
$$\mathcal{BL}(\mathbb{N})$$

Cofinality toolbox

Lemma 2 (TC+, 2017)

- (1) If S is countable, then $cf(S) = \aleph_0$.
- (2) Let T be an infinitely generated subsemigroup of S and I an ideal of S such that $S = T \sqcup I$. Then $cf(S) \le cf(T)$.

Definition (Relative rank)

Suppose that S is any semigroup and A is a subset of S. The **relative** rank rank(S : A) of S modulo A is the minimum cardinality of a set B such that $\langle A \cup B \rangle = S$.

Lemma 3 (2·Pech, 13)

Let T be an infinitely generated subsemigroup of S. If $cf(T) > \aleph_0$ and rank(S : T) is finite then $cf(S) > \aleph_0$.

Look at $Mon(\mathbb{N})$ and $Epi(\mathbb{N})$.

Theorem 4 (Mitchell, Péresse 11)

 $rank(Mon(\mathbb{N}) : Sym(\mathbb{N})) = 2$ and $rank(Epi(\mathbb{N}) : Sym(\mathbb{N})) = 5$. Both of these semigroups do not have the Bergman property.

As $cf(Sym(\mathbb{N})) > \aleph_0$, we can conclude from Lemma 3 and Theorem 1:

Consequence

 $cf(Mon(\mathbb{N})) > scf(Mon(\mathbb{N})) = \aleph_0$. Same holds for $Epi(\mathbb{N})$.

So both $Mon(\mathbb{N})$ and $Epi(\mathbb{N})$ live in case (2).

Proposition 5 (TC+, 2017)

Suppose that S has an infinite descending chain of ideals $S = I_0 \supseteq I_1 \supseteq I_2 \supseteq \ldots$ and assume that $J = \bigcap_{i \in \mathbb{N}} I_i$ is non-empty. Let $L_i = I_i \smallsetminus I_{i+1}$ and suppose also that $L_i L_j \subseteq (\bigcup_{n=0}^h L_n) \cup J$ for some $h \in \mathbb{N}$. Then $\operatorname{scf}(S) = \aleph_0$.

A trip to the shop is required!

Intermediate and partial map monoids

For \mathcal{M} , a countably infinite relational first-order structure:

Let (\mathbb{N}, \leq) be the discrete linear order; $\text{Emb}(\mathbb{N}, \leq)$ is the monoid of injective order-preserving transformations of \mathbb{N} . Here, $\text{Aut}(\mathbb{N}, \leq)$ is the trivial group.

Fun fact!

For any coinfinite subset A of \mathbb{N} , there exists a unique embedding α such that $\mathbb{N} \smallsetminus \mathbb{N} \alpha = A$.

For $k \in \mathbb{N}$, let α_k be the unique map such that $\mathbb{N} \setminus \mathbb{N}\alpha_k = \{k\}$.

Consequences of the fun fact

•
$$|\mathsf{Emb}(\mathbb{N},\leq)| = 2^{\aleph_0}$$
.

• Any generating set for $\text{Emb}(\mathbb{N}, \leq)$ contains α_k for all $k \in \mathbb{N}$.

$$F := \{ \beta \in \operatorname{\mathsf{Emb}}(\mathbb{N}, \leq) : |\mathbb{N} \setminus \mathbb{N}\beta| < \aleph_0 \}$$
$$J_{\infty} := \{ \gamma \in \operatorname{\mathsf{Emb}}(\mathbb{N}, \leq) : |\mathbb{N} \setminus \mathbb{N}\gamma| = \aleph_0 \}$$

Then $\text{Emb}(\mathbb{N}, \leq) = F \sqcup J_{\infty}$, and the countable submonoid F is infinitely generated. So

Proposition 6 (TC+, 2017)

- (1) $cf(Emb(\mathbb{N}, \leq)) = scf(Emb(\mathbb{N}, \leq)) = \aleph_0$.
- (2) The generating set X = {α_k : k ∈ ℕ} ∪ J_∞ ∪ {e} of Emb(ℕ, ≤) is not Cayley bounded.

So $\mathsf{Emb}(\mathbb{N}, \leq)$ falls in case (4).

Random graph 1/3

Figure : The random graph R

R is nice. Look at Bi(R), Emb(R), and Mon(R).

Tom Coleman (St Andrews)

Ideals are important!

- Let I_k ⊆ Bi(R) (or Mon(R)) be the ideal of all bimorphisms (monomorphisms) that add in ≥ k edges for k ∈ N ∪ {∞}.
- Let J_k ⊆ Emb(R) be the ideal of all embeddings that omit ≥ k vertices for k ∈ N ∪ {∞}.

These form infinite descending chains of ideals that match the conditions of Proposition 4. So:

Proposition 7 (TC+)

Let *R* be the random graph and $T \in {Bi(R), Emb(R), Mon(R)}$. Then $scf(T) = \aleph_0$.

Random graph 3/3

 $Bi(R) \smallsetminus I_{\infty}$ is generated by some bimorphism α that adds in a single edge together with Aut(R). Consequently:

Proposition 8 (TC+, 2017)

(1) $\operatorname{rank}(\operatorname{Bi}(R)\smallsetminus I_{\infty} : \operatorname{Aut}(R)) = 1$, and so $\operatorname{cf}(\operatorname{Bi}(R)\smallsetminus I_{\infty}) > \aleph_0$.

(2) The generating set X = Aut(R) ∪ {α} ∪ I_∞ of Bi(R) is not Cayley bounded.

Similarly, $cf(Emb(R) \setminus J_{\infty}) > \aleph_0$, and both Emb(R) and Mon(R) do not have the Bergman property. Also, $cf(FMon(R)) > \aleph_0$, where FMon(R) is the monoid of monomorphisms of R that leave out finitely many (possibly zero) edges and vertices.

Question

Are cf(Bi(R)), cf(Emb(R)) and cf(Mon(R)) all uncountable?

For a countably infinite relational first-order structure \mathcal{M} :

- Inv(M) is the symmetric inverse monoid of M; the monoid of all isomorphisms between substructures of M.
- $Part(\mathcal{M})$ is the partial homomorphism monoid of \mathcal{M} .
- $Inj(\mathcal{M})$ is the partial monomorphism monoid of \mathcal{M} .

Fun aside!

Much like $Bi(\mathcal{M}) \subseteq Sym(M)$ is a group-embeddable monoid that isn't a group, $Inj(\mathcal{M}) \subseteq Inv(M)$ is a inverse semigroup-embeddable monoid that isn't an inverse semigroup.

Composition in Part(R)

A trip to the hardware shop

Definition (Strong distortion)

A semigroup S is **strongly distorted** if there exists a sequence $(a_n)_{n \in \mathbb{N}}$ of natural numbers and $N_S \in \mathbb{N}$ such that for all sequences $(s_n)_{n \in \mathbb{N}}$ of elements from S there exist $t_1, t_2, \ldots, t_{N_S} \in S$ such that each s_n can be written as a product of length at most a_n in the elements $t_1, t_2, \ldots, t_{N_S}$.

Element of $(s_n)_{n \in \mathbb{N}}$ s_1 s_2 s_3 ... s_n ... Length of product of t_i 's equal a_1 a_2 a_3 ... a_n ... to s_n

Figure : Strong distortion

Theorem 9 (MMR 09)

If *S* is strongly distorted, then $scf(S) > \aleph_0$.

Sierpiński rank

Definition (Sierpiński rank)

The **Sierpiński rank** (SR) of S is defined to be the smallest natural number n (if it exists; ∞ otherwise) such that any countable sequence $(s_n)_{n \in \mathbb{N}}$ of elements in S is contained in an *n*-generated subsemigroup of S.

Examples

- 1 $(\mathbb{N}, +)$ has SR 1.
- 2 $Inv(\mathbb{N})$ has SR 2.
- 3 Semigroup of increasing functions $f : [0,1] \rightarrow [0,1]$ has SR 3.
- 4+ Mon(\aleph_n) has SR n + 4 for all $n \in \mathbb{N}_0$.
- $\infty \ \mathcal{BL}(\mathbb{N})$ has infinite SR.

Every strongly distorted semigroup has finite SR; but converse is not true.

Big theorem

Theorem 10 (TC+, 2017)

Let $\ensuremath{\mathcal{M}}$ be a countable first-order structure such that:

- (a) \mathcal{M} contains substructures \mathcal{M}_i (where $i \in \mathbb{N}_0$) with $\mathcal{M}_i \cong \mathcal{M}$, and it also contains substructures $\mathcal{N}_k = \bigsqcup_{i>k} \mathcal{M}_i$;
- (b) there exists an isomorphism from \mathcal{N}_0 to \mathcal{N}_1 mapping each \mathcal{M}_i to \mathcal{M}_{i+1} , and;
- (c) for any countable sequence $(\hat{f}_i)_{i\in\omega}$ where each \hat{f}_i is a partial isomorphism of \mathcal{M}_i , the union $\bigcup_{i\in\omega} \hat{f}_i : \bigcup_{i\in\omega} \text{ dom } \hat{f}_i \to \bigcup_{i\in\omega} \text{ im } \hat{f}_i$ is a partial isomorphism of \mathcal{M} .

Then $scf(Inv(\mathcal{M})) > \aleph_0$. Similarly, $scf(Inj(\mathcal{M}))$, $scf(Part(\mathcal{M})) > \aleph_0$.

If conditions (a)–(c) hold, the SR of $Inv(\mathcal{M})$ is at most 3. Similarly, the SR of $Inj(\mathcal{M})$ and $Part(\mathcal{M})$ are at most 5.

Examples and a non-example

Examples

- $(\mathbb{Q}, <)$ satisfies conditions (a)–(c), and so $Inv(\mathbb{Q}, <) = Inj(\mathbb{Q}, <) = Part(\mathbb{Q}, <)$ has a SR of 3 and an uncountable strong cofinality.
- The generic digraph D without 2-cycles satisfies conditions (a)–(c): here, Inv(D) and Inj(D) = Part(D) have uncountable strong cofinality.
- The random graph R and the generic poset ℙ satisfies conditions
 (a)–(c) for all types of finite partial map.

Non-example

• (\mathbb{N}, \leq) does not satisfy condition (c).

For an inverse semigroup S there is a semilattice of idempotents E(S). For $Inv(\mathcal{M})$, the idempotents $E = E(Inv(\mathcal{M}))$ are identity maps on substructures.

If \mathcal{M} is infinite, then $|E| = 2^{\aleph_0}$ and is an infinitely generated semigroup; so you can subject it to the same analysis.

Like (\mathbb{N}, \leq) , there is a unique element of *E* for every subset of \mathbb{N} .

Proposition 11 (TC+, 2017)

 $cf(E) = scf(E) = \aleph_0$, and E does not have the Bergman property.

- Work on cofinality of Bi(R) and others; are they uncountable? Do they have finite SR?
- What overgroup G of Aut(R) ≤ G ≤ Sym(VR) is generated by Bi(R) and 'inverses'?
- Investigate semigroup theory of Inj(M) and Part(M). Is there a structural analogue for the binary relation monoid?
- If *S* is uncountable, is there a connection between uncountable cofinality and finite SR?