Computing with Semigroup Congruences

Michael Torpey

University of St Andrews

2016-03-17

Definition

A congruence on a semigroup S is an equivalence relation $\rho \subseteq S \times S$ such that

$$(x,y)\in\rho\quad\Rightarrow\quad (ax,ay),(xa,ya)\in\rho,$$

or equivalently,

$$(x,y),(s,t)\in\rho\quad\Rightarrow\quad (xs,yt)\in\rho,$$

for all $x, y, a, s, t \in S$.

(we may write $x \ \rho \ y$ for $(x,y) \in \rho$)

- List of pairs: $\{(x_1, x_3), (x_1, x_9), (x_{42}, x_{11}), \dots\}$ • Partition: $\{\{x_1, x_3, x_9, x_{14}\}, \{x_2\}, \{x_4, x_5, x_8\}, \dots\}$
- ID list: $(1, 2, 1, 3, 3, 4, 5, 3, 1, \dots)$

• Let $\mathbf{R} \subseteq S \times S$ be a set of pairs.

- Let ρ be the least congruence on S containing all the pairs in ${f R}.$
- We call \mathbf{R} a generating set for ρ .
- Two elements a and b are ρ-related if and only if there exists a sequence

$$a = a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_n = b$$

such that for each i there exist x, y, z, t such that

$$a_i = xzy, \quad a_{i+1} = xty,$$

and either (z,t) or (t,z) is in ρ .

• Finding whether two elements are ρ -related has worst-case complexity $O(|S|^2)$.

Simple and 0-simple semigroups

Definition

A semigroup S without zero is **simple** if it has no proper ideals.

Definition

A semigroup S with zero is **0-simple** if its only ideals are $\{0\}$ and S.

*	*	*	*	*	*
*	*	*	*	*	*
*	*	*	*	*	*
*	*	*	*	*	*

*	*	*						
*			*	*				
		*		*	*			
		*		*	*			
*								

Theorem (Rees)

Every completely 0-simple semigroup is isomorphic to a Rees 0-matrix semigroup

$$\mathcal{M}^0[G;I,\Lambda;P],$$

where G is a group and P is regular. Conversely, every such Rees 0-matrix semigroup is completely 0-simple.

Definition

For a finite 0-simple Rees 0-matrix semigroup $\mathcal{M}^0[G; I, \Lambda; P]$, a **linked triple** is a triple

$$(N, \mathcal{S}, \mathcal{T})$$

consisting of a normal subgroup $N \trianglelefteq G$, an equivalence relation S on I and an equivalence relation \mathcal{T} on Λ , such that the following are satisfied:

- ${\small \bigcirc } {\small {\cal S}} {\small {\rm only relates columns which have zeroes in the same places,} }$
- 2 ${\mathcal T}$ only relates rows which have zeroes in the same places,
- For all $i, j \in I$ and $\lambda, \mu \in \Lambda$ such that $p_{\lambda i}, p_{\lambda j}, p_{\mu i}, p_{\mu j} \neq 0$ and either $(i, j) \in S$ or $(\lambda, \mu) \in T$, we have that $q_{\lambda \mu i j} \in N$, where

$$q_{\lambda\mu ij} = p_{\lambda i} p_{\mu i}^{-1} p_{\mu j} p_{\lambda j}^{-1}.$$

A finite 0-simple semigroup S has a bijection Γ between its *non-universal* congruences and its linked triples,

$$\Gamma: \rho \mapsto (N, \mathcal{S}, \mathcal{T})$$

We may write ρ as $[N, \mathcal{S}, \mathcal{T}]$.

Two non-zero elements (i,a,λ) and (j,b,μ) are $\rho\text{-related}$ if and only if

$$(i,j) \in \mathcal{S};$$

$$(\lambda, \mu) \in \mathcal{T};$$

($p_{\xi i}ap_{\lambda x}$)($p_{\xi j}bp_{\mu x}$)⁻¹ ∈ N for some $x \in I, \xi \in \Lambda$ such that $p_{\xi i}, p_{\xi j}, p_{\lambda x}, p_{\mu x} \neq 0$.

This can be determined in constant time.

 (i,a,λ) is related to 0 only in the universal congruence $S\times S.$

- Clearly, if we have a congruence's linked triple, we should use it for all calculations. But what if we do not?
- We want an algorithm to find a linked triple (N, S, T) from a set of generating pairs R.
- First observe the following:

Lemma

If (N_1, S_1, T_1) and (N_2, S_2, T_2) are linked triples such that

$$N_1 \leq N_2, \quad \mathcal{S}_1 \subseteq \mathcal{S}_2, \quad \mathcal{T}_1 \subseteq \mathcal{T}_2,$$

then $[N_1, \mathcal{S}_1, \mathcal{T}_1] \subseteq [N_2, \mathcal{S}_2, \mathcal{T}_2].$

Our strategy:

- Find any elements that must be in N because of \mathbf{R} .
- Find any pairs of columns that must be in ${\cal S}$ because of ${\bf R}$.
- Find and pairs of rows that must be in ${\mathcal T}$ because of ${\mathbf R}.$
- Add any elements and pairs necessary for (N, S, T) to be *linked*.
- Watch out for anything that would force this to be the universal congruence $S \times S.$

The algorithm

Require: $S = \mathcal{M}^0[G; I, \Lambda; P]$ is a finite 0-simple Rees 0-matrix semigroup procedure LINKEDTRIPLE(**R**)

```
N := \emptyset
\mathcal{S} := \Delta_I
\mathcal{T} := \Delta_{\Lambda}
for (x, y) \in \mathbf{R} do
     if x = y then
          Skip this pair
     else if x = 0 or y = 0 then
          return "Universal Congruence" (no linked triple)
     end if
     Let x = (i, a, \lambda)
     Let y = (j, b, \mu)
     if (i, j) \notin \varepsilon_I or (\lambda, \mu) \notin \varepsilon_{\Lambda} then
          return "Universal Congruence" (no linked triple)
     end if
```

The algorithm

. . .

. . .

. . .

Require: $S = \mathcal{M}^0[G; I, \Lambda; P]$ is a finite 0-simple Rees 0-matrix semigroup procedure LINKEDTRIPLE(**R**)

```
for (x,y) \in \mathbf{R} do
```

```
\triangleright Combine row and column classes UNION(S, i, j) UNION(T, \lambda, \mu)
```

 $\triangleright \text{ Add generators for normal subgroup}$ Choose $\nu \in \Lambda$ such that $p_{\nu i} \neq 0$ Choose $k \in I$ such that $p_{\lambda k} \neq 0$ Add $(p_{\nu i}ap_{\lambda k})(p_{\nu j}bp_{\mu k})^{-1}$ to N

The algorithm

Require: $S = \mathcal{M}^0[G; I, \Lambda; P]$ is a finite 0-simple Rees 0-matrix semigroup procedure LINKEDTRIPLE(**R**)

```
. . .
     for (x, y) \in \mathbf{R} do
           . . .
          ▷ Add more generators for normal subgroup
          for \xi \in \Lambda \setminus \{\nu\} such that p_{\xi i} \neq 0 do
                Add q_{\nu \in ij} to N
          end for
          for x \in I \setminus \{k\} such that p_{\lambda x} \neq 0 do
                Add q_{\lambda\mu kx} to N
          end for
     end for
     N := \langle\!\langle N \rangle\!\rangle
     return (N, \mathcal{S}, \mathcal{T})
end procedure
```

- Finding the linked triple is fast.
- Doesn't require enumerating S.
- Transforms an ${\cal O}(|S|^2)$ time problem into ${\cal O}(1).$
- Other information can be found from (N, S, T): number of congruence classes, size of congruence classes, etc.
- A list of all congruences on S can be found.

- Generic semigroups: generating pairs.
- Simple & 0-simple semigroups: linked triples.
- Inverse semigroups: kernel and trace.
- Rees congruences are also implemented.