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THE SEMIGROUP βS

If S is a discrete space, its Stone-Čech compactification βS can be

described as the space of ultrafilters on S with the topology for which

the sets of the form A = {p ∈ βS : A ∈ p}, where A ⊆ S, is chosen as

a base for the open sets. (Note that we embed S in βS by identifying

s ∈ S with the principal ultrafilter {A ⊆ S : s ∈ A}.)

βS is then an extremally disconnected compact space and A =

clβS(A) for each A ⊆ S.

If S is a semigroup, the semigroup operation on S has a natural

extension to βS.

Given s ∈ S, the map t 7→ st from S to βS has a continuous extension

to βS, which we denote by λs. For s ∈ S and q ∈ βS, we put sq = λs(q).

Then, for every q ∈ βS, the map s 7→ sq from S to βS has a continuous

extension to βS, which we denote by ρq. We put pq = ρq(p). So pq =

lim
s→p

lim
t→q

st.

It is easy to see that this operation on βS is associative, so that βS is

a semigroup. It is a right topological semigroup, because ρq is continuous

for every q ∈ βS. In addition, λs is continuous for every s ∈ S. These two

facts are summed up by saying that βS is a semigroup compactification

of S. It is the maximal semigroup compactification of S, in the sense that

every other semigroup compactification of S is the image of βS under a

continuous homomorphism.

We shall use S∗ to denote the remainder space βS \ S.

If S and T are semigroups, every homorphism from S to T extends

to a continuous homomorphism from βS to βT .

If T is a subset of a semigroup, E(T ) will denote the set of idempo-

tents in T .
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Every compact right topological semigroup T has important alge-

braic properties. I shall need to use the following:

(i) T contains an idempotent; i.e. an element p for which p2 = p.

(ii) A non-empty subset V of T is said to be a left ideal if TV ⊆ V

and a right ideal if V T ⊆ V . It is an ideal if it is both a left and a

right ideal. T contains a smallest ideal K(T ), which is the union of all its

minimal left ideals and the union of all its minimal right ideals. If L is a

minimal left ideal and R a minimal right ideal of T , then L ∩R = RL is

a group.

(iii) K(T ) always contains an idempotent. An idempotent in K(T )

is called minimal. An idempotent in T is minimal in this sense if and only

if it also minimal for the partial order defined on idempotents by putting

p ≤ q if and only if pq = qp = p. If p is any idempotent in T , there is an

idempotent q ∈ K(T ) satisfying q ≤ p. We also define quasi-orders ≤L
and ≤R on the idempotents of T by putting p ≤L q if pq = p and p ≤R q
if qp = p.

(iv) If S is a discrete semigroup, a subset of S is said to be central

if it is a member of a minimal idempotent in βS. Central sets have very

rich combinatorial properties.

APPLICATIONS TO RAMSEY THEORY

Ramsey Theory is the study of properties of finite partitions of a

given set. We shall often refer to a finite partition of a set S as a finite

colouring of S, and call a subset of S monochrome if it is contained in a

cell of the partition.

Observe that, given any finite colouring of S and any ultrafilter p ∈
βS, p will have a member that is monochrome.

HINDMAN’S THEOREM
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Notation

Given a sequence (xn) in a semigroup, FP 〈xn〉 denotes the set of all

products of the form xn1
xn2
· · ·xnk

with n1 < n2 < · · · < nk. (If S is

denoted additively, we might denote this set by FS〈xn〉.)
If S is a semigroup, p is an idempotent in βS and A ∈ P , then

A? = {s ∈ A : s−1A ∈ p}, where s−1A = {t ∈ S : st ∈ A}. It is easy to

show that A? ∈ p and that t−1A? ∈ p for every t ∈ A?.

Hindman′sTheorem

Let S be a semigroup. Given any finite colouring of S, there is a

sequence (xn)∞n−1 in S such that FP 〈xn〉 is monochrome.

Ultrafilterproof (Galvin Glazer)

I shall show that, if p is an idempotent in βS and A ∈ p, then

FP 〈xn〉 ⊆ A for some sequence (xn) in S.

Choose any x1 ∈ A?. Then assume that x1, x2, · · · , xn have been

chosen so that FP 〈xi〉ni=1 ⊆ A?. Choose xn+1 ∈ A? ∩
⋂
y∈FP 〈xi〉 y

−1A?.

This is possible, because this set is a finite intersection of elements of p

and is therefore non-empty. Then FP 〈xi〉n+1
i=1 ⊆ A?.

Note that, if p ∈ βS \S, 〈xn〉 can be chosen as a sequence of distinct

points.

THEOREM

Given a finite colouring of N, there exist infinite sequences (xn) and

(yn) in N such that FS〈xn〉 ∪ FP 〈yn〉 is monochrome.

Proof
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There is an idempotent p in K(N, ·) which is in the closure of the

idempotents in K(βN,+).

This follows from the fact that the closure of the minimal idempo-

tents in (βN,+) is a left ideal in (βN, ·).
So every member of p is also a member of an idempotent in (βN,+).

VAN DER WAERDEN’S THEOREM

Theorem

Let (S,+) be a commutative semigroup. Given any finite colouring

of S, there is an arbitrarily long AP which is monochrome.

Proof

We shall show that, if p ∈ K(βS) and A ∈ p then A contains arbi-

trarily long AP’s.

Let ` ∈ N and put T = (βS)`. Put p̃ = (p, p, p, · · · , p) ∈ T . We

define subsets E and I of S` as follows:

I = {(a, a+ d, a+ 2d, · · · , a+ (`− 1)d) : a, d ∈ S}
E = {(a, a, a, · · · , a) : a ∈ S} ∪ I .

Then E is a subsemigroup of T and I is an ideal in E.

Furthermore, E is a subsemigroup of T and I is an ideal in E. Now

p̃ ∈ E and it follows easily that p̃ ∈ K(E). So p̃ ∈ I. Since A
`

is a

neighbourhood of p̃ in T , A
` ∩ I = A` ∩ I 6= ∅. So there exist a, d ∈ S

such that (a, a+ d, a+ 2d, · · · , a+ (`− 1)d) ∈ A`.

COROLLARY

Given a finite colouring of N, there is an arbitrarily long AP A and

an arbitrarily long GP G such that A ∪G is monochrome.
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Proof

We can choose p ∈ K(βN, ·) ∩K(βN,+). Then every member of p

contains arbitrarily long AP’s and arbitrarily long GP’s.

THE HALES JEWETT THEOREM

Theorem

Let A denote a finite alphabet and let v denote any element which is

not in A. Let S denote the semigroup of words over A, and let S(v) denote

the semigroup of words over A∪{v} which contain v. Let W = S ∪S(v).

For each a ∈ A and w ∈ W , let w(a) ∈ S be defined as the word

obtained from w by replacing all occurrences of v by a. Then given any

finite colouring of S, there exists w ∈ S(v) such that {w(a) : a ∈ A} is

monochrome.

Proof (A. Blass)

Define ha : W → S by ha(w) = w(a). Observe that ha is a homo-

morphism, and hence that ha extends to a continuous homomorphsim

from βW onto βS. Choose a minimal idempotent p ∈ βS and a minimal

idempotent q ∈ βW satisfying q ≤ p. For each a ∈ A, ha(q) ≤ ha(p) = p.

So ha(q) = p. Hence, given any P ∈ p, there exists Q ∈ q such that

ha(Q) ⊆ P . If w ∈ Q, then w(a) ∈ P for every a ∈ A.

EXTENSION OF VAN DE WAERDEN’S THEOREM (I.Leader, N.Hindman)

Note that if A =


1 0
1 1
1 2
...

...
1 `− 1

, then an AP can be described as the

set of entries of a column vector of the form A

(
a
d

)
.
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Let S be a commutative semigroup. There is a set of matrices A
over ω with the following property: If A ∈ A and C is a central subset of

S, then C contains all the entries of AX for some column vector X over

S for which AX is defined. A contains all matrices over ω, with no row

identically zero, in which the first non-zero entries in two different rows

are equal if they occur in the same column. We also require that cS is a

central subset of S whenever c is the first non-zero entry of a row of A.

In particular, A contains all finite matrices over ω, with no row

identically zero, in which the first non-zero entry of each row is 1.

So if A ∈ A, in every finite colouring of S, there is a column matrix

X with entries in S such that AX is defined and all the entries of AX are

monochrome. A matrix A with these properties is called image partition

regular .

A finite matrix A over Q is image partition regular if and only if every

central subset of N contains all the entries of AX for some column matrix

X over Q for which AX is defined. In particular, finite image partition

martrices over Q can be diagonalised, in the sense that, whenever A and

B are two matrices of this kind, then

(
A O
O B

)
is also image partition

regular.

ANOTHER EXTENSION (V. Bergelson)

Every central subset C of (N, ·) contains an arbitrarily long geoarith-

metic progression. I.e., given ` ∈ N, there exist a, b, d ∈ N such that

b(a+ id)j ∈ C for every i, j ∈ {0, 1, 2, · · · , `}.

FURTHER EXTENSIONS (M. Beiglböck, V. Bergelson, N. Hindman,

DS)

If S is a commutative semigroup and F a partition regular family

of finite subsets of S, then for any finite partition of S and any k ∈ N,

6



there exists b, r ∈ S and F ∈ F such that rF ∪ {b(rx)j : x ∈ F, j ∈
{0, 1, 2, . . . , k}} is contained in a cell of the partition.

Let F and G be families of subsets of N such that every multiplica-

tively central subset of N contains a member of F and every additively

central subset of N contains a member of G. If either F or G is a family

of finite sets, then, given any finite colouring of N, there exists B ∈ F
and C ∈ G such that B ∪ C ∪B · C is monochrome.

MILLIKEN TAYLOR SYSTEMS

The theory of the partition regularity of finite systems of linear equa-

tions is well understood. Given a finite matrix over a field, the question

of whether it is image partition regular has a computable answer. Infi-

nite systems present far greater difficulty. Milliken Taylor systems are

among the small number of infinite systems known to be image parti-

tion regular. Suppose that 〈a1, a2, . . . , an〉 ia a finite sequence of non-

zero integers, with successive terms distinct. The Milliken Taylor matrix

M = MT 〈a1, a2, . . . , an〉 is an ω × ω matrix which contains all possible

rows satisfying the following conditions:

(i) There are only a finite number of non-zero entries in each row;

(ii) No row is identically zero;

(iii) The non-zero entries in each row lie in {a1, a2, . . . , an}, with

each ai occurring and each occurrence of ai preceding each occurrence of

ai+1.

The Milliken Taylor Theorem states that, in any finite colouring of

Z, there is an ω×1 matrix ~x with integer entries such that all the entries

of M~x are monochrome. In fact, if p is any idempotent in βZ and P is

any member of p, the entries of ~x can be chosen to lie in P .

Note that Hindman’s Theorem is a special case of this theorem, be-

cause Hindman’s Theorem follows from the partition regularity of M〈1〉,
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the finite sums matrix.

Two different MT matrices are incompatible. If A = MT 〈~a〉 and

B = MT 〈~b〉 are MT matrices, where ~a and ~b are not rational multiples

of each other, there is a two colouring of Z for which there do not exist

ω × 1 matrices ~x and ~y over Z for which all the entries of A~x and B~y

have the same colour. So infinite image partition regular matrices over

Q cannot be diagonalised.

However, translating these matrices completely changes the situa-

tion. A recent result, due to N. Hindman, I. Leader and DS, shows that

if M = MT 〈a1, a2, . . . , an〉, where an = 1, and if H = MT 〈1〉, then the

matrix A =

(
1 M
0 H

)
is partition regular. (Here a denotes the constant

ω × 1 matrix whose entries are all equal to a.) In fact, given any central

subset C of N, there exists a column vector X with entries in Z for which

all the entries of AX are in C.

More generally, if Millken Taylor A = MT 〈a1, a2, . . . an〉 and B =

MT 〈b1, b2, . . . , bk〉, then

(
1 A
0 B

)
is image partition regular provided

that an = bk.

ADDITIVE AND MULTIPLICATIVE IDEMPOTENTS IN βN

THEOREM (DS)

The closure of the smallest ideal of (βN, ·) does not meet the smallest

ideal of (βN,+). In fact, it does not meet N∗ + N∗.

THEOREM (DS) The closure of the set of multiplicative idempotents in

βN does not meet the set of additive idempotents.

Lemma 1

Let A and B be σ-compact subsets of a compact F-space. Then

A ∩B 6= ∅ implies that A ∩B 6= ∅ or A ∩B 6= ∅.
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Lemma 2

Let µR denote the uniform compactification of R. This is a compact

right topological semigroup in which R is densely embedded, with the

defining property that a bounded continuous real function has a contin-

uous extension to µR if and and only if it is uniformly continuous.

The log function from N to R has a continuous extension to a function

L from βN to µR. L has the following properties:

(i) L(x+ y) = L(y) for every x ∈ βN and every y ∈ N∗.
(ii) L(xy) = L(x) + L(y) for every x, y ∈ βN.

Remark

For x ∈ βN and n ∈ N, nx will denote lims→x ns. Note that this is

not the same as x+ x+ . . .+ x, with n terms in the sum.

Proof of Theorem

Let H =
⋂
n∈N clβN(2nN).

Let T denote the unit circle.

Observe that H contains all the idempotents in (βN,+) and that

every idempotent in (βN, ·) is either in H or in clβN(2N− 1).

Let C = clβN(E(βN, ·))∩H. Assume that there exists p ∈ E(βN,+)∩
C.

Let D = {x ∈ µR : φ(x) = 0 for every continuous homomorphism φ :

µR → T }. Then L(C) ⊆ D and so L(p) ∈ D. Observe that, for every

distinct s 6= 0 in R, (s+D) ∩D = ∅. It follows that, for any n > 1 in N,

L(p) /∈ L(n) +D.

We have p ∈ clβN((N\{1}) +p). We also have p ∈ clβN(
⋃
{nC : n ∈

N, n > 1}), because E(βN, ·) ∩H ⊆ clβN(
⋃
{nC : n ∈ N, n > 1}).

It follows from Lemma 2 that x+p ∈ nC for some x ∈ βN and some

n > 1 in N, or else n+ p ∈ clβN(
⋃
{nC : n ∈ N, n > 1}).

9



The first possibility is ruled out because it implies that L(p) ∈ L(n)+

D. The second is ruled by the observation that n+ p /∈ H, while nC ⊆ H
for every n ∈ N.

COROLLARY

There is no idempotent p ∈ (βN,+) such that every member of p

contains all the finite products of an infinite sequence in N.

QUESTION

Is there an idempotent p ∈ (βN,+) such that every member of p

contains three integers of the form x, y, xy?

SOME PROPERTIES OF IDEMPOTENTS IN βN

(1) (N. Hindman, DS) There are 2c idempotents in K(βN) \K(βN).

(2) (N. Hindman, DS, Y. Zelenyuk) βN contains decreasing ≤L
chains of idempotents indexed by c. If α is a countable ordinal, βN
contains decreasing chains of idempotents indexed by α.

(3) (N. Hindman, DS) βN contains increasing chains ≤R chains of

idempotents indexed by ω1.

(4) (Y. Zelenyuk) K(βN) contains rectangular semigroups of cardi-

nality 2c. (A rectangular semigroup is one in which every element is

idempotent and the identity xyz = xz is satisfied.)

(5) Martin’s Axiom implies that βN contains idempotents which have

a basis consisting of finite sum sets; but this cannot be proved in ZFC.

The existence of an idempotent of this kind implies the existence of an

infinite extremally disconnected Boolean topological group.
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