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Čech compactification, Theory and applications, Walter
de Gruyter, Berlin and New York, 1998; second revised
and extended edition, 2012.



Semigroups and ideals

Let S be a semigroup.

Basic examples (N,+) and (Z,+); F2 = free
group on 2 generators.

An element p ∈ S is idempotent if p2 = p;
the set of these is E(S). Set p ≤ q in E(S)
if p = pq = qp; (E(S),≤) is a partially ordered
set, and we may have minimal idempotents.

For s ∈ S, set Ls(t) = st and Rs(t) = ts for
t ∈ S. An element s ∈ S is cancellable if both
Ls and Rs are injective, and S is cancellative

if each s ∈ S is cancellable.

A subset I ⊂ S is a left ideal if sx ∈ I for each
s ∈ S and x ∈ I, i.e., SI ⊂ I. Similarly, we have
a right ideal. An ideal is a subset that is both
a left and right ideal. The minimum ideal (if
it exists) is denoted by K(S).
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Stone–Čech compactifications

The Stone–Čech compactification of a set
S is denoted by βS; we regard S as a subset of
βS, and set S∗ = βS \ S; this is the growth of
S. Especially we consider βN and N∗.

The space βS is each of the following:

• - abstractly characterized by a universal prop-
erty: βS is a compactification of S such that
each bounded function from S to a compact
space K has an extension to a continuous map
from βS to K;

• - the space of ultrafilters on S;

• - the Stone space of the Boolean algebra
P(S), the power set of S;

• - the character space of the commutative C∗-
algebra `∞(S), so that `∞(S) = C(βS). See
below.
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Some properties

The space βS is big: if |S| = κ, then |βS| = 22κ.

In particular, |βN| = 2c, which may be ℵ2.

Topologically βS is a Stonean space: it is

extremely disconnected, so that the closure

of every open set is also open. (But S∗ is not

Stonean.)

Many questions about (N,+), including comb-

inatorical questions, can be resolved by moving

up to βN - see the talk of Dona Strauss.
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Semigroup compactifications

Let S be a semigroup. Then βS becomes a
semigroup, as follows.

For each s ∈ S, the map Ls : S → βS has an
extension to a continuous map Ls : βS → βS.
For u ∈ βS, define s2u = Ls(u).

Next, the map Ru : s 7→ s2u, S → βS , has an
extension to a continuous map Ru : βS → βS

for each u ∈ βS. Define

u2 v = Rv(u) (u, v ∈ βS) .

Then (βS, 2 ) is a compact, right topological
semigroup (to be explained later).

Similarly (βS, �) is a compact, left topological
semigroup.

Fact S∗ is an ideal in (βS,2) whenever S is
cancellative. 2

Conference in Cambridge, 6–8 July, 2016.
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βN

Often the binary operation on βN from the

semigroup (N,+) is denoted by + to give the

semigroup (βN, + ). But note that x + y 6=
y + x, in general.

Example N∗ is a closed left ideal in (βZ, 2 ),

but not a right ideal. 2

There are many deep theorems about (βN, + )

and (βS, 2 ) (see the book [HS] of Hindman–

Strauss); many basic open questions remain.

Some answers may be independent of ZFC.
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Compact, right topological semigroup

Definition A semigroup V with a topology τ

is a compact, right topological semigroup

if (V, τ) is a compact space and the map Rv is

continuous with respect to τ for each v ∈ V .

For example, V = (βS, 2 ), or (S∗,2) for can-

cellative S. It is the maximal such compact-

ification.

In general, the maps Lv are not continuous

on these semigroups. For example, let V =

(βS, 2 ). Then Lv is continuous when v ∈ S;

for cancellative semigroups S, Lv is continuous

only when v ∈ S.
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The structure theorem

Study of these semigroups is based on the fol-
lowing structure theorem; see [HS].

Theorem Let V be a compact, right topolog-
ical semigroup.

(i) A unique minimum ideal K(V ) exists in V .
The families of minimal left ideals and of min-
imal right ideals of V both partition K(V ).

(ii) For each minimal right and left ideals R and
L in V , there exists an element p ∈ E(V )∩R∩L
such that R ∩ L = RL = pV p is a group; these
groups are maximal in K(V ), are pairwise iso-
morphic, and the family of these groups parti-
tions K(V ).

(iii) For each p, q ∈ K(V ), the subset pK(V )q is
a subgroup of V , and there exists r ∈ E(K(V ))
with rp = p and qr = q.

(iv) E(V )∩K(V ) = {minimal idempotents}. 2
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K(βN) is big

It is easy to see that K(βN) is equal to K(N∗).

Theorem (Hindman and Pym) The semi-

group K(N∗) contains a copy of the free semi-

group on 2c generators. 2

A semigroup R of the form A×B, where

(a, b)(c, d) = (a, d) (a, c ∈ A, b, d ∈ B)

is a rectangular semigroup. It is a deep result

of Yevhen Zelenyuk that K(N∗) contains a

rectangular semigroup A × B with |A| = |B| =

2c. Thus there is a ‘very large’ sub-semigroup

R of K(N∗).
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Algebras

An algebra is linear space (over C) that also

has an associative product such that the dis-

tributive laws hold and the product is compat-

ible with scalar multiplication.

Examples (1) Mn - this is n× n matrices over

C. It is called the full matrix algebra.

(2) Start with a semigroup S. Let δs denote

the characteristic function of s. Define

δs ? δt = δst .

Consider the finite sums of the δs with the

obvious product. This is the (algebraic) semi-

group algebra, CS = lin{δs : s ∈ S}. 2
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Ideals in algebras

Let A be an algebra. A left ideal is a linear

subspace I such that AI ⊂ I. A maximal left

ideal is a proper left ideal that is maximal with

respect to inclusion.

The radical of A, called radA, is the intersect-

ion of the maximal left ideals.

It is also equal to the intersection of the max-

imal right ideals, and so radA is an ideal in A.

The algebra is semi-simple if radA = {0}. It

is easy to see that A/radA is always a semi-

simple algebra.
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Banach spaces

Let E be a Banach space. Then a linear func-

tional λ is bounded if

‖λ‖ = sup{|λ(x)| : ‖x‖ ≤ 1} <∞ .

Write E′ for the space of these bounded linear

functionals; so (E′, ‖ · ‖) is a Banach space. It

is the dual space of E.

Write 〈x, λ〉 for λ(x). Thus 〈 , 〉 gives the

duality.

The weak-∗ topology on E′ is such that

λα → 0 iff 〈x, λα〉 → 0 for each x ∈ E. The

closed unit ball of E′ is weak-∗ compact.

The bidual is E′′ = (E′)′. The map

κ : E → E′′ ,

where 〈κ(x), λ〉 = 〈x, λ〉, is an isometric em-

bedding, so E is a closed subspace of E′′.
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Banach algebras

Let A be an algebra such that (A, ‖ · ‖) is also

a Banach space. Then A is a Banach algebra

if also ‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A.

In this case, maximal left ideals are closed, so

that radA is a closed ideal in A.

Example Let S be a non-empty set. Consider

the linear space of functions f : S → C such

that
∑
s∈S |f(s)| <∞. This is the space `1(S).

It is a Banach space for the norm

‖f‖1 =
∑
s∈S
|f(s)| .

Now suppose that S is a semigroup. Then

`1(S) is a Banach algebra, where the product

is again specified by δs ? δt = δst for all s, t ∈ S.
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Ideals and semi-simplicity

Triviality Let S be a semigroup, and take a
left ideal I in S. Set J = lin{δs : s ∈ I}. Then
J is a closed left ideal in `1(S). 2

Theorem Let S be a group or the semigroup
(N,+). Then CS and `1(S) are semi-simple
algebras. 2

There are trivial 2-dimensional examples of semi-
groups S such that CS is not semi-simple.

A general classification of semigroups S such
that CS or `1(S) are semi-simple seems to be
inaccessible.

Open: Is `1(βN,2) semi-simple? Does semi-
simplicity of one of CS and `1(S) imply the
same for the other?

Partial results in [DSZZ].
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Maximal left ideals

Example Let S be a semi-group. Set

`1
0 (S) =

f ∈ `1(S) :
∑
s∈S

f(s) = 0

 .

This is the augmentation ideal. It is a max-
imal ideal and a maximal left ideal. It may be
the only maximal left ideal. 2

Exercise Describe the maximal left ideals in
`1(F2). How many have finite codimension?

A left ideal I in a unital algebra A is finitely-
generated if there exist a1, . . . , an ∈ A such
that I = Aa1 + · · ·+Aan.

Conjecture Let S be a semi-group. Suppose
that all maximal left ideals in `1(S) are finitely-
generated. Then S is finite.

Proposition (Jared White) `1
0 (S) is finitely-

generated if and only if S is ‘pseudo-finite’.
For groups, pseudo-finite = finite. 2
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M(βS)

Example Start with a non-empty set S and

E = `1(S). Then we can identify E′ with

`∞(S), the Banach space of bounded sequences

on S. Of course `∞(S) is identified with C(βS).

The bidual E′′ is C(βS)′ = M(βS), the Banach

space of all complex-valued, regular Borel mea-

sures µ on βS, with

‖µ‖ = |µ| (βS) .

Clearly `1(βS) ⊂M(βS).

A measure µ is continuous if µ({u}) = 0 for all

u ∈ βS. These measures form a closed linear

subspace Mc(βS) of M(βS), and

M(βS) = `1(βS)⊕Mc(βS) .

Also M(βS) = `1(S)⊕M(S∗).

Claim Properties of M(βS) give information

about S.
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Biduals of Banach algebras

Let A be a Banach algebra. Then there are

two natural products, 2 and 3, on the bidual

A′′ of A; they are called the Arens products.

For λ ∈ A′ and a ∈ A, define a · λ, λ · a ∈ A′ by

〈b, a ·λ〉 = 〈ba, λ〉 , 〈b, λ · a〉 = 〈ab, λ〉 (b ∈ A) .

[This makes A′ into a Banach A-bimodule.]

For λ ∈ A′ and Φ ∈ A′′, define λ · Φ ∈ A and

Φ · λ ∈ A′ by

〈a, λ · Φ〉 = 〈Φ, a · λ〉 , 〈a, Φ · λ〉 = 〈Φ, λ · a〉

for a ∈ A. For Φ,Ψ ∈ A′′, define

〈Φ2Ψ, λ〉 = 〈Φ, Ψ · λ〉 ,

for λ ∈ A′, and similarly for 3.
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Basic facts

Fact 1 (A′′,2) and (A′′,3) are Banach algebras

containing A as a closed subalgebra.

Fact 2 Let Φ,Ψ ∈ A′′. Then there are nets

(aα) and (bβ) in A with aα → Φ and bβ → Ψ

weak-∗ in A′′, and then

Φ2Ψ = lim
α

lim
β
aαbβ

and also Φ3Ψ = limβ limα aαbβ.

The algebra A is Arens regular if 2 and 3

coincide on A′′. All C∗-algebras are Arens regu-

lar, but infinite-dimensional group algebras are

not.
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Biduals of semi-group algebras

Start with a semigroup S and the semigroup
algebra A = (`1(S), ? ).

Then A′ = `∞(S) = C(βS) and A′′ = M(βS).

We can transfer the Arens products 2 and 3

to M(βS), and so we can define

µ 2 ν and µ � ν for µ, ν ∈M(βS) .

In particular, we define δu 2 δv for u, v ∈ βS,
and, of course, δu 2 δv = δu2 v.

Obviously we can regard βS as a subset of
M(βS), and then (βS,2) is a sub-semigroup
of the multiplicative semigroup of (M(βS),2).

It is very rare to have µ 2 ν = ν 2 µ.

For example, there are just two points a and b
in N∗ such that the only elements ν in M(βN)
with both δa 2 ν = ν 2 δa and δb 2 ν = ν 2 δb
are already in `1(N). See [DLS].
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Left-invariant means

We know that K = K(βN,2) is big. How to
characterize it?

Let S be a semigroup, and take µ ∈ M(βS).
Then µ is a mean if

‖µ‖ = 〈1, µ〉 = 1 ,

and µ is left-invariant if s2µ = µ (s ∈ S).
The semigroup S is left-amenable if there is
a left-invariant mean on S, and amenable if
there is a mean that is left and right invariant.

The sets of means and of left-invariant means
on S are denoted by M(S) and L(S).

Both are weak-∗-compact, convex subsets of
(M(βS),2). Further, M(S) is a sub-semigroup,
and hence is a compact, right topological semi-
group in (M(βS),2), so it has a minimum ideal
K(M(S)).
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Left-amenable semigroups

A left-amenable group is amenable. All abelian

semigroups are amenable; F2 is not amenable;

it is a very famous open question whether Thomp-

son’s group is amenable.

A left or right ideal in a left-amenable semi-

group is itself left amenable.

Let G be an amenable group of cardinality κ.

Then |L(G)| = 22κ, but there are semigroups

S with |L(S)| = 1.

Fact Suppose that S is left-amenable. Then

L(S) = K(M(S),2). 2

Question Characterize K(M(S),2) when S is

not left-amenable. Relate K(M(S),2) and

K(M(S),3), especially when S = F2. 2
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The support of measures

Let S be a semigroup, and take µ ∈ M(βS).
Then µ has a support, suppµ. Suppose that
µ ∈M(S). Then it can be shown that

suppµ =
⋂
{F : F ⊂ S, 〈µ, χF 〉 = 1} .

Suppose that S is left-amenable. Then suppµ
is a closed left ideal in βS for each µ ∈ L(S).
We define

L(βS) =
⋃
{suppµ : µ ∈ L(S)} ,

a left ideal in βS. Is it closed?

Suppose that (µn) is a sequence in L(S), and
set µ =

∑∞
n=1 µn/2n. Then

suppµ =
⋃
{suppµn : n ∈ N} ,

so L(S) contains the closure of any countable
subset, but we do not know whether L(S) is
always closed.

For S infinite and cancellative, L(βS) ⊂ S∗.
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Some ideals in (βS,2)

Fact Let S be a semigroup. Then K(βS) is

an ideal in (βS, 2 ). [HS]. 2

Theorem Let S be a left-amenable semigroup.

Then:

(i) L(βS) and L(βS) are ideals in (βS,2);

(ii) K(βS) ⊂ L(βS), and so K(βS) ⊂ L(βS). 2

23



More ideals

Let S be a cancellative semigroup (so S∗ is a semigroup).

Definition Set

S∗[n] = {u12 · · ·2un : u1, . . . , un ∈ S∗} .

Thus (S∗[n]) is a decreasing nest of ideals in S∗, and

E(S∗) ∪K(βS) ⊂ S∗[∞] :=
⋂
S∗[n] .

Also (S∗[n]) is a decreasing nest of closed ideals.

Fact Each S∗[n] is a closed ideal, and S∗[2] 6= S∗. [DLS] 2

Definition Set T ∗[1] = S∗ and T ∗[n+1] = S∗2T ∗[n] for n ∈ N,

so that S∗[n] ⊂ T
∗
[n].

The latter look the same; S∗[2] = T ∗[2]. But it is not clear

whether S∗[3] = T ∗[3] - see later.

Relations with L(βS)

Theorem [DLS] Let S be infinite, left-amenable, and
cancellative (e.g., S = N). Then L(βS) ⊂ S∗[∞]. 2
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βN

Proposition [HS] The set E(K(βN))\N∗[2] is infinite, and

so K(βN) and N∗[2] are not closed. 2

Proposition [DLS] (i) It is not true that L(βN) ⊂ N∗[2].

(ii)There are idempotents in N∗ that are not in L(βN),
and so L(βN) ( N∗[∞]. 2

Question Is L(βN) closed in βN?

Proposition [DLS] K(βN) ( L(βN) (and so K(βN) (
L(βN)). 2

The above use the following.

For a subset U of N, the upper density of U is

d(U) = lim sup
n→∞

|U ∩ Nn| /n .

Now regard u ∈ βN as an ultrafilter on N, and set

∆ = {u ∈ βN : d(U) > 0 (u ∈ U)}.

Then ∆ is a closed left ideal in (βN, 2 ).
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A theorem of Hindman

Neil Hindman showed us the following surprising fact
(and more); see [DLS].

Theorem N∗[k+1] ( N∗2N∗[k] for all k ≥ 2.

Starting point Each n ∈ N has a unique expression in
the form

n =
∞∑
i=1

εi(n)2i ,

with εi(n) ∈ {0,1} and = 0 eventually. Then some com-
binatorics. 2
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Ideals in M(βS,2)

Let S be a semigroup.

Fact Let L be a closed left ideal in (βS,2).
Then M(L) is a weak-∗-closed left ideal in
(M(βS),2). 2

Fact However M(R) is not necessarily a right
ideal in (M(βS),2) whenever R is a closed
right ideal in βS. Indeed, the closed subspace
M(K(βN) ) of M(βN) is a left ideal, but not a
right ideal, in (M(βN),2). 2

Fact Let S be cancellative. Then each of
M(S∗[n]) is a weak-∗ closed left ideal. Further,
each of M(T ∗[n]) is a weak-∗-closed (two-sided)
ideal. [DLS] 2

Question Recall that maybe S∗[3] ( T ∗[3]. Is

M(S∗[3]) always a right ideal in (M(βS),2)? In
particular, what if S = N?
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