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Semigroup Algebras

Definition
Let k be a field and let S be a finite semigroup. We define kS to be the
k-algebra with basis {s | s ∈ S} and multiplication given by∑

s∈S

ass
∑
t∈S

btt =
∑
s∈S

∑
t∈S

asbt(st).

Aim
Find a ‘nice’ basis of kS which gives us information about the
representation theory of kS.



Algebras with nice bases

Cellular algebras (Graham & Lehrer (1996))

I Algebra with anti-involution ∗ and multiplication of basis
elements expressed by a ‘straightening formula’.

I Gives useful tools for understanding representation theory
I Cell modules simple modules
I Bilinear form test for semisimplicity.
I Global dimension / quasi-hereditary: via Cartan determinants

(König & Xi (1999), Xi (2003)).

Standardly based algebras (Du & Rui (1998))

I Generalises cellularity by removing the anti-involution condition.
I Still maintains many of the nice properties of cellular algebras

e.g. bilinear form and cell modules.



Cellular and standardly based semigroup algebras

Inverse semigroups (East 2005)
kIn is cellular, In - the symmetric inverse monoid of partial bijections(

1 2 3
2 3 −

)(
1 2 3
3 − 1

)
=

(
1 2 3
− 1 −

)

Diagram semigroups (Wilcox 2007)
kPn is cellular where Pn is the partition monoid.

Transformation semigroups (May 2015)
kTn is not cellular, but is standardly based, where Tn is the full
transformation monoid(

1 2 3
3 3 2

)(
1 2 3
2 1 1

)
=

(
1 2 3
1 1 1

)



Cellular algebras

Definition (Graham & Lehrer (1996) - Sketch of definition)
A cellular algebra A over a field k is an algebra with a basis

C = {cλst | λ ∈ Λ, s, t ∈ M(λ)}

where
I Λ is a finite poset, M(λ) is a finite index set for each λ ∈ Λ.
I The k-linear map ∗ : cλst 7→ cλts is an anti-involution of A

(a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A.

I If a ∈ A and cλst ∈ C then acλst has certain nice properties.
(Using ∗, we have similar properties for cλsta.)



Cellular basis picture



Cellular basis picture

Note: The anti-involution ∗ : cλst → cλts corresponds to reflecting each
square by the main diagonal.



Example: kS3 is cellular – Murphy (1992)

Λ = P3 - partitions of 3, ordered by (3) < (2, 1) < (1, 1, 1)
M(λ) = Std(λ) - standard λ-tableaux
∗ = map induced by −1 : S3 → S3



Semigroup and group algebras

The Murphy basis can be used to show in general:

Proposition
kSn is a cellular algebra.

General question
Which semigroup algebras kS are cellular?

Main idea
Prove results which relate:

cellularity of kS ←→ cellularity of kHi (i ∈ I)

where {Hi (i ∈ I)} is the set of maximal subgroups of S.



Green’s relations and maximal subgroups

Green’s relations: equivalence relations reflecting ideal structure.

For u, v ∈ S we define

uRv ⇔ uS ∪ {u} = vS ∪ {v}, uLv ⇔ Su ∪ {u} = Sv ∪ {v},

H = R∩ L.

{ Maximal subgroups of S } = {H-classes that contain idempotents }

Example. Let S = T3 and ε =
(

1 2 3
2 2 3

)
∈ E(S). Then

Hε =
{(

1 2 3
2 2 3

)
,
(

1 2 3
3 3 2

)} ∼= S2.



Regular D-classes

D = R ◦ L = L ◦ R.

I A D-class is (von Neumann) regular if it contains an idempotent
I A regular D-class has ≥ 1 idempotent in everyR- and every
L-class.

I All maximal subgroups in a regular D-class are isomorphic.



Structure of a finite regular semigroup



Inverse semigroups

Definition
S is inverse if for all s ∈ S there is a unique s−1 ∈ S such that
ss−1s = s and s−1ss−1 = s−1.

Equivalently S is inverse⇔ everyR- and L-class contains exactly
one idempotent.

Example
The symmetric inverse semigroup In(

1 2 3
2 3 −

)−1

=

(
1 2 3
1 − 2

)



Inverse semigroup structure



Cellular inverse semigroup algebras

Theorem (East 2005)
If S is a finite inverse semigroup and all maximal subgroups of S are
cellular1 then kS is a cellular algebra. The basis elements are

u−1
L · c

λ
st · uK

where
I cλst is an element of a cellular basis of the cellular algebra kHD

I uL, uK are L-class representatives in theR-class of HD.

Poset Λ for kS is given by taking a ‘product’ of the poset (D,≤) with
the ΛD posets.

The cells M(D, λ)×M(D, λ) are given by taking a ‘product’ of the
square M(λ)×M(λ) cells for kHD with the square D-classes.

1(and the anti-involutions ∗ for these cellular structures are suitably compatible)



The basis elements



The poset



The cells



The symmetric inverse monoid algebra kIn

Theorem (East 2005)
If S is a finite inverse semigroup and all the maximal subgroups of S
are cellular then kS is a cellular algebra.

Corollary (East (2005))
kIn is a cellular algebra.

Proof: {Sr : 1 ≤ r ≤ n} are the maximal subgroups of In and the
symmetric group algebras kSr are all cellular.



Diagram semigroups

The partition monoid is

Pn = { set partitions of {1, . . . , n} ∪ {1′, . . . , n′} }
= { eq. classes of graphs on {1, . . . , n} ∪ {1′, . . . , n′} }.

Example



Partition monoid multiplication

Let α, β ∈ Pn. To calculate αβ:

1. connect bottom of α to top of β;

2. remove middle vertices and floating components.

The operation is associative so Pn is a monoid.



Properties of the partition monoid Pn

There is an anti-involution operation ‘vertical flip’ ∗ : Pn → Pn:

α = α∗ =

I ∗ interchangesR- and L-classes⇒D-classes are square.
I Maximal subgroups of Pn are {Sr : 1 ≤ r ≤ n}.
I EachR-class and L-class contain a unique projection.

(Projection = an idempotent α such that α∗ = α.)



Partition monoid D-class structure



Cellular diagram algebras

Theorem (Wilcox 2007)
If S is a finite regular semigroup with an anti-involution ∗ : S→ S and
all maximal subgroups of S are cellular2 then kS is a cellular algebra.
The basis elements are

u∗L · cλst · uK

where
I cλst is an element of a cellular basis of the cellular algebra kHD

I uL, uK are L-class representatives in theR-class of HD.

Actually, Wilcox proved more general results about cellularity of
‘twisted’ semigroup algebras kα[S], which allowed him to recover:

Corollary (Wilcox 2007)
The partition, Temperley–Lieb, & Brauer algebras are all cellular.

2(and each D-class has an idempotent eD ∈ HD fixed by ∗)



Structure of Tn

Green’s relations

α, β ∈ Tn

αLβ ⇔ imα = imβ
αRβ ⇔ kerα = kerβ
αDβ ⇔ |imα| = |imβ|

Maximal subgroups of Tn are:

{Sr : 1 ≤ r ≤ n}

D-classes are not square.
There is no natural anti-involution.

kTn is not a cellular algebra.
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The basis elements
...if we tried to build a cellular basis for Tn



Standardly based algebras

Definition (Du & Rui (1998) - Sketch of definition)
A standardly based algebra A over a field k is an algebra with a basis

C = {cλst | λ ∈ Λ, s ∈ I(λ), t ∈ J (λ)}

such that
I Λ is a finite poset, I(λ) & J (λ) are finite index sets
I If a ∈ A and cλst ∈ C then acλst and cλsta have certain nice

properties.

Remark

I cellular⇒ standardly based (but not conversely).
I In 2015, May defined the notion of a ‘cell algebras’. Cell

algebras coincide with standardly based algebras.



Standard basis picture



Standardly based semigroup algebras

Theorem (May 2015)
If S is a finite regular semigroup and all maximal subgroups of S are
standardly based then kS is standardly based. The basis elements are
of the form

vRcλstuL

where
I cλst is an element of a standard basis of a standardly based

algebra kHD.
I vR is anR-class representative.
I uL is a L-class representative.

Corollary (May (2015))
kTn is a standardly based algebra.


