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Starting point
R ring, G group, R(G ) group ring

Well studied (Connell, Passman, . . . ):

I R(G ) prime, semiprime

I R(G ) primitive, semiprimitive

Theorem (Domanov, 76)

F field, S inverse semigroup
If F (G ) is semiprimitive for every nonzero maximal subgroup G of
S, then F (S) is semiprimitive.

Theorem (Domanov, 76)

F field, S inverse semigroup
If S is 0-bisimple and F (G ) is primitive for every nonzero maximal
subgroup G of S, then F (S) is primitive.

Converse false (Teply, Turman and Quesada, 80).



Primeness and Semiprimeness

A ring, not necessarily with identity

The ring A is prime if for all (left, right, two-sided) ideals I and J
of A such that IJ = 0, then either I = 0 or J = 0.

The ring A is semiprime if for any (left, right, two-sided) ideal I of
A such that I 2 = 0, then I = 0.



Primitivity and Semiprimitivity

M right A-module

The set (0 : M) = { a ∈ A : Ma = 0 } is called the (right)
annihilator of M and is an ideal of A.

M is faithful if (0 : M) = 0.

M is simple if M 6= 0 and M has no proper submodules.

M is semisimple if it is the direct sum of simple submodules.

The ring A is right primitive if it admits a simple faithful right
module.

The ring A is semiprimitive if it admits a semisimple faithful right
module.



Remarks

I Semiprimitivity is a left-right symmetric concept.

I Primitivity is not left-right symmetric.

I Every primitive ring is prime and semiprimitive.

I Both prime and semiprimitive rings are semiprime.



Jacobson radical

An element a ∈ A is left quasiregular if there exists r ∈ A such that
r + a + ra = 0.

A (left, right or two-sided) ideal I of A is said to be left
quasiregular if every element of I is left quasiregular.

Right quasiregular elements and right quasiregular ideals are
defined analogously.

The Jacobson radical J(A) of A can be characterized as the (left,
right) quasiregular (left, right) ideal of A which contains every
(left, right) quasiregular ideal.

Recall: A is semiprimitive if and only if J(A) = 0.



Contracted semigroup ring

S semigroup with zero, R ring with identity

The set of finite formal sums ∑
x∈S

αx x

with coefficients in R, equipped with the obvious definition of
addition and multiplication, is the semigroup ring of S over R and
is denoted by R(S).

Denoting by z the zero of S , we have that Z = {αz : α ∈ R} is an
ideal of R(S); the quotient R0(S) = R(S)/Z is called the
contracted semigroup ring of S over R.



Contracted semigroup ring

Each nonzero element r ∈ R0(S) can be expressed uniquely in the
form

n∑
i=1

αi xi

for some n ∈ N, some distinct elements x1, . . . , xn ∈ S \ {0}, and
some α1, . . . , αn ∈ R \ {0}.

The set {x1, . . . , xn} is called the support of r and is denoted by
supp(r); the elements α1, . . . , αn are the coefficients of r .

Since R(S) ' R0(S0), in case S does not originally come with a
zero element and one is adjoined to it, there is no loss in assuming
that S = S0.



Munn’s results

Munn studied (semi)primeness and (semi)primitivity of R0(S) for
semigroups S satisfying the following condition (eg: inverse
semigroups)

Condition (I)

For every nonzero ideal A of R0(S), there exists a ∈ A \ 0 and
e ∈ ES \ 0 such that e ∈ supp(a) ⊆ He ∪ (eSe \ (Re ∩ eSe)).



Munn’s results

Theorem (Munn, 90)

R ring with identity, S = S0 semigroup satisfying (I)
If R(G ) is semiprime (respectively, semiprimitive) for each nonzero
maximal subgroup G of S, then R0(S) is semiprime (respectively,
semiprimitive).

Theorem (Munn, 90)

R ring with identity, S = S0 regular semigroup satisfying (I)
If S is 0-bisimple and R(G ) is prime (respectively, primitive) for
some (every) nonzero maximal subgroup G of S, then R0(S) is
prime (respectively, primitive).



Partial converses

Even for inverse semigroups, all converses are false.

However, necessary conditions can be obtained, if a certain
finiteness condition (introduced by Teply, Turman and Quesada) is
imposed on the set of idempotents of S .



Finiteness conditions

Let E be a semilattice (e2 = e, ef = fe, for all e, f ∈ E ).

Recall that the natural partial order on E is defined by e 6 f if and
only if e = ef = fe, for all e, f ∈ E .

For all e, f ∈ E , we say that e covers f , and write f ≺ e, if f < e
and, for all g ∈ E , the condition f 6 g 6 e implies that either
g = f or g = e.

For e ∈ E , denote by ê the set of elements covered by e.

We say that E is pseudofinite if the following two conditions are
satisfied:

(i) ê is finite (possibly empty), for each e ∈ E ;

(ii) for all e, f ∈ E , if f < e then there exists g ∈ E such that
f 6 g ≺ e.



Munn’s results

Theorem (Munn, 87)

R ring with identity, S = S0 inverse semigroup such that ES is
pseudofinite
Then R(G ) is semiprime (respectively, semiprimitive), for each
nonzero maximal subgroup G of S, if and only if R0(S) is
semiprime (respectively, semiprimitive).

Theorem (Munn, 87)

R ring with identity, S = S0 inverse semigroup such that ES is
pseudofinite
Then S is 0-bisimple and R(G ) is prime (respectively, primitive),
for each nonzero maximal subgroup G of S, if and only if R0(S) is
prime (respectively, primitive).



Recent results

Munn tried to generalize these results to other classes of
semigroups (private communication to G.M.S. Gomes).

Theorem (Guo and Chen, 2012)

R commutative ring with identity, S finite ample semigroup
Then R(S) is semiprimitive if and only if

(i) S is an inverse semigroup

(ii) for all maximal subgroups G of S, R(G ) is semiprimitive.

Note that:

I Inverse semigroups are ample.

I The regular elements of an ample semigroup form an inverse
subsemigroup.

Ample semigroups have been studied extensively (Fountain,
Lawson, . . . ).



Generalized Green’s relations - R∗ and L∗

Let S be a semigroup. Consider the equivalence relations on S :

aR∗b ⇐⇒ (∀ x , y ∈ S , xa = ya⇔ xb = yb)

and, dually,

aL∗b ⇐⇒ (∀ x , y ∈ S , ax = ay ⇔ bx = by) .

Clearly R∗ is a left congruence and L∗ is a right congruence.

Also consider the relations H∗ = R∗ ∩ L∗ and D∗ = R∗ ∨ L∗.

Note that R∗ and L∗ are generalizations of the familiar Green
relations R and L. In fact, aR∗b if and only if aRb in some
oversemigroup of S , and dually for L∗.



Ample semigroups

If each L∗-class contains exactly one idempotent (denoted a∗ in
L∗a), we say that S satisfies the “right ample condition” if:

(AR) ∀ a ∈ S , e ∈ ES ea = a(ea)∗.

Dually, if each R∗-class contains exactly one idempotent (denoted
a+ in R∗a ), we say that S satisfies the “left ample condition” if:

(AL) ∀ a ∈ S , e ∈ ES ae = (ae)+a.

The semigroup S is said to be ample if ES is a semilattice (i.e.,
idempotents commute), each R∗-class and each L∗-class contain a
unique idempotent and both the ample conditions (AR) and (AL)
are satisfied.



Generalized Green’s relations - R̃E and L̃E

Let S be a semigroup, ES its set of idempotents, and Reg(S) the
set of regular elements in S ; let E ⊆ ES .

Consider the equivalence relations R̃E and L̃E defined by: for all
a, b ∈ S ,

aR̃E b ⇐⇒ ∀ e ∈ E , ea = a⇔ eb = b

and, dually,

aL̃E b ⇐⇒ ∀ e ∈ E , ae = a⇔ be = b .

Consider also the equivalence relations H̃E = R̃E ∩ L̃E and
D̃E = R̃E ∨ L̃E .



Remarks

We say that S is ∼-bisimple if it has a single D̃E -class.

In case S has a zero element, we say that S is 0-∼-bisimple if it
has a single nonzero D̃E -class, that is, if S/D̃E = {0,S \ 0}.

We have R ⊆ R∗ ⊆ R̃E and aRb whenever aR̃E b with
a, b ∈ Reg(S). And dually for L.



Restriction semigroups with an inverse skeleton

S is left restriction with distinguished semilattice E if E is a
semilattice, the relation R̃E is a left congruence, each R̃E -class
contains a (necessarily unique) idempotent from E and the left
ample condition (AL) holds. Right restriction semigroups are
defined dually.

S is restriction if it is left and right restriction with respect to the
same distinguished semilattice E . In case E = ES , we say that S is
a weakly ample semigroup.

Every inverse semigroup is ample and every ample semigroup is
restriction with respect to ES .

A restriction semigroup S with distinguished semilattice E has an
inverse E -skeleton if each H̃E -class H̃a contains a regular element
u for which there exists u′ ∈ V (u) such that uu′, u′u ∈ E . In this
case, each H̃E -class of S contains an element u which has a
unique inverse, say u−1, such that uu−1, u−1u ∈ E .



Analogue of Munn’s Condition (I)

The appropriate analogue of Munn’s condition holds for rings over
restriction semigroups with an inverse skeleton.

Lemma
Let R be a ring with identity, S = S0 a restriction semigroup with
an inverse E -skeleton, and A a nonzero ideal of R0(S). Then there
exists e ∈ E \ 0 and a ∈ A \ 0 such that

(i) supp(a) ⊆ H̃e ∪ (eSe \ R̃e);

(ii) supp(a) ∩ H̃e 6= ∅.



Our results

Theorem
Let R be a ring with identity and S = S0 a restriction semigroup
with an inverse E -skeleton. If R(M) is semiprimitive (resp.,
semiprime) for each nonzero maximal reduced (2, 1, 1)-submonoid
M of S, then R0(S) is semiprimitive (resp., semiprime).

Theorem
Let R be a ring with identity and S = S0 a 0-∼-bisimple restriction
semigroup with an inverse E -skeleton. If R(M) is primitive (resp.,
prime) for some nonzero maximal reduced (2, 1, 1)-submonoid M
of S, then R0(S) is primitive (resp., prime).



Remarks

A restriction semigroup can be seen as a (2, 1, 1)-algebra with
respect to the operations ·, +, and ∗.

A (2, 1, 1)-submonoid M of a restriction semigroup S with
distinguished semilattice E is a (2, 1, 1)-subalgebra of S which is a
monoid, and is thus restriction with distinguished semilattice
E ′ = E ∩ EM .

By a reduced restriction semigroup we mean a monoid M with
identity 1M viewed as a restriction semigroup with distinguished
semilattice E = {1M}. Note that x+ = x∗ = 1M , for all x ∈ M.

Clearly, any cancellative monoid is unipotent and any unipotent
(2, 1, 1)-monoid is reduced.



Remarks

Lemma
Let S be a restriction semigroup with distinguished semilattice E .
Then the maximal reduced (2, 1, 1)-submonoids of S are precisely
the H̃E -classes H̃e with e ∈ E . If S is weakly ample (respectively,
ample), they are the maximal unipotent (respectively, cancellative)
(2, 1, 1)-submonoids.

The primeness and semiprimeness of the rings R(M), for a
cancellative monoid M, were studied by Okniński (93) and Clase
(98); the semiprimitivity was studied by Okniński (94).

The question regarding algebras over reduced restriction and
unipotent semigroups is open.



Our results - pseudofinite case

Theorem
Let S = S0 be a restriction semigroup with an inverse E -skeleton
such that E is pseudofinite. Let R be a ring with identity. Then
R0(S) is semiprimitive (resp., semiprime) if an only if R(M) is
semiprimitive (resp., semiprime) for each nonzero maximal reduced
(2, 1, 1)-submonoid M of S.

Theorem
Let S = S0 be a restriction semigroup with an inverse E -skeleton
such that E is pseudofinite. Let R be a ring with identity. Then
R0(S) is primitive (resp., prime) if and only if S is 0-∼-bisimple
and R(M) is primitive (resp., prime) for some (each) nonzero
maximal reduced (2, 1, 1)-submonoid M of S.



Rukolăıne idempotents

R ring with identity, S = S0 semigroup such that ES is a
pseudofinite semilattice

The Rukolăıne idempotents are defined, for each e ∈ E \ {0}, as
the (finite) product of all the (commuting) factors e − g , where
g ∈ E is covered by e:

σ(e) =
∏
g∈ê

(e − g) .

Note that ê 6= Ø, for all e ∈ E \ {0}, since S has a zero element.

Lemma
Let S = S0 be a semigroup such that ES is a pseudofinite
semilattice. Then:

(i) for each e ∈ ES \ {0}, σ(e) is a nonzero idempotent of R0(S)
such that eσ(e) = σ(e) = σ(e)e.

(ii) for all e, f ∈ ES \ {0} with e 6= f , σ(e)σ(f ) = 0.



Ideals

Assume:

S = S0 is a restriction semigroup with an inverse E -skeleton.

Fix e ∈ E and consider D̃ = D̃e .

For each f ∈ E
D̃

, there exists a regular element tf ∈ S such that

eR̃E tf L̃E f and for which its (unique) inverse t−1f is such that
tf t−1f , t−1f tf ∈ E .

Fix a transversal T = {tf ∈ Te,f : f ∈ E
D̃
}.



Ideals

Proposition

Let S = S0 be a restriction semigroup with an inverse E -skeleton
such that E is pseudofinite. Let e ∈ E and D̃ = D̃e . Let R be a
ring with identity, K be a two-sided ideal of R(H̃e) and consider

M(K ) =
∑

f ,g∈E
D̃

σ(f )t−1f Ktgσ(g) .

Then

(i) M(K ) is a two-sided ideal of R0(S).

(ii) M(K ) is isomorphic to the ring M|E
D̃
|(K ) of all

|E
D̃
| × |E

D̃
|-matrices over K with at most finitely many

nonzero entries.



Sketch-proof for semiprimitivity in the pseudofinite case

Suppose R0(S) is semiprimitive and let e ∈ ES .

Since K = J(R(H∗e )) is a two-sided ideal of R(H∗e ), we can
consider the ideal M(K ) of R0(S), which we know to be
isomorphic to the ring Mν(K ), where ν = |ED∗ |.

Then

M(K ) 'Mν(K ) =Mν(J(K )) = J(Mν(K )) ' J(M(K ))

Therefore, M(K ) ⊆ J(R0(S)) = 0 and so M(K ) = 0.

Thus, Mν(K ) = 0 and, hence, K = 0, that is, J(R(H̃e)) = 0.

Hence, R(H∗e ) is semiprimitive.



Questions

1. If M is a cancellative monoid, when is R(M) primitive?

2. If M is a unipotent monoid (or reduced restriction), what can
be said about R(M)?



Free restriction semigroup

The behaviour of the free restriction semigroup is entirely different
from its inverse analogue, although the free restriction semigroup
(on a set X ) is a subsemigroup of the free inverse semigroup FISX

on X and both share the same set of idempotents.

The free restriction semigroup on a set X coincides with the free
ample semigroup FASX on a set X and cannot have an inverse
skeleton.

The algebra of FISX is always semiprimitive, and thus always
semiprime, and is prime iff primitive iff X is infinite.

Guo and Shum claim that the semigroup algebra of FASX is not
semiprime, regardless of the finitude of X — and, therefore, it is
neither prime, nor semiprimitive, nor primitive.



Examples

Let M be a monoid, I a set, and consider the Brandt monoid
S = B(M, I ) = (I ×M × I ) ∪ {0}, where all products involving 0
yield 0 and (i , a, j)(k , b, l) = (i , ab, l) if j = k and 0 otherwise.
Then, denoting by 1 the identity of M, we have that S is a
restriction semigroup with distinguished semilattice
E = {(i , 1, i) : i ∈ I} ∪ {0} ⊆ ES , where (i , a, j)+ = (i , 1, i) and
(i , a, j)∗ = (j , 1, j), for all (i , a, j) ∈ S \ 0.
Clearly, in case M is unipotent, E = ES and S is an example of a
weakly ample semigroup.
In either case, the H̃E -class of an arbitrary nonzero element (i , a, j)
consists of all elements (i , b, j) with b ∈ M, and, in particular,
(i , 1, j) ∈ H̃(i ,a,j) ∩ Reg(S), with inverse (j , 1, i) and their product
in E .
Therefore, S has an inverse E -skeleton.
That E is pseudofinite follows trivially from the fact that,
restricted to E , the natural partial order reduces to equality (that
is, E is an anti-chain).



Examples

Let M be a monoid and θ : M → M a morphism from M into its
group of units and consider the Bruck-Reilly extension of M
determined by θ, that is, the monoid BR(M, θ) = Z×M × Z
(where Z denotes the non-negative integers) equipped with the
operation (m, a, n)(p, b, q) = (m − n + t, aθt−n bθt−p, q − p + t)
with t = max{n, p}, where θ0 = idM .
Then S = (BR(M, θ))0 is a restriction semigroup with
distinguished semilattice E = {(m, 1,m) : m ∈ Z} ∪ {0}.
Similarly to the previous example, we have (m, a, n)+ = (m, 1,m)
and (m, a, n)∗ = (n, 1, n), for all (m, a, n) ∈ S , and, thus,
(m, 1, n) ∈ H̃E

(m,a,n) ∩ Reg(S).
This turn, E is pseudofinite because it consists of a chain, as it can
be straightforwardly checked.
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