Cellular and standardly based semigroup algebras

Robert D. Gray University of East Anglia

NBSAN York Tuesday 26 April 2016

Semigroup Algebras

Definition

Let *k* be a field and let *S* be a finite semigroup. We define *kS* to be the *k*-algebra with basis $\{s \mid s \in S\}$ and multiplication given by

$$\sum_{s\in S} a_s s \sum_{t\in S} b_t t = \sum_{s\in S} \sum_{t\in S} a_s b_t(st).$$

Aim

Find a 'nice' basis of *kS* which gives us information about the representation theory of *kS*.

Algebras with nice bases

Cellular algebras (Graham & Lehrer (1996))

- Algebra with anti-involution * and multiplication of basis elements expressed by a 'straightening formula'.
- Gives useful tools for understanding representation theory
 - ► Cell modules ~→ simple modules
 - ► Bilinear form ~→ test for semisimplicity.
 - Global dimension / quasi-hereditary: via Cartan determinants (König & Xi (1999), Xi (2003)).

Standardly based algebras (Du & Rui (1998))

- Generalises cellularity by removing the anti-involution condition.
- Still maintains many of the nice properties of cellular algebras e.g. bilinear form and cell modules.

Cellular and standardly based semigroup algebras

Inverse semigroups (East 2005)

 kI_n is cellular, I_n - the symmetric inverse monoid of partial bijections

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & - \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & - & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ - & 1 & - \end{pmatrix}$$

Diagram semigroups (Wilcox 2007)

 $k\mathcal{P}_n$ is cellular where \mathcal{P}_n is the partition monoid.

Transformation semigroups (May 2015)

 kT_n is not cellular, but is standardly based, where T_n is the full transformation monoid

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$

Cellular algebras

Definition (Graham & Lehrer (1996) - Sketch of definition) A cellular algebra A over a field k is an algebra with a basis

$$\mathcal{C} = \{c_{st}^{\lambda} \mid \lambda \in \Lambda, s, t \in M(\lambda)\}$$

where

- Λ is a finite poset, $M(\lambda)$ is a finite index set for each $\lambda \in \Lambda$.
- The k-linear map $*: c_{st}^{\lambda} \mapsto c_{ts}^{\lambda}$ is an anti-involution of A

$$(a^*)^* = a$$
 and $(ab)^* = b^*a^*$ for all $a, b \in A$.

 If a ∈ A and c^λ_{st} ∈ C then ac^λ_{st} has certain nice properties. (Using *, we have similar properties for c^λ_{st}a.)

Cellular basis picture

Cellular basis picture

Note: The anti-involution $*: c_{st}^{\lambda} \to c_{ts}^{\lambda}$ corresponds to reflecting each square by the main diagonal.

Example: kS_3 is cellular – Murphy (1992)

 $\Lambda = \mathcal{P}_3$ - partitions of 3, ordered by (3) < (2, 1) < (1, 1, 1) $M(\lambda) = \operatorname{Std}(\lambda)$ - standard λ -tableaux $* = \operatorname{map}$ induced by $^{-1}: S_3 \to S_3$

Semigroup and group algebras

The Murphy basis can be used to show in general: Proposition kS_n is a cellular algebra.

General question

Which semigroup algebras kS are cellular?

Main idea Prove results which relate:

cellularity of $kS \iff$ cellularity of $kH_i \ (i \in I)$

where $\{H_i \ (i \in I)\}$ is the set of maximal subgroups of *S*.

Green's relations and maximal subgroups

Green's relations: equivalence relations reflecting ideal structure.

For $u, v \in S$ we define

$$u\mathcal{R}v \Leftrightarrow uS \cup \{u\} = vS \cup \{v\}, \quad u\mathcal{L}v \Leftrightarrow Su \cup \{u\} = Sv \cup \{v\},$$

 $\mathcal{H} = \mathcal{R} \cap \mathcal{L}.$

{ Maximal subgroups of S } = { \mathcal{H} -classes that contain idempotents }

Example. Let $S = T_3$ and $\epsilon = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix} \in E(S)$. Then $H_{\epsilon} = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix} \right\} \cong S_2.$

Regular \mathcal{D} -classes

$$\mathcal{D}=\mathcal{R}\circ\mathcal{L}=\mathcal{L}\circ\mathcal{R}.$$

- ► A *D*-class is (von Neumann) regular if it contains an idempotent
- ► A regular D-class has ≥ 1 idempotent in every R- and every L-class.
- All maximal subgroups in a regular \mathcal{D} -class are isomorphic.

Structure of a finite regular semigroup

 $S \text{-semigroup, } x, y \in S$ $x\mathcal{R}y \iff xS^{1} = yS^{1}$ $x\mathcal{L}y \iff S^{1}x = S^{1}y$ $x\mathcal{J}y \iff S^{1}xS^{1} = S^{1}yS^{1}$

- $\mathcal{D} = \mathcal{R} \circ \mathcal{L} = \mathcal{L} \circ \mathcal{R} (= \mathcal{J})$
- $\mathcal{H} = \mathcal{R} \cap \mathcal{L}$
- $J_x \leq J_y \Leftrightarrow S^1 x S^1 \subseteq S^1 y S^1$

Inverse semigroups

Definition *S* is inverse if for all $s \in S$ there is a unique $s^{-1} \in S$ such that $ss^{-1}s = s$ and $s^{-1}ss^{-1} = s^{-1}$.

Equivalently S is inverse \Leftrightarrow every \mathcal{R} - and \mathcal{L} -class contains exactly one idempotent.

Example

The symmetric inverse semigroup I_n

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & - \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & - & 2 \end{pmatrix}$$

Inverse semigroup structure

Cellular inverse semigroup algebras

Theorem (East 2005)

If S is a finite inverse semigroup and all maximal subgroups of S are cellular¹ then kS is a cellular algebra. The basis elements are

$$u_L^{-1} \cdot c_{st}^{\lambda} \cdot u_K$$

where

- c_{st}^{λ} is an element of a cellular basis of the cellular algebra kH_D
- u_L , u_K are \mathcal{L} -class representatives in the \mathcal{R} -class of H_D .

Poset Λ for *kS* is given by taking a 'product' of the poset (\mathcal{D}, \leq) with the Λ_D posets.

The cells $M(D, \lambda) \times M(D, \lambda)$ are given by taking a 'product' of the square $M(\lambda) \times M(\lambda)$ cells for kH_D with the square \mathcal{D} -classes.

¹(and the anti-involutions * for these cellular structures are suitably compatible)

The basis elements

The poset

The cells

The symmetric inverse monoid algebra kI_n

Theorem (East 2005)

If S is a finite inverse semigroup and all the maximal subgroups of S are cellular then kS is a cellular algebra.

Corollary (East (2005))

 kI_n is a cellular algebra.

Proof: $\{S_r : 1 \le r \le n\}$ are the maximal subgroups of I_n and the symmetric group algebras kS_r are all cellular.

Diagram semigroups

The partition monoid is

$$\mathcal{P}_n = \{ \text{ set partitions of } \{1, \dots, n\} \cup \{1', \dots, n'\} \}$$

= $\{ \text{ eq. classes of graphs on } \{1, \dots, n\} \cup \{1', \dots, n'\} \}.$

Example

$$\alpha = \left\{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \right\} \in \mathcal{P}_{6}$$

Partition monoid multiplication

Let $\alpha, \beta \in \mathcal{P}_n$. To calculate $\alpha\beta$:

- 1. connect bottom of α to top of β ;
- 2. remove middle vertices and floating components.

The operation is associative so \mathcal{P}_n is a monoid.

Properties of the partition monoid \mathcal{P}_n

There is an anti-involution operation 'vertical flip' $* : \mathcal{P}_n \to \mathcal{P}_n$:

- ▶ * interchanges \mathcal{R} and \mathcal{L} -classes $\Rightarrow \mathcal{D}$ -classes are square.
- Maximal subgroups of \mathcal{P}_n are $\{S_r : 1 \le r \le n\}$.
- Each *R*-class and *L*-class contain a unique projection. (Projection = an idempotent α such that α* = α.)

Partition monoid \mathcal{D} -class structure

Cellular diagram algebras

Theorem (Wilcox 2007)

If S is a finite regular semigroup with an anti-involution $* : S \rightarrow S$ and all maximal subgroups of S are cellular² then kS is a cellular algebra. The basis elements are

$$u_L^* \cdot c_{st}^\lambda \cdot u_K$$

where

- c_{st}^{λ} is an element of a cellular basis of the cellular algebra kH_D
- u_L , u_K are \mathcal{L} -class representatives in the \mathcal{R} -class of H_D .

Actually, Wilcox proved more general results about cellularity of 'twisted' semigroup algebras $k^{\alpha}[S]$, which allowed him to recover:

Corollary (Wilcox 2007)

The partition, Temperley–Lieb, & Brauer algebras are all cellular.

²(and each \mathcal{D} -class has an idempotent $e_D \in H_D$ fixed by *)

Structure of T_n

Green's relations

$$\alpha, \beta \in T_n$$

$$\alpha \mathcal{L}\beta \Leftrightarrow \operatorname{im} \alpha = \operatorname{im} \beta$$

$$\alpha \mathcal{R}\beta \Leftrightarrow \operatorname{ker} \alpha = \operatorname{ker} \beta$$

$$\alpha \mathcal{D}\beta \Leftrightarrow |\operatorname{im} \alpha| = |\operatorname{im} \beta$$

Maximal subgroups of T_n are:

 $\{S_r: 1 \le r \le n\}$

 \mathcal{D} -classes are not square. There is no natural anti-involution.

 kT_n is **not** a cellular algebra.

The basis elements

... if we tried to build a cellular basis for T_n

Standardly based algebras

Definition (Du & Rui (1998) - Sketch of definition)

A standardly based algebra A over a field k is an algebra with a basis

$$\mathcal{C} = \{ c_{st}^{\lambda} \mid \lambda \in \Lambda, s \in \mathcal{I}(\lambda), t \in \mathcal{J}(\lambda) \}$$

such that

- Λ is a finite poset, $\mathcal{I}(\lambda)$ & $\mathcal{J}(\lambda)$ are finite index sets
- If a ∈ A and c^λ_{st} ∈ C then ac^λ_{st} and c^λ_{st}a have certain nice properties.

Remark

- cellular \Rightarrow standardly based (but not conversely).
- In 2015, May defined the notion of a 'cell algebras'. Cell algebras coincide with standardly based algebras.

Standard basis picture

Standardly based semigroup algebras

Theorem (May 2015)

If S is a finite regular semigroup and all maximal subgroups of S are standardly based then kS is standardly based. The basis elements are of the form

$v_R c_{st}^{\lambda} u_L$

where

- c^λ_{st} is an element of a standard basis of a standardly based algebra kH_D.
- v_R is an \mathcal{R} -class representative.
- u_L is a \mathcal{L} -class representative.

Corollary (May (2015))

 kT_n is a standardly based algebra.