Computing with Semigroup Congruences

Michael Torpey
University of St Andrews

2016-03-17

Congruences

Definition

A congruence on a semigroup S is an equivalence relation $\rho \subseteq S \times S$ such that

$$
(x, y) \in \rho \quad \Rightarrow \quad(a x, a y),(x a, y a) \in \rho,
$$

or equivalently,

$$
(x, y),(s, t) \in \rho \quad \Rightarrow \quad(x s, y t) \in \rho,
$$

for all $x, y, a, s, t \in S$.
(we may write $x \rho y$ for $(x, y) \in \rho$)

Simple ways to represent congruences

- List of pairs: $\left\{\left(x_{1}, x_{3}\right),\left(x_{1}, x_{9}\right),\left(x_{42}, x_{11}\right), \ldots\right\}$
- Partition: $\left\{\left\{x_{1}, x_{3}, x_{9}, x_{14}\right\},\left\{x_{2}\right\},\left\{x_{4}, x_{5}, x_{8}\right\}, \ldots\right\}$
- ID list: $(1,2,1,3,3,4,5,3,1, \ldots)$

Generating pairs

- Let $\mathbf{R} \subseteq S \times S$ be a set of pairs.
- Let ρ be the least congruence on S containing all the pairs in \mathbf{R}.
- We call \mathbf{R} a generating set for ρ.
- Two elements a and b are ρ-related if and only if there exists a sequence

$$
a=a_{1} \rightarrow a_{2} \rightarrow \cdots \rightarrow a_{n}=b
$$

such that for each i there exist x, y, z, t such that

$$
a_{i}=x z y, \quad a_{i+1}=x t y
$$

and either (z, t) or (t, z) is in ρ.

- Finding whether two elements are ρ-related has worst-case complexity $O\left(|S|^{2}\right)$.

Simple and 0-simple semigroups

Definition

A semigroup S without zero is simple if it has no proper ideals.

Definition

A semigroup S with zero is $\mathbf{0}$-simple if its only ideals are $\{0\}$ and S.

The Rees Theorem

Theorem (Rees)

Every completely 0 -simple semigroup is isomorphic to a Rees 0-matrix semigroup

$$
\mathcal{M}^{0}[G ; I, \Lambda ; P],
$$

where G is a group and P is regular. Conversely, every such Rees 0 -matrix semigroup is completely 0 -simple.

Linked triples

Definition

For a finite 0 -simple Rees 0 -matrix semigroup $\mathcal{M}^{0}[G ; I, \Lambda ; P]$, a linked triple is a triple

$$
(N, \mathcal{S}, \mathcal{T})
$$

consisting of a normal subgroup $N \unlhd G$, an equivalence relation \mathcal{S} on I and an equivalence relation \mathcal{T} on Λ, such that the following are satisfied:
(1) \mathcal{S} only relates columns which have zeroes in the same places,
(2) \mathcal{T} only relates rows which have zeroes in the same places,
(3) For all $i, j \in I$ and $\lambda, \mu \in \Lambda$ such that $p_{\lambda i}, p_{\lambda j}, p_{\mu i}, p_{\mu j} \neq 0$ and either $(i, j) \in \mathcal{S}$ or $(\lambda, \mu) \in \mathcal{T}$, we have that $q_{\lambda \mu i j} \in N$, where

$$
q_{\lambda \mu i j}=p_{\lambda i} p_{\mu i}^{-1} p_{\mu j} p_{\lambda j}^{-1} .
$$

Linked triples

A finite 0 -simple semigroup S has a bijection Γ between its non-universal congruences and its linked triples,

$$
\Gamma: \rho \mapsto(N, \mathcal{S}, \mathcal{T})
$$

We may write ρ as $[N, \mathcal{S}, \mathcal{T}]$.
Two non-zero elements (i, a, λ) and (j, b, μ) are ρ-related if and only if
(1) $(i, j) \in \mathcal{S}$;
(2) $(\lambda, \mu) \in \mathcal{T}$;
(3) $\left(p_{\xi i} a p_{\lambda x}\right)\left(p_{\xi j} b p_{\mu x}\right)^{-1} \in N$ for some $x \in I, \xi \in \Lambda$ such that $p_{\xi i}, p_{\xi j}, p_{\lambda x}, p_{\mu x} \neq 0$.
This can be determined in constant time.
(i, a, λ) is related to 0 only in the universal congruence $S \times S$.

Finding a congruence's linked triple

- Clearly, if we have a congruence's linked triple, we should use it for all calculations. But what if we do not?
- We want an algorithm to find a linked triple $(N, \mathcal{S}, \mathcal{T})$ from a set of generating pairs \mathbf{R}.
- First observe the following:

Lemma
If $\left(N_{1}, \mathcal{S}_{1}, \mathcal{T}_{1}\right)$ and $\left(N_{2}, \mathcal{S}_{2}, \mathcal{T}_{2}\right)$ are linked triples such that

$$
N_{1} \leq N_{2}, \quad \mathcal{S}_{1} \subseteq \mathcal{S}_{2}, \quad \mathcal{T}_{1} \subseteq \mathcal{T}_{2}
$$

then $\left[N_{1}, \mathcal{S}_{1}, \mathcal{T}_{1}\right] \subseteq\left[N_{2}, \mathcal{S}_{2}, \mathcal{T}_{2}\right]$.

Finding a congruence's linked triple

Our strategy:

- Find any elements that must be in N because of \mathbf{R}.
- Find any pairs of columns that must be in \mathcal{S} because of \mathbf{R}.
- Find and pairs of rows that must be in \mathcal{T} because of \mathbf{R}.
- Add any elements and pairs necessary for $(N, \mathcal{S}, \mathcal{T})$ to be linked.
- Watch out for anything that would force this to be the universal congruence $S \times S$.

The algorithm

Require: $S=\mathcal{M}^{0}[G ; I, \Lambda ; P]$ is a finite 0 -simple Rees 0 -matrix semigroup procedure LinkedTriple(\mathbf{R})

```
    \(N:=\varnothing\)
    \(\mathcal{S}:=\Delta_{I}\)
    \(\mathcal{T}:=\Delta_{\Lambda}\)
    for \((x, y) \in \mathbf{R}\) do
        if \(x=y\) then
        Skip this pair
        else if \(x=0\) or \(y=0\) then
        return "Universal Congruence" (no linked triple)
    end if
    Let \(x=(i, a, \lambda)\)
    Let \(y=(j, b, \mu)\)
    if \((i, j) \notin \varepsilon_{I}\) or \((\lambda, \mu) \notin \varepsilon_{\Lambda}\) then
        return "Universal Congruence" (no linked triple)
    end if
```


The algorithm

Require: $S=\mathcal{M}^{0}[G ; I, \Lambda ; P]$ is a finite 0 -simple Rees 0-matrix semigroup procedure LinkedTriple(R)

for $(x, y) \in \mathbf{R}$ do

\triangleright Combine row and column classes
$\operatorname{Union}(\mathcal{S}, i, j)$
$\operatorname{Union}(\mathcal{T}, \lambda, \mu)$
\triangleright Add generators for normal subgroup
Choose $\nu \in \Lambda$ such that $p_{\nu i} \neq 0$
Choose $k \in I$ such that $p_{\lambda k} \neq 0$
Add $\left(p_{\nu i} a p_{\lambda k}\right)\left(p_{\nu j} b p_{\mu k}\right)^{-1}$ to N

The algorithm

Require: $S=\mathcal{M}^{0}[G ; I, \Lambda ; P]$ is a finite 0 -simple Rees 0 -matrix semigroup procedure LinkedTriple(R)

for $(x, y) \in \mathbf{R}$ do

\triangleright Add more generators for normal subgroup for $\xi \in \Lambda \backslash\{\nu\}$ such that $p_{\xi i} \neq 0$ do Add $q_{\nu \xi i j}$ to N
end for
for $x \in I \backslash\{k\}$ such that $p_{\lambda x} \neq 0$ do
Add $q_{\lambda \mu k x}$ to N
end for
end for
$N:=\langle\langle N\rangle\rangle$
return $(N, \mathcal{S}, \mathcal{T})$
end procedure

The algorithm

- Finding the linked triple is fast.
- Doesn't require enumerating S.
- Transforms an $O\left(|S|^{2}\right)$ time problem into $O(1)$.
- Other information can be found from $(N, \mathcal{S}, \mathcal{T})$: number of congruence classes, size of congruence classes, etc.
- A list of all congruences on S can be found.

Semigroups package for GAP

- Generic semigroups: generating pairs.
- Simple \& 0-simple semigroups: linked triples.
- Inverse semigroups: kernel and trace.
- Rees congruences are also implemented.

