SOME REMARKS ABOUT SEMIGROUPS OF PARTIAL CONTRACTION MAPPINGS OF A FINITE CHAIN

Abstract

Definitions and

Combinatorial Results Concluding Remarks
A. Umar and M. M. Zubairu ${ }^{\dagger}$

NBSAN27 University of York.
7-8th January 2018

Home Page

Page 1 of 34

Go Back

Full Screen

Close

Quit

[^0]1. Abstract
2. Definitions and Notations
3. Regularity and Green's Relations
4. Combinatorial Results
5. Concluding Remarks

Regularity and
6. Selected References

Combinatorial Results

Concluding Remarks
Home Page

Title Page

ABSTRACT. A general systematic study of the semigroups of partial contractions of a finite chain and their various subsemigroups of order-preserving/order-reversing and/or orderdecreasing transformations was initiated in 2013 supported by a grant from The Research Council of Oman (TRC).

Combinatorial Results

Concluding Remarks

Home Page

Title Page

44

4

```
Page 3 of 34
```

Go Back

Our aim in this talk is to present the results obtained so far by the presenter and his coauthors as well as others. Broadly, speaking the results can be divided into two groups: algebraic and combinatorial enumeration. The algebraic results show that these semigroups are nonregular (left) abundant semigroups (for $n \geq 4$) whose set of idempotents forms a band. The combinatorial enumeration results show links with sequences some of which are in the encyclopedia of integers sequences (OEIS) and with others which are not.

```
Combinatorial Results
```


Concluding Remarks

Home Page

Title Page

44

4

Page 4 of 34

Go Back

Full Screen

Close

A transformation $\alpha \in \mathcal{P}_{n}$ is said to be

- order-preserving (order-reversing)
- order-decreasing (order-increasing) if (for all $x \in \operatorname{Dom} \alpha) x \alpha \leq x(x \alpha \geq x)$.

```
Page 5 of 34
```

- a contraction if
(for all $x, y \in \operatorname{Dom} \alpha$) $|x-y| \geq|x \alpha-y \alpha|$.

The semigroups of order-preserving transforCombinatorial Results mations, order-decreasing (extensive) transformations, their intersections and their various generalizations are arguably the most studied subsemigroups of transformations.

Concluding Remarks

Home Page

Go Back

Contractions	Full	Partial
Partial contractions	$\mathcal{C T}{ }_{n}$	$\mathcal{C P}{ }_{n}$
Order-preserving	$\mathcal{O C T}_{n}$	$\mathcal{O C P}_{n}$
Order-preserving or order-reversing	$\mathcal{O R C T}_{n}$	$\mathcal{O R C P}_{n}$
Order-decreasing	$\mathcal{D C T}{ }_{n}$	$\mathcal{D C P}{ }_{n}$
Order-preserving +order-decreasing	$\mathcal{O D C T}_{n}$	$\mathcal{O D C P}_{n}$
Order-reversing + order-decreasing	$\mathcal{O D C T}{ }_{n}$	$\mathcal{D R C P}_{n}$

```
Combinatorial Results
```


Concluding Remarks

Home Page

```
Page 7 of 34
```

Go Back
Table 1

Definitions and Notations
$\mathcal{C} \mathcal{P}_{n}$
Concluding Remarks

Home Page

Title Page
$\mathcal{D R C P}_{n}$
$\mathcal{O C P}_{n}$

```
Page 8 of 34
```

Go Back

Full Screen

Close

Definitions and Notations
$\mathcal{C} \mathcal{T}_{n}$
Concluding Remarks
Home Page

$\mathcal{O C T}_{n}$

```
Page 9 of 34
```

Go Back

Full Screen
$\mathcal{O D C T}_{n}$

Close

Figure 2

Let

$$
\alpha=\left(\begin{array}{llll}
A_{1} & A_{2} & \cdots & A_{p} \\
a_{1} & a_{2} & \cdots & a_{p}
\end{array}\right) \in \mathcal{C} \mathcal{P}_{n}
$$

with $a_{i} \alpha^{-1}=A_{i}($ for $1 \leq i \leq p)$.
A transversal $T_{\alpha}=\left\{t_{i}: t_{i} \in A_{i}\right\}$ of α is called admissible if

$$
\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{p} \\
t_{1} & t_{2} & \cdots & t_{p}
\end{array}\right) \in \mathcal{C} \mathcal{P}_{n}
$$

A transversal $T_{\alpha}=\left\{t_{i}: t_{i} \in A_{i}\right\}$ of α is called good if $t_{i} \mapsto a_{i}$ is an isometry.
admissible transversal \Leftarrow good transversal

Example 1 • $\left(\begin{array}{ccc}1 & \{2,3\} & 4 \\ 1 & 2 & 3\end{array}\right) \in \mathcal{C} \mathcal{P}_{4}$ has no
Home Page admissible transversal;

- $\left(\begin{array}{ccc}1 & \{2,4\} & 3 \\ 1 & 2 & 3\end{array}\right) \in \mathcal{C} \mathcal{P}_{4}$ has a convex transver-

Title Page

44

```
Page 11 of 34
```

Go Back

Theorem 1 Let $\alpha \in \mathcal{C} \mathcal{P}_{n}$. Then α is regular iff α has a good transversal.

Regularity and .

Combinatorial Results

Concluding Remarks
Home Page
Example 2 • $\left(\begin{array}{ccc}1 & \{2,3\} & 4 \\ 1 & 2 & 3\end{array}\right) \in \mathcal{C} \mathcal{P}_{4}$ is not regular;

- $\left(\begin{array}{ccc}1 & \{2,4\} & 3 \\ 1 & 2 & 3\end{array}\right) \in \mathcal{C} \mathcal{P}_{4}$ is regular.

Title Page

44

4

```
Page 12 of 34
```

Go Back

Full Screen

Close

Theorem 2 Let $\alpha, \beta \in \mathcal{C} \mathcal{P}_{n}$. Then $(\alpha, \beta) \in$

```
Combinatorial Results
```

\mathcal{R} iff kero $\alpha=\operatorname{ker} \beta$ and $a_{i} \mapsto b_{i}$ is an isometry.

Example 3 Consider

$$
\begin{aligned}
& \text { - } \alpha=\left(\begin{array}{ccc}
\{1,2\} & 3 & 5 \\
1 & 2 & 3
\end{array}\right), \\
& \quad \beta=\left(\begin{array}{ccc}
\{1,2\} & 3 & 5 \\
1 & 2 & 4
\end{array}\right), \gamma=\left(\begin{array}{ccc}
\{1,2\} & 3 & 5 \\
2 & 3 & 4
\end{array}\right) \in \\
& \quad \text { CP } P_{5} .
\end{aligned}
$$

Theorem 3 Let $\alpha, \beta \in \mathcal{C} \mathcal{P}_{n}$. Then $(\alpha, \beta) \in$ Combinatorial Results \mathcal{L} iff (i) there exist admissible transversals

```
Concluding Remarks
``` \(T_{\alpha}, T_{\beta}\) such that \(t_{i} \mapsto t_{i}^{\prime}\) is an isometry and \(t_{i} \alpha=t_{i}^{\prime} \beta\); or (ii) \(A_{i}=B_{i}+e\) (for some anteger e) and \(A_{i} \alpha=B_{i} \beta\).
Example 4 • \(\left(\begin{array}{ccc}\{1,3\} & 2 & 5 \\ 1 & 2 & 3\end{array}\right) \mathcal{L}\left(\begin{array}{ccc}\{2,4\} & 3 & \{6,7 \\ 1 & 2 & 3\end{array}\right)\) but \(\left(\begin{array}{ccc}\{1,3\} & 2 & 5 \\ 2 & 3 & 4\end{array}\right)\) and \(\left(\begin{array}{ccc}\{2,4\} & 3 & \{6,7\} \\ 4 & 3 & 2\end{array}\right)\)
are not \(\mathcal{L}\)-related.

Regularity and Green's Relation
 but \(\left(\begin{array}{ccc}\{1,3\} & 2 & 5 \\ 2 & 3 & 4\end{array}\right)\) and \(\left(\begin{array}{ccc}\{2,4\} & 3 & 6 \\ 4 & 3 & 2\end{array}\right)\) are Concluding Remarks

Home Page

Title Page

Theorem 4 Let \(\alpha, \beta \in \mathcal{C} \mathcal{P}_{n}\). Then \((\alpha, \beta) \in\) \(\mathcal{D}\) iff (i) there exist admissible transversals \(T_{\alpha}, T_{\beta}\) such that \(t_{i} \mapsto t_{i}^{\prime}\) and \(t_{i} \alpha \mapsto t_{i}^{\prime} \beta\) are isometries; or (ii) \(A_{i}=B_{i}+e\) and \(A_{i} \alpha=\) \(B_{i} \beta+e^{\prime}\) (for some integers \(e, e^{\prime}\)).

Theorem 5 Let \(\alpha, \beta \in \mathcal{C} \mathcal{P}_{n}\). Then we have the following:

\section*{Concluding Remarks}

Home Page
- \((\alpha, \beta) \in \mathcal{R}^{*}\) iff ker \(\alpha=\operatorname{ker} \beta\);
- \((\alpha, \beta) \in \mathcal{L}^{*}\) iff \(\operatorname{Im} \alpha=\operatorname{Im} \beta\);
- \((\alpha, \beta) \in \mathcal{D}^{*} i f f|\operatorname{Im} \alpha|=|\operatorname{Im} \beta|\).

\section*{Title Page}

44
```

Page 16 of 34

```

Go Back

Full Screen

Close

Conjecture 1 For \(n \geq 3\), the semigroups but not right abundant.

Home Page
Conjecture 2 The sets \(\operatorname{Reg}\left(\mathcal{C} \mathcal{T}_{n}\right), \operatorname{Reg}\left(\mathcal{O R C} \mathcal{T}_{n}\right)\)
Title Page and \(\operatorname{Reg}\left(\mathcal{O C} \mathcal{T}_{n}\right)\) are semigroups.

Conjecture 3 The sets \(E\left(\mathcal{C} \mathcal{T}_{n}\right), E\left(\mathcal{O R C T}{ }_{n}\right)\) and \(E\left(\mathcal{O C} \mathcal{T}_{n}\right)\) are semigroups/bands.
```

Page 17 of 34

```

It is now established that counting certain natural equivalence classes in various semigroups of partial transformations of an \(n\)-set, leads to very interesting enumeration problems. Many numbers and triangle of numbers regarded as combinatorial gems like the Fi bonacci number, Catalan number, Schröder number, Stirling numbers, Eulerian numbers, Narayana numbers, Lah numbers, etc., have all featured in these enumeration problems.

Combinatorial Results

Concluding Remarks
Home Page

Title Page

44

4

Page 18 of 34

Go Back

Full Screen

Close
- breadth or width of \(\alpha: b(\alpha)=|\operatorname{Dom} \alpha|\)
- height or rank of \(\alpha: h(\alpha)=|\operatorname{Im} \alpha|\),
```

Combinatorial Results

```

Concluding Remarks
Home Page
- right [left] waist of \(\alpha\) :
\(w^{+}(\alpha)=\max (\operatorname{Im} \alpha)\left[w^{-}(\alpha)=\min (\operatorname{Im} \alpha)\right]\).
- collapse of \(\alpha\) :
\[
c(\alpha)=\mid \bigcup\left\{t \alpha^{-1}: t \in \operatorname{Im} \alpha \text { and }\left|t \alpha^{-1}\right| \geq 2\right\} \mid,
\]
```

Page 19 of 34

```
- \(f i x\) of \(\alpha\) :
\(f(\alpha)=|F(\alpha)|=|\{x \in \operatorname{Dom} \alpha: x \alpha=x\}|\).

Let \(S\) be a set of partial transformations on
```

Combinatorial Results

``` \(X_{n}\). Next, let

\section*{Concluding Remarks}

Home Page
\(F_{r q p m k}(n ; r, q, p, m, k)\)
\(=\mid\{\alpha \in S: \wedge(b(\alpha)=r, c(\alpha)=q, h(\alpha)=p\),
\(\left.\left.f(\alpha)=m, w^{+}(\alpha)=k\right)\right\} \mid\)
and, let \(P=\{r, q, p, m, k\}\) be the set of counters for the breadth, collapse, height, fix and right waist of a transformation.

Then any 5-parameter combinatorial function can be expressed as \(F\left(n ; a_{1}, a_{2}, a_{3}, a_{4}\right)\), where
```

Combinatorial Results

```

Concluding Remarks \(\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \subset P\).

Home Page

Title Page
For example,
\[
\begin{aligned}
& F_{r q p k}(n ; r, q, p, k) \\
& =\mid\{\alpha \in S: \wedge(b(\alpha)=r, c(\alpha)=q, h(\alpha)=p, \\
& \left.\left.w^{+}(\alpha)=k\right)\right\} \mid
\end{aligned}
\]
```

Page 21 of 34

```
\begin{tabular}{|c|c|c|}
\hline & T. & \(\mathcal{P}_{n}\) \\
\hline\(F(n ; r)\) & \(n^{n}(\) if \(r=n)\) and & \(\binom{n}{r} n^{r}\) \\
& \(0(\) if \(r \neq n)\) & \\
\hline\(F(n ; q)\) & \(?\) & \(?\) \\
\hline\(F(n ; p)\) & \(\binom{n}{p} S(n, p) p!\) & \(\binom{n}{p} S(n+1, p+1) p!\) \\
\hline\(F(n ; m)\) & \(\binom{n}{m}(n-1)^{n-m}\) & \(\binom{n}{m} n^{n-m}\) \\
\hline\(F(n ; k)\) & \(k^{n}-(k-1)^{n}\) & \((k+1)^{n}-k^{n}\) \\
\hline
\end{tabular}

Table 2
\begin{tabular}{|cc|}
\hline & \(\mathcal{P}_{n}\) \\
\hline\(F(n ; r, q)\) & \(?\) \\
\hline\(F(n ; r, p)\) & \(\binom{n}{r}\binom{n}{p} S(r, p) p!\) \\
\hline\(F(n ; r, m)\) & \(\binom{n}{m}\binom{n-m}{r-m}(n-1)^{r-m}\) \\
\hline\(F(n ; r, k)\) & \(\binom{n}{r}\left[k^{r}-(k-1)^{r}\right]\) \\
\(F(n ; q, p)\) & \(?\) \\
\hline\(F(n ; p, k)\) & \(\binom{k-1}{p-1} S(n+1, p+1) p!\) \\
\hline\(F(n ; m, k)\) & \(?\) \\
\hline
\end{tabular}

Regularity and.

Combinatorial Results

\section*{Concluding Remarks}

Home Page

Title Page

Table 3
```

Page 23 of 34

```

Combinatorial Results

Table 4

Regularity and

Combinatorial Results

Concluding Remarks

Home Page

Title Page

Page 24 of 34

Go Back

Full Screen

Close

Quit
\begin{tabular}{r|cc|}
\hline\(S\) & \(\mathcal{O}_{n}\) & \(\mathcal{P O}_{n}\) \\
\(F(n ; r)\) & \(\left|\mathcal{O}_{n}\right|\) or 0 & \(\binom{n}{r}\binom{n+r-1}{n-1}\) \\
& & {\([\mathbf{?}]\)}
\end{tabular}

Regularity and

Combinatorial Results

\section*{Concluding Remarks}

Home Page

Title Page

Table 5

Theorem 6 Let \(\alpha \in \mathcal{C} \mathcal{P}_{n}\) and let \(A\) be a convex subset of Dom \(\alpha\). Then \(A \alpha\) is convex.

Corollary 1 Let \(\alpha \in \mathcal{C} \mathcal{T}_{n}\). Then \(\operatorname{Im} \alpha\) is

Title Page convex.

44
```

Page 26 of 34

```

Go Back

The results in Tables 6-7 were presented at MCCCC30 and will appear in the special issue of \(J C M C C\) dedicated to MCCCC30.
```

Combinatorial Results

```

\section*{Concluding Remarks}

Home Page
\begin{tabular}{|r|c|c|}
\hline\(S\) & \(\mathcal{O D C T}_{n}\) & \(\mathcal{O C T}_{n}\) \\
\hline\(|S|\) & \(2^{n-1}\) & \((n+1) 2^{n-2}\) \\
& {\([1]\)} & {\([1]\)} \\
\hline\(|E(S)|\) & \(n\) & \(\binom{n+1}{2}\) \\
& {\([1]\)} & {\([1]\)} \\
\hline\(N(S) \mid\) & 0 & 0 \\
\hline
\end{tabular}
```

Page 27 of 34

```

Table 6

Regularity and

Combinatorial Results

Concluding Remarks
Home Page

Title Page

Close

Quit

We have the following results
Theorem 7 Let \(S=\mathcal{O D C P}{ }_{n}\). Then \(f_{m}(x)=\) \(\sum_{n \geq 1} F(n ; m) x^{n}=\left(\frac{x}{1-x}\right)^{m} \frac{x-2 x^{2}}{B}\).

Title Page
\begin{tabular}{|r|cc|}
\hline\(S\) & \(\mathcal{O D C P}_{n}\) & \(\mathcal{O C} \mathcal{P}_{n}\) \\
\(|S|\) & \(\frac{(2+\sqrt{2})^{n}+(2-\sqrt{2})^{n}}{2}\) & \(\frac{1-6 x(1-x)^{2}}{B^{2}}\) \\
\(|E(S)|\) & \(1+n 2^{n-1}\) & \(1+n(n+3) 2^{n-3}\) \\
\(|N(S)|\) & \(\left|\mathcal{O D C P}_{n-1}\right|\) & \(1+\frac{x(1-x)(1-2 x)^{2}}{B^{2}}\) \\
\hline
\end{tabular}

Regularity and

Combinatorial Results

Concluding Remarks
Home Page

44

Page 29 of 34

Go Back
Table 8
Full Screen
- \(B=1-4 x+2 x^{2}\)
- \(\frac{1-6 x(1-x)^{2}}{B^{2}}\)
\(=1+2 x+8 x^{2}+34 x^{3}+140 x^{4}+560 x^{5}+\) \(2196 x^{6}+8440 x^{7}+32080 x^{8}+\cdots\)
- \(1+\frac{x(1-x)(1-2 x)^{2}}{B^{2}}\)

\section*{Concluding Remarks}

Home Page
\(=1+x+3 x^{2}+12 x^{3}+48 x^{4}+188 x^{5}+\) \(724 x^{6}+2752 x^{7}+10352 x^{8}+\cdots\)
\begin{tabular}{|r|c|c|}
\hline\(S\) & \(\mathcal{O D C P}_{n}\) & \(\mathcal{O C P}_{n}\) \\
\hline\(F(n ; r)\) & \(\left|\mathcal{O D C P}_{n}\right|\) or 0 & \(?\) \\
\hline\(F(n ; q)\) & \(?\) & \(?\) \\
\hline\(F(n ; p)\) & \(?\) & \(?\) \\
\(F(n ; m)\) & \(\left(\frac{x}{1-x}\right)^{m} \frac{x-2 x^{2}}{B}\) & \(\frac{x^{m}(1-2 x)^{2}}{(1-x)^{m-1} B^{2}}\) \\
\hline\(F(n ; k)\) & \(?\) & \(?\) \\
\hline
\end{tabular}

Page 30 of 34

Go Back

Full Screen

Close

Quit
- If \(X_{n}\) is a POSET very little is known about these semigroups, both algebraically
and combinatorially.

Home Page

Title Page gated, except for \(\mathcal{O C I}_{n}\).
- Products of nilpotents have not been investigated.
- Congruences have not been investigated.

\section*{Abstract}

Definitions and .
Regularity and .
Combinatorial Results
Concluding Remarks

Best wishes to Laszlo Marki on the occassion of your 70th birthday.

Home Page

Title Page

\section*{References}
[1] Adeshola, A. D. and Umar, A. Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain. JCMCC (To appear).
[2] Al-Kharousi, F., Garba, G. U., Ibrahim, M. J., Imam, A. T. and Umar, A. On the Semigroup of Finite Order-preserving Partial Injective Contraction Mappings. Submitted.
[3] G. U. Garba, M. J. Ibrahim, A. T. Imam On certain semigroups of full contraction maps of a finite chain. Turk J. Math. 41 (2017), 500-507.
[4] Higgins, P. M. Combinatorial results for semigroups of order-preserving mappings. Math. Proc. Camb. Phil. Soc. 113 (1993), 281-296.
[5] Howie, J. M. Combinatorial and probabilistic results in transformation semigroups. Words, languages and combinatorics. II (Kyoto, 1992), World Sci. Publ., River Edge, NJ, (1994), 200-206.
[6] Howie, J. M. Fundamentals of semigroup theory. Oxford: Clarendon Press, 1995.
[7] Sloane, N. J. A. (Ed.), The On-Line Encyclopedia of Integer Sequences, 2011. Available at http://oeis.org/.
[8] Umar, A. Some combinatorial problems in the theory of partial transformation semigroups. Algebra Discrete Math. 17 (2014), 110-134.
[9] Zhao, P. and Yang, M. Regularity and Green's ralations on semigroups of transformations preserving order and compression. Bull. Korean Math. Soc. 49 (2012), 1015-1025

\section*{Abstract}

Definitions and

\section*{Abstract}

Definitions and.
Regularity and .
Combinatorial Results
Concluding Remarks

\section*{THANK YOU ALL!}
```

Home Page

```

\section*{Title Page}
```

44

```

\section*{4}

Page 34 of 34

Go Back

Full Screen

\section*{Close}

Quit```

[^0]: ${ }^{\dagger}$ Petroleum Institute, Khalifa University of Science and Technology, Abu Dhabi, U.A.E.; Bayero University, Kano, Nigeria

