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Motivation and prior work

De�nition

Let A and B be algebras of the same type. A subalgebra C
of the direct product A× B is called a subdirect product of

A and B if the canonical projection maps

πA : C → A := (a, b) 7→ a

πB : C → B := (a, b) 7→ b

are surjections. We write C ≤s.d A× B to denote this.

Note that the direct product itself is an example of a subdirect

product.
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Motivation and prior work

Subdirect products of groups (and in particular, direct products)

have been well studied, and many results of the form

�A× B has property P ⇐⇒ A and B have property P �.

hold for the direct product (including the �niteness properties,

solvability, nilpotency, word problem decidability, etc.), but this

situation can radically change for subgroups of the direct product

(and in particular, for subdirect products).
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A,B P True? Ref

Finitely generated groups
�has countably many

subgroups�
7

Baumslag

-Roseblade (1984)

(In�nite) Semigroups
Finitely generated

(i� A2 = A,B2 = B)
(R,R,W 1998)

Finitely presented

(i� stable)
�

Residually �nite Gray, Ru²kuc 2009

(In�nite) Lattices Finitely generated Mayr, Ru²kuc 2016

Finitely presented 7 �

Rings Finitely generated �

Finitely presented �

Table: Some particular examples

�A× B has property P ⇐⇒ A and B have property P �.
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We want to extend this study to direct and subdirect products of

semigroups and monoids. We begin with some Baumslag-Roseblade

type counterexamples involving the free monogenic semigroup N:

Theorem A

There are uncountably many non-isomorphic subsemigroups

of N× N.

Theorem B

For any k ≥ 2, the direct power Nk contains uncountably

many non-isomorphic subdirect products.

Ashley Clayton University of St Andrews

Subdirect products of free semigroups



Motivation Main results Further questions

Motivation and prior work

And, as a corollary of Theorem A:

Corollary C

If S ,T are in�nite semigroups containing elements of in�nite

order, then S × T contains uncountably many

non-isomorphic subsemigroups.
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We consider subsemigroups of the form

SM := 〈(1,m) : m ∈ M〉

for M ⊆ N. Note that if |M| ≤ 2, then SM is isomorphic to a free

semigroup.

Lemma 1

Let M = {m1,m2,m3}, N = {n1, n2, n3} be two 3-element

subsets of N. Then SM and SN are isomorphic, via

isomorphism ϕ : SM → SN satisfying (1,mi )ϕ = (1, ni )
(i = 1, 2, 3), if and only if

n2(m3 −m1) = n1(m3 −m2) + n3(m2 −m1).
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We will de�ne a subset M ⊆ N (with |M| ≥ 3) to be 3-separating

if;

(S1) For any two triples (m1,m2,m3) and (n1, n2, n3) of distinct
elements from M,

n2(m3 −m1) = n1(m3 −m2) + n3(m2 −m1)
⇐⇒ (m1,m2,m3) = (n1, n2, n3).

For example, the set M = {1, 2, 3} is not 3-separating, as the pairs

(1, 2, 3) and (3, 2, 1) violate condition (S1), but the set

N = {1, 2, 4} is. Further, we will say a set is strongly

3-separating if it is 3-separating, and

(S2) For any two pairs (m1,m2), (n1, n2) of distinct elements of M:

m1 −m2 + n2 − n1 = 0 ⇐⇒ (m1,m2) = (n1, n2).
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Lemma 2

If M is a strongly 3-separating �nite set, then there exists

x ∈ N \M such that M ∪ {x} is also strongly 3-separating.

Corollary 1

There exists an in�nite 3-separating set M∞.

Proof: Choose a strongly 3-separating set M1 which is �nite for a

starting point. Let Mi+1 = Mi ∪ {xi} for i ∈ N, where xi ∈ N \Mi

is the least natural number such that Mi ∪ {xi} is strongly
3-separating. Let M∞ =

⋃
i∈NMi .
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Theorem A

There are uncountably many non-isomorphic subsemigroups

of N× N.

Proof: Take the collection of subsemigroups de�ned

C = {SM : M ⊆ M∞}.

Suppose that two of these semigroups SM and SN were isomorphic,

and let ϕ be an isomorphism between them. If M 6= N, we can

assume w.l.o.g that M \ N 6= ∅. Then in particular there would

exists m1,m2,m3 ∈ M distinct, n1, n2, n3 ∈ N also distinct such

that

1 At least one of the mi is not equal to any of the nj ,

2 〈(1,m1), (1,m2), (1,m3)〉 ∼= 〈(1, n1), (1, n2), (1, n3)〉 with
isomorphism (1,mi )ϕ = (1, ni ) for i = 1, 2, 3.
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Further questions

Q: At what point does the direct product of N with something

become uncountable? Are there countably many

subsemigroups of N× S for S a �nite semigroup?

Theorem D

The following are equivalent for a �nite semigroup S :

1 N× S has only countably many subsemigroups;

2 N× S has only countably many non-isomorphic subsemigroups;

3 S is a union of groups.
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Further questions

Theorem E

The following are equivalent for a �nite semigroup S :

1 N× S has only countably many subdirect products;

2 N× S has only countably many non-isomorphic subdirect

products;

3 For every s ∈ S , there exists some t ∈ S such that either

ts = s or st = s.

Are there uncountably many subdirect products of N× N× N
which project onto pairs?

Does the above generalise to Nk projective onto k − 1 factors?
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