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Semigroup theory to 1950ish

I Sushkevich and ‘generalised substitutions’

I Factorisation in semigroups by analogy with rings

I Completely simple semigroups

I Dubreil and ‘demi-groupes’

I Inverse semigroups



A. K. Sushkevich (1889–1961)



Sushkevich and generalised groups



Sushkevich and generalised groups



Sushkevich and generalised groups
‘Über die endlichen Gruppen ohne das Gesetz der eindeutigen
Umkehrbarkeit’ (1928):

Considered a finite right cancellative semigroup A is a finite right
cancellative semigroup.

Showed that for any P in A, AP = A, but PA ( A, in general.

Named a finite right cancellative semigroup a left group.

In a left group A, every idempotent E is a right identity.

Let E1,E2, . . . ,Es be all the right identities of A. Then

A =
s⋃

κ=1

EκA,

where the Cκ := EκA are disjoint isomorphic groups. Moreover,
the collection of all right identities of A forms a semigroup, the left
principal group E = {E1,E2, . . . ,Es} under the multiplication
EκEλ = Eκ.



Sushkevich and generalised groups

Let G be an arbitrary finite semigroup.

Consider the subsets GP, as P runs through all elements of G;
choose subset GX of smallest size, denote this by A.

A is clearly a minimal left ideal of G — and a left group.

All minimal left ideals A1,A2, . . . ,Ar of G are isomorphic to A.

By structure of left groups:

Aκ = Cκ1 ∪ Cκ2 ∪ · · · ∪ Cκs ,

where the Cκλ are disjoint isomorphic groups.

Similarly for minimal right ideals B1,B2, . . . ,Bs :

Bλ = C1λ ∪ C2λ ∪ · · · ∪ Crλ.

Furthermore Cκλ = Aκ ∩Bλ.



Sushkevich and generalised groups

Define kernel of G:

K =
r⋃

κ=1

Aκ =
s⋃

λ=1

Bλ =
r⋃

κ=1

s⋃
λ=1

Cκλ.

K = A1 ∪ A2 ∪ · · · ∪ Ar

= = = =

B1 = C11 ∪ C21 ∪ · · · ∪ Cr1

∪ ∪ ∪ ∪
B2 = C12 ∪ C22 ∪ · · · ∪ Cr2

∪ ∪ ∪ ∪
...

...
...

...
...

∪ ∪ ∪ ∪
Bs = C1s ∪ C2s ∪ · · · ∪ Crs



Sushkevich and generalised groups

Thus, every finite semigroup G contains a minimal ideal K,
completely determined by

1. the structure of the abstract group C that is isomorphic to the
Cκλ;

2. the numbers r and s;

3. the (r − 1)(s − 1) products E11Eκλ (κ = 2, . . . , r ,
λ = 2, . . . , s), where Eκλ denotes the identity of Cκλ.

Can also choose 1–3 arbitrarily in order to construct a
‘stand-alone’ kernel, i.e., a finite simple semigroup.



Sushkevich and matrices



Sushkevich and matrices

‘Über die Matrizendarstellung der verallgemeinerten Gruppen’
(1933):

Theorem: All representations of an ordinary (finite) group by
means of m×m matrices of rank n < m may be obtained from the
representations of the same group by n × n matrices of rank n.

Theorem: All representations of a left group G by means of
m ×m matrices of rank n < m may be obtained from the
representations of the group Aκ by n × n matrices of rank n.

Characterisation of matrix representations of finite simple
semigroups follow.



Sushkevich and matrices

‘Über eine Verallgemeinerung der Semigruppen’ (1935):

Take set X with binary operation.

Suppose that X has a subset G that forms a cancellative
semigroup.

Distinguish two different types of elements of X, K -elements and
L-elements, such that

1. each K -element is composable on the left, with well-defined result, with any element of G;

2. no K -element is composable on the right with any element of G;

3. if X ∈ X is composable on the left, but not on the right, with an element of G, then X is a K -element;

4. each L-element is composable on the right, with well-defined result, with any element of G;

5. no L-element is composable on the left with any element of G;

6. if Y ∈ X is composable on the right, but not on the left, with an element of G, then Y is an L-element;

7. K -elements are not composable with each other;

8. L-elements are not composable with each other;

9. a K -element and an L-element are composable with each other, in either order, with well-defined result in
each case.

Begins to make sense if you think about matrices...



Sushkevich and matrices

‘On groups of matrices of rank 1’ (1937):

For field P, take vectors (a1, . . . , an) ∈ Pn such that
a2

1 + · · ·+ a2
n = 1.

Form elements A = (a, a′)α, where (a, a′) is an ordered pair of
such vectors, and α is a scalar factor from P.

The collection of all elements A = (a, a′)α, together with 0,
denoted by H.

Two non-zero elements A = (a, a′)α and B = (b, b′)β deemed
equal precisely when a = b, a′ = b′ and α = β.

Compose (non-zero) elements A,B according to the rule
AB = (a, b′)αβ(a′ · b), where a′ · b denotes the scalar product of a′

and b.



Sushkevich and matrices
‘On groups of matrices of rank 1’ (1937):

Sushkevich studied different collections of elements associated with
a vector pair (a, a′): Ga,a′ (forming an ordinary group) and Ra,a′

(a zero semigroup).

Put

Aa =

 ⋃
x

x·a 6=0

Gx,a

∪
 ⋃

y
y ·a=0

Ry ,a

 , Ba =

 ⋃
x

x·a 6=0

Ga,x

∪
 ⋃

y
y ·a=0

Ra,y

 .

So A′a =
⋃

x
x ·a 6=0

Gx ,a, is a left group.

Then

H = {0} ∪

(⋃
b

Ab

)
= {0} ∪

(⋃
a

Ba

)
,

a generalised group of kernel type (a.k.a. a completely 0-simple
semigroup).



A. H. Clifford (1908–1992)



Clifford and matrix representations



Clifford and matrix representations

‘Matrix representations of completely simple semigroups’ (1942):

A (matrix) representation of a semigroup S is a morphism
I : S → Mn(Ω), where Mn(Ω) denotes the multiplicative
semigroup of n × n matrices with entries from a field Ω; T (a)
denotes the matrix to which a ∈ S corresponds.



Clifford and matrix representations

‘Matrix representations of completely simple semigroups’ (1942):

Take completely 0-simple semigroup S , represented as Rees matrix
semigroup with elements written in form (a)iλ.

Normalise sandwich matrix P in such a way that all entries are
either 0 or e; in particular, arrange so that p11 = e.

Then (a)11(b)11 = (ab)11, hence {(a)11} forms a 0-group
G1
∼= G 0.



Clifford and matrix representations
‘Matrix representations of completely simple semigroups’ (1942):

Any matrix representation I∗ : (a)iλ 7→ T ∗ [(a)iλ] of a completely
0-simple semigroup S induces a representation of G1, which may
be transformed in such a way that

T ∗ [(a)11] =

(
T (a) 0

0 0

)
,

where I : a 7→ T (a) is a proper representation of G 0:

T (a)T (b) = T (ab), T (e) = I , T (0) = 0,

for all a, b ∈ G ; I∗ is an extension of I from G to S . Also:

T ∗ [(e)i1] =

(
T (p1i ) 0
Ri 0

)
and T ∗ [(e)1λ] =

(
T (pλ1) Qλ

0 0

)
,

for suitable matrices Ri and Qλ, for which it may be shown that
R1 = Q1 = 0. Put Hλi = T (pλi )− T (pλ1p1i ).



Clifford and matrix representations

‘Matrix representations of completely simple semigroups’ (1942):

Theorem: Let I be a proper representation of G 0. Then

T ∗ [(a)iλ] =

(
T (p1iapλ1) T (p1ia)Qλ
RiT (apλ1) RiT (a)Qλ

)
defines a representation I∗ of S if and only if QλRi = Hλi , for all
i , λ. Conversely, every representation of S is equivalent to one of
this form.

Provides procedure for construction of all representations of a
completely 0-simple semigroup from those of its structure group.



W. Douglas Munn (1929–2008)



Munn and semigroup algebras



Munn and semigroup algebras

“In the theory of representations of a finite group G by matrices
over a field F the concept of the algebra of G over F plays a
fundamental part. It is well-known that if F has characteristic zero
or a prime not dividing the order of G then this algebra is
semisimple, and that in consequence the representations of G over
F are completely reducible.

“The central problem discussed in the dissertation is that of
extending the theory to the case where the group G is replaced by
a finite semigroup. Necessary and sufficient conditions are found
for the semigroup algebra to be semisimple (with a restriction on
the characteristic of F), and a study is made of the representation
theory in the semisimple case. The results are then applied to
certain important types of semigroups.”



Munn and semigroup algebras
Given a semigroup S , a series is a finite descending sequence of
inclusions of the form

S = S1 ⊇ S2 ⊇ · · · ⊇ Sn ⊃ Sn+1 = ∅,

where each Si (except Sn+1) is a subsemigroup of S , and Si+1 is
an ideal of Si .

The factors of the series are the Rees quotients Si/Si+1.

A proper series is one in which all inclusions are strict.

A refinement of a series is any series that contains all the terms of
the given series.

Two series are isomorphic if there is a one-one correspondence
between their terms such that corresponding factors are
isomorphic.

A refinement is proper if it is a proper series and contains strictly
more terms than the original series.

A composition series is a proper series with no proper refinements.



Munn and semigroup algebras

Derived necessary and sufficient conditions for a semigroup to
possess a composition series.

Similarly for principal series: proper series in which every term is an
ideal of S , and which have no proper refinements with this
property.

The factors of a principal series are termed principal factors.

A semigroup is semisimple if it has a principal series for which all
the factors are simple.

Theorem: If M is an ideal of a semigroup S , then S is semisimple
if and only if both M and S/M are semisimple.

Theorem: A semigroup is regular (inverse) if and only if all its
principal factors are regular (inverse).



Munn and semigroup algebras

Let S = {s1, . . . , sn} be a finite semigroup and F be a field.

The algebra AF(S) of S over F is the associative linear algebra
over F with basis S and multiplication(∑

i

λi si

)∑
j

µjsj

 =
∑
i ,j

λiµi si sj ,

where λi , µi ∈ F.

Slightly more convenient to work with contracted semigroup
algebra AF(S)/AF(z), where z is the zero of S (if it exists) and
AF(z) denotes the one-dimensional algebra over F with basis {z}.
There is a one-one correspondence between the representations of
AF(S) and those of AF(S)/AF(z).



Munn and semigroup algebras

Introduce Mmn[A,P], the algebra of all m × n matrices over a ring
A, with the usual addition for matrices, but with multiplication ◦
carried out with the help of a fixed n ×m ‘sandwich matrix’ P: for
A,B ∈ Mmn[A,P], A ◦ B = APB.

Let Smn[G ,P] denote the finite Rees matrix semigroup
M0(G ; I ,Λ;P) with I = {1, . . . ,m} and Λ = {1, . . . , n}.
The contracted algebra of such a semigroup over a field F may be
regarded as a matrix algebra Mmn[A(G ),P], where A(G ) denotes
the algebra of the structure group G .

Theorem: The algebra Mmn[A,P] is semisimple if and only if

1. A is semisimple, and

2. P is non-singular, in the sense that there exists an m × n
matrix Q over A such that either PQ = In or QP = Im.



Munn and semigroup algebras

Theorem: Let S be a finite semigroup, and let F be a field of
characteristic c . The semigroup algebra A(S) of S over F is
semisimple if and only if

1. c = 0 or c does not divide the order of the structure group of
any of the principal factors of S , and

2. each principal factor of S is a c-non-singular* simple or
0-simple semigroup.

*isomorphic to a Rees matrix semigroup of the form Snn[G ,P],
where the sandwich matrix P is non-singular as a matrix over the
group algebra A(G ) over any field of characteristic c

Went on to build on Clifford’s work by constructing irreducible
representations of a finite 0-simple semigroup from those of its
structure group.



J. S. Ponizovskii (1928–2012)



Ponizovskii and semigroup algebras



Ponizovskii and semigroup algebras

Studied P-systems: semigroups whose semigroup algebras are
semisimple.

Theorem: A semigroup with a principal series is a P-system if and
only if all principal factors are P-systems.

Conditions for a symmetric inverse semigroup to be a P-system.

Conditions for a Rees matrix semigroup to be a P-system.

Constructed all irreducible representations of a Rees matrix
semigroup from those of its structure group.



Parallel developments

1933: Sushkevich/ 1933: Sushkevich/
finite simple semigroups finite simple semigroups

1942: Clifford/ 1942: Clifford/
completely 0-simple semigroups completely 0-simple semigroups

1955: Munn/ 1956: Ponizovskii/
broader theory broader theory

1961 [1972]: Clifford and Preston/ 1960 [1963]: Lyapin/
presentation of Munn’s theory nothing on representations
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