## Ideals in $\beta S$

## H. G. Dales, Lancaster

NBSAN, York, Wednesday 11 May 2016

Joint work with D. Strauss and A. T.-M. Lau

## References

[D] H. G. Dales, Banach algebras and automatic continuity, London Math. Society Monographs, Volume 24, The Clarendon Press, Oxford, xv+907 pp., 2000.
[DLS] H. G. Dales, A. T.-M. Lau, and D. Strauss, Banach algebras on semigroups and on their compactifications, Memoirs American Math. Soc., 205 (2010), 165 pp.
[DDLS] H. G. Dales, F. K. Dashiell, A. T.-M. Lau, and D. Strauss, Banach spaces of continuous functions as dual spaces, pp. 270, Canadian Mathematical Society Books in Mathematics, to be published by SpringerVerlag in 2016.
[DSZZ] H. G. Dales, D. Strauss, Y. Zelenyuk, and Yu. Zelenyuk, Radicals of some semigroup algebras, Semigroup Forum, 87 (2013), 80-96.
[HS] N. Hindman and D. Strauss, Algebra in the StoneČech compactification, Theory and applications, Walter de Gruyter, Berlin and New York, 1998; second revised and extended edition, 2012.

## Semigroups and ideals

Let $S$ be a semigroup.

Basic examples ( $\mathbb{N},+$ ) and $(\mathbb{Z},+) ; \mathbb{F}_{2}=$ free group on 2 generators.

An element $p \in S$ is idempotent if $p^{2}=p$; the set of these is $E(S)$. Set $p \leq q$ in $E(S)$ if $p=p q=q p ;(E(S), \leq)$ is a partially ordered set, and we may have minimal idempotents.

For $s \in S$, set $L_{s}(t)=s t$ and $R_{s}(t)=t s$ for $t \in S$. An element $s \in S$ is cancellable if both $L_{s}$ and $R_{s}$ are injective, and $S$ is cancellative if each $s \in S$ is cancellable.

A subset $I \subset S$ is a left ideal if $s x \in I$ for each $s \in S$ and $x \in I$, i.e., $S I \subset I$. Similarly, we have a right ideal. An ideal is a subset that is both a left and right ideal. The minimum ideal (if it exists) is denoted by $K(S)$.

## Stone-Čech compactifications

The Stone-Čech compactification of a set $S$ is denoted by $\beta S$; we regard $S$ as a subset of $\beta S$, and set $S^{*}=\beta S \backslash S$; this is the growth of $S$. Especially we consider $\beta \mathbb{N}$ and $\mathbb{N}^{*}$.

The space $\beta S$ is each of the following:

-     - abstractly characterized by a universal property: $\beta S$ is a compactification of $S$ such that each bounded function from $S$ to a compact space $K$ has an extension to a continuous map from $\beta S$ to $K$;
-     - the space of ultrafilters on $S$;
-     - the Stone space of the Boolean algebra $\mathcal{P}(S)$, the power set of $S$;
-     - the character space of the commutative $C^{*}$ algebra $\ell^{\infty}(S)$, so that $\ell^{\infty}(S)=C(\beta S)$. See below.


## Some properties

The space $\beta S$ is big: if $|S|=\kappa$, then $|\beta S|=2^{2^{\kappa}}$. In particular, $|\beta \mathbb{N}|=2^{\mathfrak{c}}$, which may be $\aleph_{2}$.

Topologically $\beta S$ is a Stonean space: it is extremely disconnected, so that the closure of every open set is also open. (But $S^{*}$ is not Stonean.)

Many questions about ( $\mathbb{N},+$ ), including combinatorical questions, can be resolved by moving up to $\beta \mathbb{N}$ - see the talk of Dona Strauss.

## Semigroup compactifications

Let $S$ be a semigroup. Then $\beta S$ becomes a semigroup, as follows.

For each $s \in S$, the map $L_{s}: S \rightarrow \beta S$ has an extension to a continuous map $L_{s}: \beta S \rightarrow \beta S$. For $u \in \beta S$, define $s \square u=L_{s}(u)$.

Next, the map $R_{u}: s \mapsto s \square u, S \rightarrow \beta S$, has an extension to a continuous map $R_{u}: \beta S \rightarrow \beta S$ for each $u \in \beta S$. Define

$$
u \square v=R_{v}(u) \quad(u, v \in \beta S) .
$$

Then ( $\beta S, \square$ ) is a compact, right topological semigroup (to be explained later).

Similarly $(\beta S, \diamond)$ is a compact, left topological semigroup.

Fact $S^{*}$ is an ideal in ( $\beta S, \square$ ) whenever $S$ is cancellative.

Conference in Cambridge, 6-8 July, 2016.

Often the binary operation on $\beta \mathbb{N}$ from the semigroup ( $\mathbb{N},+$ ) is denoted by + to give the semigroup $(\beta \mathbb{N},+)$. But note that $x+y \neq$ $y+x$, in general.

Example $\mathbb{N}^{*}$ is a closed left ideal in ( $\beta \mathbb{Z}, \square$ ), but not a right ideal.

There are many deep theorems about $(\beta \mathbb{N},+$ ) and ( $\beta S, \square$ ) (see the book [HS] of HindmanStrauss); many basic open questions remain.

Some answers may be independent of ZFC.

## Compact, right topological semigroup

Definition A semigroup $V$ with a topology $\tau$ is a compact, right topological semigroup if $(V, \tau)$ is a compact space and the map $R_{v}$ is continuous with respect to $\tau$ for each $v \in V$.

For example, $V=(\beta S, \square)$, or $\left(S^{*}, \square\right)$ for cancellative $S$. It is the maximal such compactification.

In general, the maps $L_{v}$ are not continuous on these semigroups. For example, let $V=$ ( $\beta S, \square$ ). Then $L v$ is continuous when $v \in S$; for cancellative semigroups $S, L_{v}$ is continuous only when $v \in S$.

## The structure theorem

Study of these semigroups is based on the following structure theorem; see [HS].

Theorem Let $V$ be a compact, right topological semigroup.
(i) A unique minimum ideal $K(V)$ exists in $V$. The families of minimal left ideals and of minimal right ideals of $V$ both partition $K(V)$.
(ii) For each minimal right and left ideals $R$ and $L$ in $V$, there exists an element $p \in E(V) \cap R \cap L$ such that $R \cap L=R L=p V p$ is a group; these groups are maximal in $K(V)$, are pairwise isomorphic, and the family of these groups partitions $K(V)$.
(iii) For each $p, q \in K(V)$, the subset $p K(V) q$ is a subgroup of $V$, and there exists $r \in E(K(V))$ with $r p=p$ and $q r=q$.
(iv) $E(V) \cap K(V)=\{$ minimal idempotents $\} . \square$

## $K(\beta \mathbb{N})$ is $\mathbf{b i g}$

It is easy to see that $K(\beta \mathbb{N})$ is equal to $K\left(\mathbb{N}^{*}\right)$.

Theorem (Hindman and Pym) The semigroup $K\left(\mathbb{N}^{*}\right)$ contains a copy of the free semigroup on $2^{\mathfrak{c}}$ generators.

A semigroup $R$ of the form $A \times B$, where

$$
(a, b)(c, d)=(a, d) \quad(a, c \in A, b, d \in B)
$$

is a rectangular semigroup. It is a deep result of Yevhen Zelenyuk that $K\left(\mathbb{N}^{*}\right)$ contains a rectangular semigroup $A \times B$ with $|A|=|B|=$ $2^{\text {c }}$. Thus there is a 'very large' sub-semigroup $R$ of $K\left(\mathbb{N}^{*}\right)$.

## Algebras

An algebra is linear space (over $\mathbb{C}$ ) that also has an associative product such that the distributive laws hold and the product is compatible with scalar multiplication.

Examples (1) $\mathbb{M}_{n}$ - this is $n \times n$ matrices over $\mathbb{C}$. It is called the full matrix algebra.
(2) Start with a semigroup $S$. Let $\delta_{s}$ denote the characteristic function of $s$. Define

$$
\delta_{s} \star \delta_{t}=\delta_{s t} .
$$

Consider the finite sums of the $\delta_{s}$ with the obvious product. This is the (algebraic) semigroup algebra, $\mathbb{C} S=\operatorname{lin}\left\{\delta_{s}: s \in S\right\}$.

## Ideals in algebras

Let $A$ be an algebra. A left ideal is a linear subspace $I$ such that $A I \subset I$. A maximal left ideal is a proper left ideal that is maximal with respect to inclusion.

The radical of $A$, called $\operatorname{rad} A$, is the intersection of the maximal left ideals.

It is also equal to the intersection of the maximal right ideals, and so $\operatorname{rad} A$ is an ideal in $A$.

The algebra is semi-simple if $\operatorname{rad} A=\{0\}$. It is easy to see that $A / \operatorname{rad} A$ is always a semisimple algebra.

## Banach spaces

Let $E$ be a Banach space. Then a linear functional $\lambda$ is bounded if

$$
\|\lambda\|=\sup \{|\lambda(x)|:\|x\| \leq 1\}<\infty .
$$

Write $E^{\prime}$ for the space of these bounded linear functionals; so ( $E^{\prime},\|\cdot\|$ ) is a Banach space. It is the dual space of $E$.

Write $\langle x, \lambda\rangle$ for $\lambda(x)$. Thus $\langle$,$\rangle gives the$ duality.

The weak-* topology on $E^{\prime}$ is such that $\lambda_{\alpha} \rightarrow 0$ iff $\left\langle x, \lambda_{\alpha}\right\rangle \rightarrow 0$ for each $x \in E$. The closed unit ball of $E^{\prime}$ is weak-* compact.

The bidual is $E^{\prime \prime}=\left(E^{\prime}\right)^{\prime}$. The map

$$
\kappa: E \rightarrow E^{\prime \prime},
$$

where $\langle\kappa(x), \lambda\rangle=\langle x, \lambda\rangle$, is an isometric embedding, so $E$ is a closed subspace of $E^{\prime \prime}$.

## Banach algebras

Let $A$ be an algebra such that $(A,\|\cdot\|)$ is also a Banach space. Then $A$ is a Banach algebra if also $\|a b\| \leq\|a\|\|b\|$ for all $a, b \in A$.

In this case, maximal left ideals are closed, so that $\operatorname{rad} A$ is a closed ideal in $A$.

Example Let $S$ be a non-empty set. Consider the linear space of functions $f: S \rightarrow \mathbb{C}$ such that $\sum_{s \in S}|f(s)|<\infty$. This is the space $\ell^{1}(S)$. It is a Banach space for the norm

$$
\|f\|_{1}=\sum_{s \in S}|f(s)| .
$$

Now suppose that $S$ is a semigroup. Then $\ell^{1}(S)$ is a Banach algebra, where the product is again specified by $\delta_{s} \star \delta_{t}=\delta_{s t}$ for all $s, t \in S$.

## Ideals and semi-simplicity

Triviality Let $S$ be a semigroup, and take a left ideal $I$ in $S$. Set $J=\overline{\operatorname{lin}}\left\{\delta_{s}: s \in I\right\}$. Then $J$ is a closed left ideal in $\ell^{1}(S)$.

Theorem Let $S$ be a group or the semigroup $(\mathbb{N},+)$. Then $\mathbb{C} S$ and $\ell^{1}(S)$ are semi-simple algebras.

There are trivial 2-dimensional examples of semigroups $S$ such that $\mathbb{C} S$ is not semi-simple.

A general classification of semigroups $S$ such that $\mathbb{C} S$ or $\ell^{1}(S)$ are semi-simple seems to be inaccessible.

Open: Is $\ell^{1}(\beta \mathbb{N}, \square)$ semi-simple? Does semisimplicity of one of $\mathbb{C} S$ and $\ell^{1}(S)$ imply the same for the other?

Partial results in [DSZZ].

## Maximal left ideals

Example Let $S$ be a semi-group. Set

$$
\ell_{0}^{1}(S)=\left\{f \in \ell^{1}(S): \sum_{s \in S} f(s)=0\right\}
$$

This is the augmentation ideal. It is a maximal ideal and a maximal left ideal. It may be the only maximal left ideal.

Exercise Describe the maximal left ideals in $\ell^{1}\left(\mathbb{F}_{2}\right)$. How many have finite codimension?

A left ideal $I$ in a unital algebra $A$ is finitelygenerated if there exist $a_{1}, \ldots, a_{n} \in A$ such that $I=A a_{1}+\cdots+A a_{n}$.

Conjecture Let $S$ be a semi-group. Suppose that all maximal left ideals in $\ell^{1}(S)$ are finitelygenerated. Then $S$ is finite.

Proposition (Jared White) $\ell_{0}^{1}(S)$ is finitelygenerated if and only if $S$ is 'pseudo-finite'. For groups, pseudo-finite $=$ finite.

## $M(\beta S)$

Example Start with a non-empty set $S$ and $E=\ell^{1}(S)$. Then we can identify $E^{\prime}$ with $\ell^{\infty}(S)$, the Banach space of bounded sequences on $S$. Of course $\ell^{\infty}(S)$ is identified with $C(\beta S)$. The bidual $E^{\prime \prime}$ is $C(\beta S)^{\prime}=M(\beta S)$, the Banach space of all complex-valued, regular Borel measures $\mu$ on $\beta S$, with

$$
\|\mu\|=|\mu|(\beta S)
$$

Clearly $\ell^{1}(\beta S) \subset M(\beta S)$.

A measure $\mu$ is continuous if $\mu(\{u\})=0$ for all $u \in \beta S$. These measures form a closed linear subspace $M_{c}(\beta S)$ of $M(\beta S)$, and

$$
M(\beta S)=\ell^{1}(\beta S) \oplus M_{c}(\beta S)
$$

Also $M(\beta S)=\ell^{1}(S) \oplus M\left(S^{*}\right)$.

Claim Properties of $M(\beta S)$ give information about $S$.

## Biduals of Banach algebras

Let $A$ be a Banach algebra. Then there are two natural products, $\square$ and $\diamond$, on the bidual $A^{\prime \prime}$ of $A$; they are called the Arens products.

For $\lambda \in A^{\prime}$ and $a \in A$, define $a \cdot \lambda, \lambda \cdot a \in A^{\prime}$ by $\langle b, a \cdot \lambda\rangle=\langle b a, \lambda\rangle, \quad\langle b, \lambda \cdot a\rangle=\langle a b, \lambda\rangle \quad(b \in A)$.
[This makes $A^{\prime}$ into a Banach $A$-bimodule.]

For $\lambda \in A^{\prime}$ and $\Phi \in A^{\prime \prime}$, define $\lambda \cdot \Phi \in A$ and $\Phi \cdot \lambda \in A^{\prime}$ by
$\langle a, \lambda \cdot \Phi\rangle=\langle\Phi, a \cdot \lambda\rangle, \quad\langle a, \Phi \cdot \lambda\rangle=\langle\Phi, \lambda \cdot a\rangle$ for $a \in A$. For $\Phi, \Psi \in A^{\prime \prime}$, define

$$
\langle\Phi \square \Psi, \lambda\rangle=\langle\Phi, \Psi \cdot \lambda\rangle
$$

for $\lambda \in A^{\prime}$, and similarly for $\diamond$.

## Basic facts

Fact $1\left(A^{\prime \prime}, \square\right)$ and ( $\left.A^{\prime \prime}, \diamond\right)$ are Banach algebras containing $A$ as a closed subalgebra.

Fact 2 Let $\Phi, \Psi \in A^{\prime \prime}$. Then there are nets ( $a_{\alpha}$ ) and ( $b_{\beta}$ ) in $A$ with $a_{\alpha} \rightarrow \Phi$ and $b_{\beta} \rightarrow \psi$ weak-* in $A^{\prime \prime}$, and then

$$
\Phi \square \Psi=\lim _{\alpha} \lim _{\beta} a_{\alpha} b_{\beta}
$$

and also $\Phi \diamond \Psi=\lim _{\beta} \lim _{\alpha} a_{\alpha} b_{\beta}$.
The algebra $A$ is Arens regular if $\square$ and $\diamond$ coincide on $A^{\prime \prime}$. All $C^{*}$-algebras are Arens regular, but infinite-dimensional group algebras are not.

## Biduals of semi-group algebras

Start with a semigroup $S$ and the semigroup algebra $A=\left(\ell^{1}(S), \star\right)$.

Then $A^{\prime}=\ell^{\infty}(S)=C(\beta S)$ and $A^{\prime \prime}=M(\beta S)$.
We can transfer the Arens products $\square$ and $\diamond$ to $M(\beta S)$, and so we can define $\mu \square \nu$ and $\mu \diamond \nu$ for $\mu, \nu \in M(\beta S)$.
In particular, we define $\delta_{u} \square \delta_{v}$ for $u, v \in \beta S$, and, of course, $\delta_{u} \square \delta_{v}=\delta_{u} \square v$.

Obviously we can regard $\beta S$ as a subset of $M(\beta S)$, and then $(\beta S, \square)$ is a sub-semigroup of the multiplicative semigroup of $(M(\beta S), \square)$.

It is very rare to have $\mu \square \nu=\nu \square \mu$.
For example, there are just two points $a$ and $b$ in $\mathbb{N}^{*}$ such that the only elements $\nu$ in $M(\beta \mathbb{N})$ with both $\delta_{a} \square \nu=\nu \square \delta_{a}$ and $\delta_{b} \square \nu=\nu \square \delta_{b}$ are already in $\ell^{1}(\mathbb{N})$. See [DLS].

## Left-invariant means

We know that $K=K(\beta \mathbb{N}, \square)$ is big. How to characterize it?

Let $S$ be a semigroup, and take $\mu \in M(\beta S)$. Then $\mu$ is a mean if

$$
\|\mu\|=\langle 1, \mu\rangle=1
$$

and $\mu$ is left-invariant if $s \square \mu=\mu(s \in S)$. The semigroup $S$ is left-amenable if there is a left-invariant mean on $S$, and amenable if there is a mean that is left and right invariant.

The sets of means and of left-invariant means on $S$ are denoted by $\mathfrak{M}(S)$ and $\mathfrak{L}(S)$.

Both are weak-*-compact, convex subsets of ( $M(\beta S), \square$ ). Further, $\mathfrak{M}(S)$ is a sub-semigroup, and hence is a compact, right topological semigroup in $(M(\beta S), \square)$, so it has a minimum ideal $K(\mathfrak{M}(S))$.

## Left-amenable semigroups

A left-amenable group is amenable. All abelian semigroups are amenable; $\mathbb{F}_{2}$ is not amenable; it is a very famous open question whether Thompson's group is amenable.

A left or right ideal in a left-amenable semigroup is itself left amenable.

Let $G$ be an amenable group of cardinality $\kappa$. Then $|\mathfrak{L}(G)|=2^{2^{\kappa}}$, but there are semigroups $S$ with $|\mathfrak{L}(S)|=1$.

Fact Suppose that $S$ is left-amenable. Then $\mathfrak{L}(S)=K(\mathfrak{M}(S), \square)$.

Question Characterize $K(\mathfrak{M}(S), \square)$ when $S$ is not left-amenable. Relate $K(\mathfrak{M}(S), \square)$ and $K(\mathfrak{M}(S), \diamond)$, especially when $S=\mathbb{F}_{2}$.

## The support of measures

Let $S$ be a semigroup, and take $\mu \in M(\beta S)$. Then $\mu$ has a support, supp $\mu$. Suppose that $\mu \in \mathfrak{M}(S)$. Then it can be shown that

$$
\operatorname{supp} \mu=\bigcap\left\{\bar{F}: F \subset S,\left\langle\mu, \chi_{F}\right\rangle=1\right\}
$$

Suppose that $S$ is left-amenable. Then supp $\mu$ is a closed left ideal in $\beta S$ for each $\mu \in \mathfrak{L}(S)$. We define

$$
L(\beta S)=\bigcup\{\operatorname{supp} \mu: \mu \in \mathfrak{L}(S)\}
$$

a left ideal in $\beta S$. Is it closed?
Suppose that $\left(\mu_{n}\right)$ is a sequence in $\mathfrak{L}(S)$, and set $\mu=\sum_{n=1}^{\infty} \mu_{n} / 2^{n}$. Then

$$
\operatorname{supp} \mu=\overline{\bigcup\left\{\operatorname{supp} \mu_{\mathrm{n}}: \mathrm{n} \in \mathbb{N}\right\}}
$$

so $\mathfrak{L}(S)$ contains the closure of any countable subset, but we do not know whether $\mathfrak{L}(S)$ is always closed.

For $S$ infinite and cancellative, $\overline{L(\beta S)} \subset S^{*}$.

## Some ideals in $(\beta S, \square)$

Fact Let $S$ be a semigroup. Then $\overline{K(\beta S)}$ is an ideal in $(\beta S, \square)$. [HS].

Theorem Let $S$ be a left-amenable semigroup. Then:
(i) $L(\beta S)$ and $\overline{L(\beta S)}$ are ideals in $(\beta S, \square)$;
(ii) $K(\beta S) \subset L(\beta S)$, and so $\overline{K(\beta S)} \subset \overline{L(\beta S)}$.

## More ideals

Let $S$ be a cancellative semigroup (so $S^{*}$ is a semigroup).

## Definition Set

$$
S_{[n]}^{*}=\left\{u_{1} \square \cdots \square u_{n}: u_{1}, \ldots, u_{n} \in S^{*}\right\}
$$

Thus $\left(S_{[n]}^{*}\right)$ is a decreasing nest of ideals in $S^{*}$, and

$$
E\left(S^{*}\right) \cup K(\beta S) \subset S_{[\infty]}^{*}:=\bigcap S_{[n]}^{*}
$$

Also $\left(\overline{S_{[n]}^{*}}\right)$ is a decreasing nest of closed ideals.
Fact Each $\overline{S_{[n]}^{*}}$ is a closed ideal, and $\overline{S_{[2]}^{*}} \neq S^{*}$. [DLS]
Definition Set $T_{[1]}^{*}=S^{*}$ and $T_{[n+1]}^{*}=\overline{S^{*} \square T_{[n]}^{*}}$ for $n \in \mathbb{N}$, so that $\overline{S_{[n]}^{*}} \subset T_{[n]}^{*}$.

The latter look the same; $\overline{S_{[2]}^{*}}=T_{[2]}^{*}$. But it is not clear whether $\overline{S_{[3]}^{*}}=T_{[3]}^{*}$ - see later.

## Relations with $L(\beta S)$

Theorem [DLS] Let $S$ be infinite, left-amenable, and cancellative (e.g., $S=\mathbb{N}$ ). Then $\overline{L(\beta S)} \subset \overline{S_{[\infty]}^{*}}$.

## $\beta \mathbb{N}$

Proposition [HS] The set $\overline{E(K(\beta \mathbb{N}))} \backslash \mathbb{N}_{[2]}^{*}$ is infinite, and so $K(\beta \mathbb{N})$ and $\mathbb{N}_{[2]}^{*}$ are not closed.

Proposition [DLS] (i) It is not true that $L(\beta \mathbb{N}) \subset \mathbb{N}_{[2]}^{*}$.
(ii) There are idempotents in $\mathbb{N}^{*}$ that are not in $\overline{L(\beta \mathbb{N})}$, and so $\overline{L(\beta \mathbb{N})} \subsetneq \overline{\mathbb{N}_{[\infty]}^{*}}$.

Question Is $L(\beta \mathbb{N})$ closed in $\beta \mathbb{N}$ ?
Proposition [DLS] $\overline{K(\beta \mathbb{N})} \subsetneq \overline{L(\beta \mathbb{N})}$ (and so $K(\beta \mathbb{N}) \subsetneq$
$L(\beta \mathbb{N})$ ).
The above use the following.
For a subset $U$ of $\mathbb{N}$, the upper density of $U$ is

$$
\bar{d}(U)=\limsup _{n \rightarrow \infty}\left|U \cap \mathbb{N}_{n}\right| / n .
$$

Now regard $u \in \beta \mathbb{N}$ as an ultrafilter on $\mathbb{N}$, and set

$$
\Delta=\{u \in \beta \mathbb{N}: \bar{d}(U)>0(u \in U)\} .
$$

Then $\Delta$ is a closed left ideal in $(\beta \mathbb{N}, \square)$.

## A theorem of Hindman

Neil Hindman showed us the following surprising fact (and more); see [DLS].

Theorem $\overline{\mathbb{N}_{[k+1]}^{*}} \subsetneq \overline{\mathbb{N}^{*} \square \overline{\mathbb{N}_{[k]}^{*}}}$ for all $k \geq 2$.
Starting point Each $n \in \mathbb{N}$ has a unique expression in the form

$$
n=\sum_{i=1}^{\infty} \varepsilon_{i}(n) 2^{i},
$$

with $\varepsilon_{i}(n) \in\{0,1\}$ and $=0$ eventually. Then some combinatorics.

Ideals in $M(\beta S, \square)$
Let $S$ be a semigroup.

Fact Let $L$ be a closed left ideal in ( $\beta S, \square$ ). Then $M(L)$ is a weak-*-closed left ideal in ( $M(\beta S), \square)$.

Fact However $M(R)$ is not necessarily a right ideal in $(M(\beta S), \square)$ whenever $R$ is a closed right ideal in $\beta S$. Indeed, the closed subspace $M(\overline{K(\beta \mathbb{N})})$ of $M(\beta \mathbb{N})$ is a left ideal, but not a right ideal, in ( $M(\beta \mathbb{N}), \square)$.

Fact Let $S$ be cancellative. Then each of $M\left(\overline{S_{[n]}^{*}}\right)$ is a weak-* closed left ideal. Further, each of $M\left(T_{[n]}^{*}\right)$ is a weak-*-closed (two-sided) ideal. [DLS]

Question Recall that maybe $\overline{S_{[3]}^{*}} \subsetneq T_{[3]}^{*}$. Is $M\left(\overline{S_{[3]}^{*}}\right)$ always a right ideal in $(M(\beta S), \square)$ ? In particular, what if $S=\mathbb{N}$ ?

