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Context-free grammars

All strings over {a,b} consisting of two consecutive
palindromes of even length

S → P P
P → a P a
P → b P b
P → ε

S ⇒ PP ⇒ aPaP ⇒ aaP ⇒ aabPb ⇒ aabaPab ⇒ aabaab
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Context-free grammars (alternative view)

Nonterminals become predicates of one argument

A variable occurs once in LHS and once in RHS

Change direction of arrows (logical ’implies’)

S(x y) ← P(x) P(y) (1)
P(a x a) ← P(x) (2)
P(b x b) ← P(x) (3)

P(ε) ← (4)

(3) P(aa)⇒ P(baab)

(1) P(aa) , P(baab)⇒ S(aabaab)
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Multiple context-free grammars (MCFGs)

Predicates can now have several arguments

I.e. fan-out can be more than 1

MCFL(n): languages generated by MCFGs with fan-out n

Exponent of parsing complexity increases with fan-out

Example with fan-out 2:

S(x y) ← E(x , y)

E(xp, yq) ← E(x , y) E(p,q)

E(a,a) ←
E(b,b) ←

Generates copy language {ww | w ∈ {a,b}+}
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Linguistic motivations

MCFG is mildly context-sensitive formalism

(Further generalizes ’linear indexed grammars’)

Believed to be powerful enough for natural language

And unable to generate anything that is unlike natural language
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MIX language

MIX = {w ∈ {a,b, c}∗ | |w |a = |w |b = |w |c}
One combination of a,b, c represents phrase with:

a is main verb
b is its subject
c is its object

Any number of such triples scrambled in any order

Models extreme free word order

Doesn’t seem to happen in natural language

So people didn’t expect this to be MCFL
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MIX is MCFL !

Sylvain Salvati:

MIX is rationally equivalent to O2 (to be discussed)
So MIX is MCFL iff O2 is MCFL
Proof that O2 is generated by MCFG
Geometric arguments (two-dimensional)
Uses z 7→ e2iπz , for z ∈ C \ {0}

Journal of Computer and System Sciences 81, pp. 1252-1277,
2015
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On languages

For n ≥ 1, let Σn = {a1, . . . ,an,a1, . . . ,an}

On = {w ∈ Σ∗n | ∀i |w |ai = |w |ai
}

State of the art:

O1 is an MCFL(1) = CFL Easy
O2 is an MCFL(2) Salvati’s proof
O3 is an MCFL(3) ???

There seems to be no way to generalize Salvati’s proof
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Proof for O1

S(x) ← R(x) (1)
R(x y) ← R(x) R(y) (2)

R(a x a) ← R(x) (3)
R(a x a) ← R(x) (4)

R(ε) ← (5)

R(a aaaaa) ? Use (2) , R(a aaa) , R(aa)

R(a aaa) ? Use (4) , R(aa)

Etc.
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Needed grammar for O2

S(xy) ← R(x , y) (1)
R(xp, yq) ← R(x , y) R(p,q) (2)
R(xp,qy) ← R(x , y) R(p,q) (3)
R(xpy ,q) ← R(x , y) R(p,q) (4)
R(p, xqy) ← R(x , y) R(p,q) (5)

R(a,a) ← (6)
R(a,a) ← (7)
R(b,b) ← (8)
R(b,b) ← (9)
R(ε, ε) ← (10)
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Derivation for O2

S(abababba)

R(ababab,ba)

R(ab,ab)

R(a,a) R(b,b)

R(ab,ba)

R(a,a) R(b,b)

(1)

(4)

(2) (3)

(6) (9) (7) (9)

Remember:

R(xpy ,q) ← R(x , y) R(p,q) (4)
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Does grammar generate O2 ?

Easy: if there is derivation of R(x , y) then xy ∈ O2

Difficult: if xy ∈ O2 then there is derivation of R(x , y)

This is all we need !!!

Remember:

S(xy) ← R(x , y) (1)
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Proof by induction

How to prove xy ∈ O2 implies R(x , y) ?

Induction on |xy |
Only interesting case requiring inductive hypothesis:

|xy | ≥ 4
no non-empty substring of x or of y is in O2

To prove:

Some binary rule is always applicable to divide pair (x , y) into
four strings, to use inductive hypothesis on two shorter pairs
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Geometry for O2

a is ’right’
a is ’left’
b is ’up’
b is ’down’

ababab , ba

a

ba

bab

b
a

−2 −1 0 1 2
1

0

−1

−2

−3

P[1] = (−1,−1), P[k ] = k ∗ P[1] for k ∈ Z

E.g. P[0] = (0,0), P[−5] = (5,5)

A[k ] is path of first string from P[k ]

B[k ] is path of second string from P[k ]
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Three rule applications (1)

a b a b b , a a b

a b
a

b

b
aa

b

aab
P[0]

P[1]

P[−1] 180◦

Remember:

R(xp, yq) ← R(x , y) R(p,q) (2)

Let x = a , y = a
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Three rule applications (2)

baaab , a ab ba

b
a a a b

aa
b

ba
P[0]

P[1]

Remember:

R(xp,qy) ← R(x , y) R(p,q) (3)

Let x = ba and y = ba
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Three rule applications (3)

b b a a b a a b a , a a a

aaab

b
a a

b
a a

ba
P[1]P[0] P[2]

Q

Remember:

R(xpy ,q) ← R(x , y) R(p,q) (4)

Let x = b and y = a b a

Note dA[0](Q) = 6 > dA[1](Q) = 1

where dC(Q) is path distance of Q from start of path C
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four constraints
excursions
conclusions

Suppose no rules are applicable

Then four constraints must hold:

(i) angle in P[0] between beginning of A[0] and that of B[0] is
not 180◦

(ii) A[0] ∩ B[1] = {P[0],P[1]}
(iii) @ Q ∈ (A[0] ∩ A[1]) \ {P[1]} such that dA[0](Q) > dA[1](Q)

(iv) @ Q ∈ (B[0] ∩ B[1]) \ {P[0]} such that dB[1](Q) > dB[0](Q)

(No self-intersections: no non-empty substring of x or y in O2)

Can we derive a contradiction from this ?

How to ‘tame’ the myriad possibilities of paths A and B ?
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Excursion

Excursion from right between Q1 and Q2

`[k − 1] `[k ] `[k + 1]

Q1

Q2

P[k ] P[k + 1] P[k + 2]
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conclusions

Excursion truncated

`[k − 1] `[k ] `[k + 1]

m

Q′1

Q′2

P[k ] P[k + 1] P[k + 2]

Truncate excursions without violating four constraints !!!
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Regions and area of excursion

Regions of excursion:
enclosed by path and line

Area of excursion:
total surface area of regions

Excursion is filled:
if its regions contain some P[k ′]

Excursion is unfilled:
otherwise

`[k ]

Q1

Q2

R1

R2
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Normal form

A and B are in normal form if all excursions exhaustively
truncated

(without violating four constraints or introducing
self-intersections)

Suppose some unfilled excursions remain

Take one with smallest area and find contradiction

Suppose some filled excursions remains and find contradiction

So no excursions remain !!!
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Suppose truncation would introduce self-intersection

. . . in unfilled excursion with smallest area

Exactly one crossing
`[k ]

Q1

Q2

Q
P[k ′]

Filled !!!

Two or more crossings
`[k ]

Q1

Q2

Q

Q′

Area not smallest !!!
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Suppose truncation would violate constraint (iii)

. . . in unfilled excursion with smallest area, one crossing,
dA[k ′−1](Q) > dA[k ′](Q2)

`[k ]

Q1

A[k ′]

Q2

A[k ′ − 1]

Q
P[k ′]

Filled !!!

`[k ]`[k−1]

Q1

A[k ′]

Q2

A[k ′ − 1]

Q

Q′2

R1

R2

Area not smallest !!!
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Filled excursions are impossible

One of two cases:

`[k−1]

Q′1

Q′2

P[k−1]

Q′3
Q′4

`[k ]

Q1

Q2

P[k ]

Q3

Q4

`[k+1]

P[k+1]

`[k+2]

P[k+2]
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Final contradiction

`[−1] `[0]

P[−1]
P[0]

P[1]

A[0]
B[0]

B[1]

A[−1]

LB

LA

RA

RB

Four constraints: LB above LA iff RA above RB (Impossible !!!)
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Outlook

O3 is likely MCFL too, with fanout 3

Three dimensional arguments required

Partitioning space into ‘top’ and ‘bottom’ applicable to 3D

One more idea needed (related to braid theory)

Unclear yet how to redefine ‘excursion’ for 3D

Are O4, O5, . . . also MCFLs ?

Would mean MCFLs are closed under permutation closure

Full paper: http://arxiv.org/abs/1603.03610
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