Computing maximal subsemigroups of finite semigroups

Wilf Wilson

18th March 2016

Wilf Wilson

What is a maximal subsemigroup?

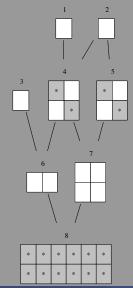
Definition (Maximal subsemigroup)

A maximal subsemigroup is a proper subsemigroup which is not contained in another proper subsemigroup.

Examples of semigroups and their maximal subsemigroups

- $\circ \varnothing$ is a maximal subsemigroup of the trivial semigroup.
- The maximal subsemigroups of a non-trivial finite group are its maximal subgroups.
- $T_n \setminus \{\text{maps of rank } n-1\}$ is a maximal subsemigroup of T_n .
- $((1,\infty),\times)$ has no maximal subsemigroups.

Multiplication in a finite semigroup



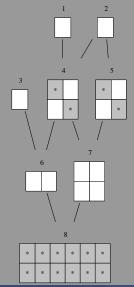
A visual interpretation is useful.

S is finite, so $\mathscr{D}=\mathscr{J}.$

Facts about Green's *J* relation:

$$\begin{array}{ll} \text{(a)} & x \mathscr{J}y \text{ iff } S^1 x S^1 = S^1 y S^1, \\ \text{(b)} & J_x \leq J_y \text{ iff } S^1 x S^1 \subseteq S^1 y S^1, \\ \text{(c)} & J_{xy} \leq J_x \text{ and } J_{xy} \leq J_y. \end{array}$$

The form of a maximal subsemigroup



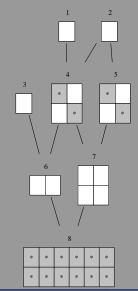
A maximal subsemigroup lacks part of precisely **one** *J*-class.

The remaining part of it either:

(1) contains part of every \mathscr{H} -class;

- (2) is a union of rows and columns;
- (3) is a union of only rows;
- (4) is a union of only columns;
- (5) is empty.

The rough idea of our algorithm

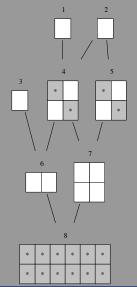


Go through each \mathscr{J} -class in turn.

Work out which maximal subsemigroups (if any) arise by removing parts of that *J*-class.

(Non-regular *J*-classes are easy).

Some of the problems to consider



Foremost, a maximal subsemigroup is a **subsemigroup**. Hence, for a maximal subsemigroup M with partially-missing \mathcal{J} -class J:

- multiplication within $M \cap J$ is closed.
- $M \cap J$ contains the elements generated outside of J.
- $M \cap J$ is closed under multiplication by other elements.

Rees 0-matrix semigroups

G	G	G	G	
G	G	G	G	
G	G	G	G	
0				

Rees 0-matrix semigroups

92 . 91			82 82
g1Vg_	g1Vg_	$g_2^{-1}Vg_2$	g1Vg
$g_1^{-1}Vg_1$	g ₁ -1Vg ₁	$g_1^{-1}Vg_2$	$g_1^{-1}Vg_2$
g ₁ -1Vg ₁	g ₁ -1Vg ₁	$g_1^{-1}Vg_2$	$g_1^{-1}Vg_2$

(1): $M \cap J$ intersects every \mathscr{H} -class of J

- Define E(J) to be the set of idempotents of J.
- Define X to be the set of generators *above* J.

Let M be a subset which intersects every $\mathscr{H}\text{-class}$ of J.

Theorem

M is a maximal subsemigroup if and only if $M \cap J$ is a maximal subsemigroup of the principal factor of J which contains $E(J)X \cap J$.

For the other types, we create some digraphs and reduce the search for maximal subsemigroups to a search within these digraphs.

(2): $M \cap J$ is a union of both rows and columns J

Let M be a subset such that $M\cap J$ is a union of rows and columns. Theorem

M is a maximal subsemigroup if and only if

- the rows are a union of vertices of $\Gamma_{\mathscr{R}}$ with no out-neighbours;
- the columns are a union of vertices of $\Gamma_{\mathscr{L}}$ with no out-neighbours;
- these vertices correspond to a maximal independent set of Δ ;
- every edge of Δ' is incident to one of these vertices.

Let M be a subset such that $M \cap J$ is a union of rows only.

Theorem

 \boldsymbol{M} is a maximal subsemigroup if and only if:

- M is not contained in a maximal subsemigroup of type (2);
- the missing rows form a vertex of $\Gamma_{\mathscr{R}}$;
- that vertex has no in-neighbours;
- that vertex is not red.

The theorem for maximal subsemigroups of type (4) is dual.

(5): $M \cap J = \emptyset$

Theorem

A maximal subsemigroup can be formed by removing J if and only if

- $\circ~J$ isn't generated by the rest of the semigroup, and
- there are no maximal subsemigroups of types (1) to (4).

Simplified summary of the algorithm

Work out all of the information contained in the semigroup diagram:

- the Green's relations (\mathcal{J} , \mathcal{R} , \mathcal{L} , and \mathcal{H});
- the *J*-class partial order;
- the location of the generators;
- the location of idempotents.

Go through each *J*-class in turn:

- If it is a maximal *J*-class, calculate the maximal subsemigroups of the principal factor; otherwise
- Construct the necessary digraphs;
- Search these digraphs for various graph-theoretical properties to find maximal subsemigroups.

Upcoming functionality in the $\operatorname{SEMIGROUPS}$ package

The MaximalSubsemigroups function.

What it will be possible to find:

- (a) All maximal subsemigroups,
- (b) Maximal subsemigroups which contain a given set of elements,
- (c) Maximal subsemigroups which lack part of a given \mathscr{J} -class.

How the answers can be returned:

- (a) As a list of GAP semigroup objects,
- (b) As a list of generating sets,
- (c) As a number (only count them, don't create them).