Pseudo-finite monoids and semigroups

Rida-E Zenab

University of York

NBSAN, 07-08 January 2018

Based on joint work with Victoria Gould and Dandan Yang

- Definitions: what does it mean for a monoid to be pseudo-finite, or pseudo-generated by a finite set?
- Background: different sources of motivation.
- Which monoids are pseudo-generated by a finite set/pseudo-finite?
- What can we say for semigroups?

Left congruences

Let *M* be a monoid and let $\overline{X} \subseteq M \times M$. We denote by $\rho_{\overline{X}}$ the smallest left congruence relation on *M* containing \overline{X} .

For $a, b \in M$, $a \rho_{\overline{X}} b$ if and only if a = b or there is an $n \ge 1$ and a sequence

$$a = t_1c_1, t_1d_1 = t_2c_2, t_2d_2 = t_3c_3, \cdots, t_nd_n = b_1$$

where $(c_i, d_i) \in \overline{X} \cup \overline{X}^{-1}$ and $t_i \in M$. Such a sequence is referred to as an \overline{X} -sequence of length n. If n = 0, we interpret this sequence as being a = b. Pseudo-generated monoids

Let *M* be a monoid and let $X \subseteq M$. Suppose

 $\overline{X} = \{(1, x) : x \in X\} \subseteq M \times M$

and let $\rho_{\overline{X}}$ be the left congruence on M generated by \overline{X} . We say M is pseudo-generated by X if $\rho_{\overline{X}} = \omega_M$.

If X is finite, then M is said to be pseudo-generated by a finite set.

Pseudo-finite monoids

We say M is pseudo-finite, if there is a bound on the length of \overline{X} -sequence.

Semigroup Algebras

A semigroup algebra $\ell^1(S)$ is the Banach algebra generated by semigroup S.

A weight on a seimgroup S is a function $w:S
ightarrow [1,\infty)$ such that

$$w(uv) \leq w(u)w(v) \ u, v \in S.$$

Define

$$\ell^1(S,w) = \Big\{f: S \to \mathbb{C}: \|f\|_w := \sum_{u \in S} |f(u)|w(u) < \infty\Big\}.$$

Then $\ell^1(S, w)$ is a Banach space under pointwise operations with the norm given by $\|\cdot\|_w$ and a Banach algebra if multiplaction is given by convolution. Such a Banach algebra is called weighted semigroup algebra.

Background: different sources of motivation

The augmentation ideal of $\ell^1(S, w)$ is defined as

$$\ell_0^1(S, w) = \Big\{ f \in \ell^1(S, w) : \sum_{u \in S} f(u) = 0 \Big\}.$$

Theorm (J. T. White)

Let S be a monoid. Then $\ell_0^1(S)$ is finitely-generated if and only if S is pseudo-finite

White's Motivation was

Dales-Zelazko conjecture

Let A be a unital Banach algebra in which every maximal left ideal is finitely-generated. Then A is finite dimensional.

The above conjecture has answer for the class of Banach algebras $\ell^1(M)$ where M is *weakly right cancellative monoid*, but remains open for an arbitrary monoid.

Ancestry for a monoid

Let M be a monoid with identity 1 and let $X \subseteq M$. A finite sequence $(z_i)_{i=1}^n$ of elements in M is called an ancestry for $m \in M$ of length n with respect to X if $z_1 = m$, $z_n = 1$ and for each $i \in \mathbb{N}$ with $1 < i \le n$ there exists $x \in X$ such that either $z_i x = z_{i-1}$ or $z_i = z_{i-1} x$.

Lemma

A monoid M is pseudo-finite if and only if there is a finite set X such that every element of M has an ancestry of bounded length with respect to X.

Lemma

A monoid M is pseudo-generated by a finite set X if and only if every element of M has an ancestry with respect to X.

Background: different sources of motivation

Kobayashi's criterion, the property left-FP $_1$ and Cayley graphs

The property Left-FP_n for monoids

Let *M* be a monoid and $\mathbb{Z}M$ be the monoid ring over the integers \mathbb{Z} . For $n \ge 0$, *M* is of tpye left-FP_n if there is a resolution

$$A_n \to A_{n-1} \to \cdots \to A_1 \to A_0 \to \mathbb{Z} \to 0$$

of the trivial left $\mathbb{Z}M$ -module \mathbb{Z} such that A_0, A_1, \cdots, A_n are finitely-generated left $\mathbb{Z}M$ -modules.

Monoids of type right-FP_n are defined dually. For n = 1, a group is of type FP₁ if and only if it is finitely-generated. This is not case for monoids.

This is not case for monoids.

The property left-FP₁ for monoids is characterised by Kobayashi.

Right unitary monoids

A submonoid N of a monoid M is said to be right unitary if $mn \in N$ implies $m \in N$ for any $n \in N$ and $m \in M$. For a subset X of M, $U^r(X)$ denotes the smallest right unitary submonoid of M containing X.

If $M = U^{r}(X)$, then M is said to be right unitarily generated by X. If X is finite, then M is said to be right unitarily finitely generated by X.

Cayley graphs

Let M be a monoid and X be a subset of M. The right Cayley graph $\Gamma(M, X)$ of M with respect to X is the directed labelled graph with vertices the elements of M, and a directed edge from pto q labelled by $x \in X$ if and only if px = q in M. If there is an undirected path between any two vertices, then we say that $\Gamma(M, X)$ is connected.

Theorem (Y. Kobayashi 2006)

A monoid M is of type left-FP₁ if and only if there is a finite subset X of M such that one of the following equivalent conditions is satisfied:

- M is right unitarily generated by X;
- **2** the right Cayley graph $\Gamma(M, X)$ is connected.

if *M* is a monoid pseudo-generated by a finite set *X*, then the smallest left congruence $\rho_{\overline{X}} = \langle \{(1, x) : x \in X\} \rangle$ is completely determined by the set $A = \{m \in M : (1, m) \in \rho_{\overline{X}}\}$. Clearly *A* is a submonoid of *M* and is right unitary because for any $a \in M$ and $b \in A$

 $ab \in A \Rightarrow a \in A$.

Thus M is right unitarily generated by X

Pseudo-finite/Pseudo-generated monoids and Kobayashi's criterion

Also For any $m \in M$, there is a sequence

$$m = t_1 c_1, t_1 d_1 = t_2 c_2, \cdots, t_n d_n = 1$$

where $(c_i, d_i) \in \overline{X} \cup \overline{X}^{-1}$ and $t_i \in M$ for $1 \le i \le n$. This gives us a path

so that $\Gamma(M, X)$ is connected.

Theorem

Let M be a monoid and X be a finite subset of M. Then the following are equivalent:

- M is pseudo-generated by X;
- **2** each element of M has an ancestry with respect to X;
- **③** *M* is right unitarily finitely generated by X;
- *M* is of type left FP_1 ;
- the right Cayley graph $\Gamma(M, X)$ of M with respect to X is connected.

Groups

- Let G be a group and X be a (finite) subset of G. Then G is (finitely) generated by X if and only if G is pseudo-generated by X.
- A group G is pseudo-finite if and only if G is finite.

Finite monoids

Finite monoids are pseudo-finite.

Monoids with zero

Any monoid with zero is pseudo-finite.

Monoid semilattices

Let $\ensuremath{\mathcal{Y}}$ be a semilattice with identity 1. Then the following are equivalent:

- $\textcircled{O} \ \mathcal{Y} \ \text{is pseudo-generated by some finite set;}$
- $\textcircled{2} \mathcal{Y} \text{ has a zero;}$
- \bigcirc \mathcal{Y} is pseudo-finite.

Homomorphic images, retracts and direct products

- The homomorphic image (retract) of a monoid pseudo-generated by a finite set X is pseudo-generated by a finite set.
- The homomorphic image (retract) of a pseudo-finite monoid is pseudo-finite.
- Let S and T be monoids. Then S and T are pseudo-generated by some finite sets X and Y respectively if and only if S × T is pseudo-generated by X × Y.
- The direct product of monoids S and T is pseudo-finite if and only if S and T are pseudo-finite.

Inverse monoids

Suppose S is an inverse monoid with semilattice of idempotents E(S). Then S is pseudo-finite if and only if E(S) has a zero and the corresponding group \mathcal{H} -class is finite.

Bruck-Reilly extension of a monoid

Let S be a monoid with identity e. Suppose S is pseudo-generated by a finite set X. Then the Bruck-Reilly extension $T = BR(S, \theta)$ of S determined by θ is pseudo-generated by a finite set

$$X' = \{(1, e, 0), (0, e, 0), (0, x_i, 0) : x_i \in X\}.$$

Bicyclic Monoid

The Bicyclic monoid $\mathbb{N}^0\times\mathbb{N}^0$ is pseudo-generated by a finite set

 $X = \{(1,0), (0,0)\}.$

Rectangular bands

Let B^1 be a rectangular band with an identity adjoined and let X be a finite subset of B^1 . Then B^1 is pseudo-generated by X if and only if B^1 has finitely many \mathcal{R} -classes.

Strong semilattices of semigroups

- Let $S = [\mathcal{Y}; S_{\alpha}; \phi_{\alpha,\beta}]$ be a strong semilattice of semigroups. Then S^1 is pseudo-generated by a finite set X if and only if \mathcal{Y}^1 has a zero and S_0^1 is pseudo-generated.
- Suppose N = [Y; S_α; φ_{α,β}] is a normal band. Then N¹ is pseudo-generated by a finite set X if and only if Y¹ has a zero and S₀¹ has finitely many *R*-classes.
- Let S = [𝔅; G_α; φ_{α,β}] be a Clifford monoid. Then S is pseudo-generated by some finite set (S is pseudo-finite) if and only if 𝔅 has a 0 and G₀ is finitely generated (finite).

Finite Rees Index

Let S be a semigroup and T be a subsemigroup of S. The *Rees* index of T in S is defined to be the cardinality of the compliment $S \setminus T$.

Theorem

Let S be a monoid and suppose T be a retract of S having finite Rees index. Then S is pseudo-generated by a finite set if and only if T is pseudo-generated by some finite set.

Dales/White conjecture (in an informal discussion)

A monoid is pseudo-finite if and only if it is direct product of a monoid with zero by a finite monoid.

Example

Let $\mathcal{Y} = \{\alpha, \beta\}$ be a semilattice with $\beta < \alpha$ and let $M = [\mathcal{Y}; G_{\alpha}; \phi_{\alpha,\beta}]$ be a strong semilattice of groups, where $G_{\alpha} = G$ is an infinite group with identity 1 and no elements of G has order 2, $G_{\beta} = \{a, e\}$ is a group with identity e, and $\phi_{\alpha,\beta} : G_{\alpha} \to G_{\beta}$ is defined by $g\phi_{\alpha,\beta} = e$ for all $g \in G$. Then M is an infinite pseudo-finite monoid without zero, and it is impossible to be isomorphic to a direct product of a monoid with zero by a finite monoid.

What can we say for semigroups?

Pseudo-generated semigroups

Let S be a semigroup and let $X \subseteq S$. Let $\overline{X} = \{(x, y) : x, y \in X\}$. We say that S is pseudo-generated by X if $\omega_S = \rho_{\overline{X}}$, where $\rho_{\overline{X}}$ is the smallest left congruence relation on S containing \overline{X} .

Lemma

Let S be a semigroup and ω_S be finitely generated by $H \subseteq S \times S$. Suppose $\omega_S = \langle K \rangle$ for some $K \subseteq S \times S$. Then there exists a finite subset K' of K such that $\omega_S = \langle K' \rangle$. Further, if there exists $m \in \mathbb{N}$ such that for any $a, b \in S$, there is a H-sequence from a to b of length at most m, then there is an $m' \in \mathbb{N}$ such that for any $a, b \in S$, there is a K'-sequence from a to b of length at most m'.

Brandt Semigroups

Let $S = B^0(G, I)$ be a Brandt semigroup over a group G. Then S is pseudo-generated by a finite set X if and only if I is finite.

Inverse semigroups

Let S be an inverse semigroup and E(S) be the set of idempotents of S. Then S is pseudo-generated by a finite set (pseudo-finite) if and only if

- there are finitely many maximal idempotents in E(S) such that every idempotent is below a maximal idempotent;
- 2 E(S) has a zero;
- \bullet the group \mathcal{H} -class of zero is finitely generated (finite).

Thank You