Generalization of a theorem of Clifford

Phạm Ngọc Ánh

Rényi Institute, Hungary

York, January 7-8, 2018

Preliminaries

Semigroup S naturally totally ordered (n.t.o.)

$$\iff \forall a, b \Rightarrow a | b \lor b | a \& a | b | a \Rightarrow a = b.$$

Disjoint unions n.t.o semigroups by t.o. sets \Rightarrow ordinary irreducible n.t.o. semigroups with ≤ 1 idempotent $0(=\infty)$. Examples: positive but not non-negative cones of t.o. groups, monoids of nonunital principal ideals in valuation rings a absorbs $b \iff ab = a > b$. $I \lhd S$ absorbent $\iff ab = a \forall a \in I, b \notin I \Rightarrow$ S disjoint union of n.t.o. ordinary irreducible semigroups indexed by absorbent prime ideals (possibly together with S if $1 \in S$).

A result of Clifford

Segment ordinary irreducible n.t.o. nilpotent semigroup with 0.

Theorem 1 (Clifford)

 $\begin{array}{l} S \text{ segment} \Longrightarrow \exists ! \text{ up to isomorphism positive cone } P \subseteq G, \\ P_{\infty} \lhd P, S \cong P/P_{\infty}, P = < P \setminus P_{\infty} >, \ G \subseteq (\mathbb{R}^+, >) \text{ o. group.} \end{array}$

Corollary 2 (Short)

Ordinary irreducible n.t.o. semigroups with 0 are precisely multiplicative semigroups of proper principal ideals in valuation rings, roughly speaking, their divisibility theory.

Interaction: divisibility in rings as p. o. semigroups From now on all structures commutative with either 1 or $0(=\infty)$.

Idea of the proof I

Notation: $X^* = X \setminus \{1, 0\}$. $F(S^*)$ free semigroup (without identity) on S^* . Ordinary multiplication on S^* and nonzero products in S^* for definition of a congruence relation on $F(X^*)$ determining P, P_{∞} .

Observations

No identity in n.t.o. ordinary irreducible semigroups! Kaplansky: valuation rings factors of valuation domains? No by Fuchs, Salce, Sheila... in contrast to their divisibility! Passing process to positive cones in lattice-ordered groups; abstract description of their factors (by what?) Motivation and hints for solution from ring theory: Bezout rings, factors not necessary Rees factors by ideals but by filters as combination with partial ordering.

Aim: Characterizing factors of non-negative cones in I.o. groups

Bezout monoids

Definition (Boschbach-Ánh-Márki-Vámos)

- S Bezout monoid (B-monoid) $\iff \exists \ 0 \in S$, natural partial order
 - 1. $\forall a, b \in S : \exists \operatorname{GCD}(a, b) = a \land b$,
 - 2. $\forall a, b, c \in S : c(a \wedge b) = ca \wedge cb$,
 - 3. S is hypernormal, i.e.,

$$\forall a, b : d = a \land b \& a = da_1 \Rightarrow \exists b_1 : b = db_1 \& a_1 \land b_1 = 1,$$

Examples: divisibility theory in arithmetical rings. $3) \Rightarrow$

$$ax = ay \Longleftrightarrow \exists u \in a^{\perp} = \{v \in S \mid av = 0\}: \ x \land u = y \land u$$

Working with Bezout monoids

Appearance of filters instead of ideals because of partial order Lattice factors instead of Rees factors Correspondence between B-monoids and arithmetical rings Quite satisfactory theory for semi-hereditary and semiprime B-monoids using the spectrum of minimal prime filters.

Bezout monoids with one minimal prime filter

Proposition 3

S a B-monoid; M a smallest minimal m-prime filter, $T = S \setminus M$, $Z = \{x \in S \mid \exists s \notin M : sx = 0\} \subseteq M; N = M \setminus Z \Rightarrow ZM = 0;$ $t < n < z \forall t \in T, n \in N, z \in Z;$ and T non-negative cone of l.o. group G.

Classical localization $T^{-1}S$ inverting T is not B-monoid. Divisibility of $T^{-1}S$: the monoid of principal filters in $T^{-1}S$ order-isomorphic to factor Σ of S sending $T \mapsto 1$ Crucial examples: factors of $\mathbb{Z} + x\mathbb{Q}[x]$ by $x^n\mathbb{Q}[x]$ or by $x^n\mathbb{Q}[x] + x^{n-1}\mathbb{Z}[x], n > 1$ and their divisibility theory.

Structural summary

Notation:
$$X^{\bullet} = X \stackrel{.}{\cup} 0$$
; $\alpha, \beta, \ldots \in \Sigma = \{a^{\sigma} = T^{-1}Sa \mid a \in S\}$

$$S_a = S_\alpha = \{ b \in S \mid b^\sigma = \alpha = a^\sigma \} \Rightarrow S_1 = T, \, S_0 = Z \Rightarrow$$

$$s \in N \Rightarrow S_s \sim G \Rightarrow G$$
 acts on $N. x^{\sigma} < y^{\sigma} \Rightarrow x < y.$

Proposition 4

 $xy = y \notin Z \Rightarrow x = 1, Y = S \setminus Z \to T^{-1}S$ injective. The filter of $T^{-1}S$ generated by N is exactly N^{\bullet} . $G = \langle T, T^{-1} \rangle$ acts on N, $a \in N \Rightarrow Ga = S_a$. Divisibility monoid of $T^{-1}S$ is Σ , $S: x^{\sigma} \langle y^{\sigma} \Longrightarrow x \langle y. T^{-1}S$ is $X^{\bullet}; X = G \cup N$, and $Z \neq M \Rightarrow Z$ a factor of G by an appropriate filter.

Factors of nonnegative cones

Theorem 5

S B-monoid; unique minimal m-prime filter $M \neq Z = \{s \in S \mid \exists t \notin M : ts = 0\} \Rightarrow \exists A \text{ l.o. group; filters}$ $B_{\infty} \subseteq C_{\infty} \subseteq P = \{g \in A \mid g \ge 1\}$: 1. $P = \langle P \setminus C_{\infty} \rangle$ 2. Rees factors $P/C_{\infty} \cong S/Z \Rightarrow S \cong P/C_{\infty}$ if Z = 0; 3. $Z \neq 0$: $S \cong P/B_{\infty}$ by $a \sim b \iff \exists c \in B_{\infty}$: $a \wedge c = b \wedge c$. (1) and (2) determine P, A uniquely up to isomorphism fixing $S \setminus Z$ elementwise by identification of $S \setminus Z$ with $P \setminus C_{\infty}$.

Theorem 6

S B-monoid; M unique minimal m-prime filter, $T = S \setminus M$, $Z = \{s \mid \exists t \notin M : ts = 0\}$ factor of the quotient group of $T \Rightarrow S$ factor of nonnegative cone of a l.o. group.

Corollary 7

As above, $\mid \Sigma \mid > 2 \Rightarrow S$ factor of nonnegative cone of a l.o. group.

Theorem 8

S B-monoid; $M = \{s \in S \mid \exists t \notin M : ts = 0\} \neq 0$ unique minimal m-prime filter. If the filter generated by all a^{\perp} , $(a \in M^{\star})$ proper, then S a factor of nonnegative cone of a l.o. group. More generally, if $I \triangle S$ m-prime filter in, $K = \{s \in S \mid \exists t \notin I : ts = 0\} \Rightarrow S/K$ factor of nonnegative cone of a l.o. group. A theorem of Clifford Bezout monoids as an axiomatic divisibility theory of 0000 Applications to representation theory of 0000 Applications to representations to repr

Comments and remarks

- 1. Clifford's result is not a consequence!
- 2. Segments only subsets in positive cones of t.o. groups.
- 3. As nonstandard modules, Z only subfactors of l.o. groups over their nonnegative cones.
- 4. Segments subtracting 0 subsets in t.o. groups but B-monoids with unique minimal prime filters subtracting 0 not subsets in l.o. groups!

Ideas of the proof II

- 1. Warning: one has to deal with identity!
- 2. Factors of free monoid generated of $Y = S \setminus Z \rightleftharpoons S^*$ and $X = G \cup N \nsubseteq S!$
- 3. Factors not necessarily Rees factors rather induced by lattice structure!
- 4. Refinements of Clifford's ideas: passing from non-invertible generators in Clifford's proof to ones including invertibles!
- 5. One has to use both free monoids on X, Y and ordinary multiplication on them, respectively, to define congruences and associated filters.

Basic problem

Hensel's p-adic numbers led to find (not necessarily) t.o. groups, monoids as *absolut values* and detailed abstract study of divisibility. After positive cones of t.o. or l.o. groups, respectively, Clifford's result first important progress determining divisibility, i.e., *natural* (*partial*) order as good order.

B-monoids *good choice for absolute value* to classical theory. *Basic problem*: construct rings with B-monoids as divisibility.

Solution 1: unique minimal prime filter

Corollary 9

S B-monoid with unique minimal m-prime filter $\Rightarrow \exists$ Bezout ring R with unique minimal prime ideal and S as its divisibility.

Corollary 10

If R is a Bezout ring with one minimal prime ideal I such that the localization R_I is not a field, then the divisibility theory S_R of R is a lattice factor of a positive cone of a lattice-ordered group.

Open question: characterize factors of Bezout domains. *Warning*: factors of UFDs are all rings!

Solution 2: semi-hereditary Bezout rings

Definition

 ${\rm B}\text{-monoid }S \text{ semi-hereditary} \Longleftrightarrow \forall \, a \in S \,\, \exists e^2 = e \in S: \,\, a^\perp = Se.$

Theorem 11 (Ánh–Siddoway)

To any semi-hereditary Bezout monoid S there is a semi-hereditary Bezout ring R whose divisibility theory is order-isomorphic to S.

 $B = \{e \in S | e^2 = e\}$ Boolean algera, e' complement of $e \in B$. R factor of the localization of contracted monoid algebra at *primitive elements* by relations e + e' = 1.

Observations

In contrast to the case of lattice-ordered groups, the construction of R in both cases is not a free construction.

No satisfactory structure theory for semiprime Bezout monoids corresponding to rings of weak dimension ≤ 1

A theorem of Clifford	Bezout monoids as an axiomatic divisibility theory	Main results	Applications to representation theory	Than
0 0000	0000	0000	000	•

Thank You for Your Attention