Inductive groupoids	ESN Theorem	Memoirs	Cross-connections	Inductive Groupoids \Leftrightarrow Cross-connections

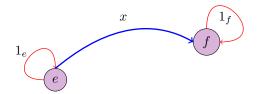
Cross-connection of the Inductive Groupoid of a Regular Semigroup

Azeef Muhammed P. A. (with Mikhail V. Volkov)

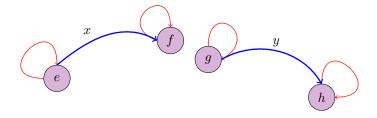
Laboratory of Combinatorial Algebra, Institute of Natural Sciences and Mathematics

Inductive groupoids	ESN Theorem	Memoirs	Cross-connections	Inductive Groupoids \Leftrightarrow Cross-connections

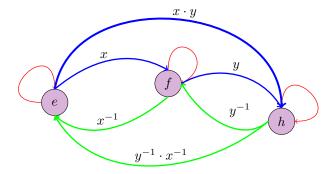
- In structure theory of semigroups, Ehresmann (1957) and Schein (1965) used categories to describe inverse semigroups.
- Their approach relied on the fact that a groupoid can be naturally associated with an inverse semigroup.
- Recall that every element x in an inverse semigroup has a unique inverse element x^{-1} . Then xx^{-1} and $x^{-1}x$ are idempotents.
- So, given an element x in an inverse semigroup, it can be seen as an arrow (or a morphism) from $xx^{-1} = e$ to $x^{-1}x = f$.



Inductive groupoids	ESN Theorem	Memoirs	Cross-connections	Inductive Groupoids \Leftrightarrow Cross-connections



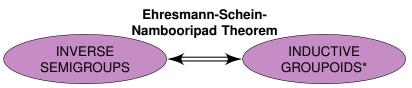
Suppose f = g, that is if xx⁻¹ = y⁻¹y, then a partial (associative) composition can be defined by restricting the binary composition of the inverse semigroup.



- When $xx^{-1} = y^{-1}y = f$, then a partial (associative) composition is defined as above.
- This forms a category with idempotents forming the set of vertices (objects).
- Also, every morphism in this category has an inverse morphism.

Inductive groupoids	ESN Theorem	Memoirs	Cross-connections	Inductive Groupoids \Leftrightarrow Cross-connections

- Thus a groupoid $\mathcal{G}(S)$ is associated with an inverse semigroup S.
- The idempotents of an inverse semigroup under the natural partial order form a semilattice.
- So, the vertex set $v\mathcal{G}(S)$ of the groupoid $\mathcal{G}(S)$ is a semilattice.
- Further, the morphisms in *G*(*S*) respect the order structure of the vertices. That is, each arrow can be restricted (corestricted) to idempotents below its domain (range).
- Such an associated groupoid is called an inductive groupoid*.
- Conversely, given an axiomatically defined inductive groupoid*, there is a unique associated inverse semigroup.



Definition	
	5 is said to be (von Neumann) <mark>regular</mark> if every element ne inverse element.
	lemoirs No. 224 (1979), Nambooripad extended the espondence to regular semigroups.

Cross-connections

This was based on his Ph. D. thesis (1973).

Memoirs

ESN Theorem

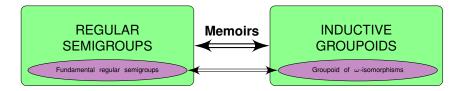
- His initial approach (1975) was using structure mappings instead of restrictions/corestrictions.
- Structure mappings approach was independently explored by Meakin (1976).
- In Memoirs, the order structure of idempotents of a (regular) semigroup was axiomatised as a (regular) biordered set.
- Further, an additional layer of biorder structure using a new groupoid of E-chains was added to the inductive groupoid.

ductive groupoids

- So, Nambooripad could recover the regular semigroup from his inductive groupoid.
- Thus he proved the equivalence between the categories of regular semigroups and inductive groupoids.
- Further, he specialised his results to generalise Munn's beautiful structure theorem (1970) for fundamental inverse semigroups.

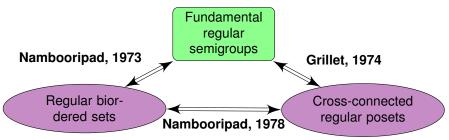
Definition

A regular semigroup is said to be fundamental if it cannot be homomorphically shrunk without collapsing its idempotents.

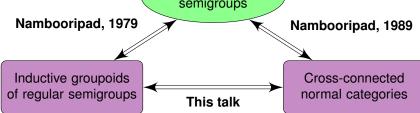


Inductive groupoids	ESN Theorem	Memoirs	Cross-connections	Inductive Groupoids \Leftrightarrow Cross-connections

- Meanwhile, Grillet (1974) also constructed fundamental regular semigroups using the (regular) posets of its principal ideals.
- For this, he introduced the notion of cross-connections to describe the relationship between the posets.
- In 1978, Nambooripad showed that a regular biordered set is equivalent to a cross-connected pair of regular posets.



Inductive groupoids	ESN Theorem	Memoirs	Cross-connections	Inductive Groupoids \Leftrightarrow Cross-connections
Elab	orating this id	lea, Nambo	ooripad (1989) c	preorder category. onstructed arbitrary ormal categories.
			Regular	



We shall establish a direct equivalence between these two different structural invariants of the regular semigroup.

Inductive groupoids	ESN Theorem	Memoirs	Cross-connections	Inductive Groupoids \Leftrightarrow Cross-connections

"The Telegraph is Like a Very, Very Long Cat" - Einstein (?)

"You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New York and his head is meowing in Los Angeles. The radio operates exactly the same way : you send signals here, they receive them there. The only difference is that there is no cat."

- Our equivalence is like this. It works without the regular semigroup in between !
- In the process, we shall see how differently regular semigroups are encoded into these different abstract structures.
- Also, the discussion shall clarify the relationship between the ideal structure and the idempotent structure of a regular semigroup.
- We begin with the outline of the easier side.

Memoirs

Cross-connections

Cross-connections \Rightarrow Inductive Groupoids

It can be shown that the 'cross-connected pair of isomorphisms' of the normal categories form an inductive groupoid. This groupoid is inductive isomorphic to the inductive groupoid of the given semigroup.

Inductive Groupoids \Rightarrow Cross-connections

Recall that the set of objects of the inductive groupoid is a regular biordered set with quasi-orders, say ω^l and ω^r . Then let

$$\mathscr{L} = \omega^l \cap (\omega^l)^{-1}$$
 and $\mathscr{R} = \omega^r \cap (\omega^r)^{-1}$.

We need to build two normal categories, say \mathcal{L}_G and \mathcal{R}_G such that they are cross-connected. To build the category \mathcal{L}_G , we first build three intermediary categories \mathcal{P}_L , \mathcal{G}_L and \mathcal{Q}_L such that

$$v\mathcal{P}_L = v\mathcal{G}_L = v\mathcal{Q}_L = v\mathcal{L}_G = E/\mathscr{L}.$$

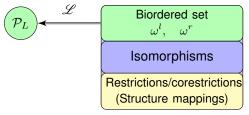
ESN Theorem

Memoirs

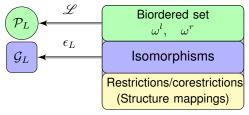
Cross-connection:

Inductive Groupoids \Leftrightarrow Cross-connections

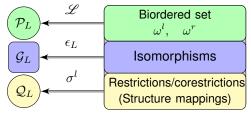
INDUCTIVE GROUPOID



INDUCTIVE GROUPOID

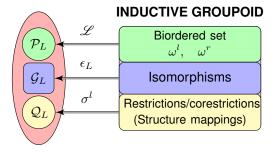


INDUCTIVE GROUPOID



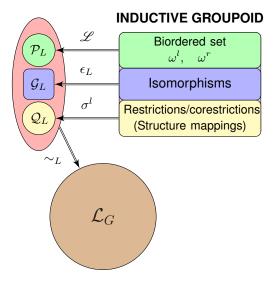
Cross-connection

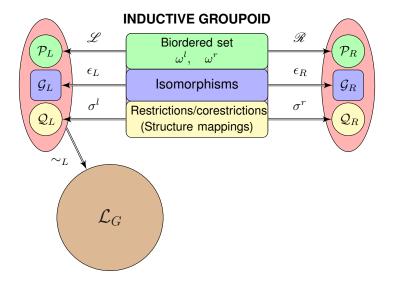
Inductive Groupoids \Leftrightarrow Cross-connections

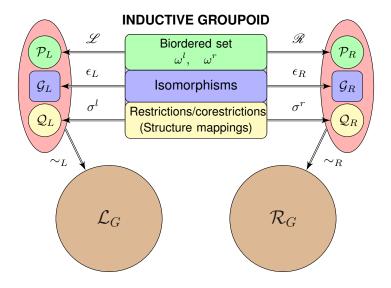


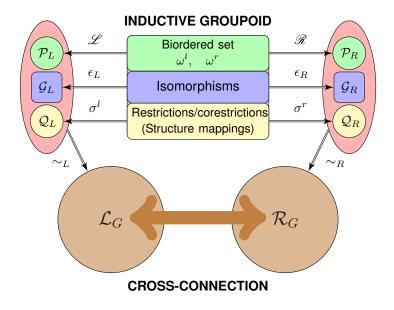
Cross-connection

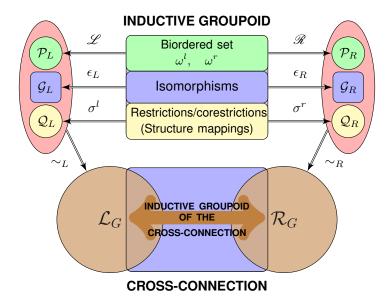
Inductive Groupoids \Leftrightarrow Cross-connections

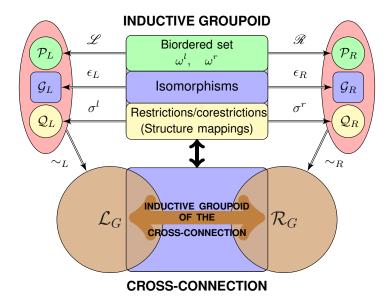












ESN Theorem

Memoirs

Cross-connection

Inductive Groupoids \Leftrightarrow Cross-connections

