A short proof that O_{2} is an MCFL

Mark-Jan Nederhof
University of St Andrews

NBSAN 2016-03-17

Context-free grammars

All strings over $\{a, b\}$ consisting of two consecutive palindromes of even length

$$
\begin{aligned}
& S \rightarrow P P \\
& P \rightarrow a P a \\
& P \rightarrow b P b \\
& P \rightarrow \varepsilon
\end{aligned}
$$

$S \Rightarrow P P \Rightarrow a P a P \Rightarrow a a P \Rightarrow a a b P b \Rightarrow a a b a P a b \Rightarrow a a b a a b$

Context-free grammars (alternative view)

Nonterminals become predicates of one argument A variable occurs once in LHS and once in RHS
Change direction of arrows (logical 'implies')

$$
\begin{align*}
S(x y) & \leftarrow P(x) P(y) \tag{1}\\
P(a x a) & \leftarrow P(x) \tag{2}\\
P(b x b b) & \leftarrow P(x) \tag{3}\\
P(\varepsilon) & \leftarrow \tag{4}
\end{align*}
$$

(3) $P(a a) \Rightarrow P(b a a b)$
(1) $P(a a), P(b a a b) \Rightarrow S(a a b a a b)$

Multiple context-free grammars (MCFGs)

Predicates can now have several arguments
I.e. fan-out can be more than 1
$\operatorname{MCFL}(n)$: languages generated by MCFGs with fan-out n
Exponent of parsing complexity increases with fan-out
Example with fan-out 2 :

$$
\begin{aligned}
S(x y) & \leftarrow E(x, y) \\
E(x p, y q) & \leftarrow E(x, y) E(p, q) \\
E(a, a) & \leftarrow \\
E(b, b) & \leftarrow
\end{aligned}
$$

Generates copy language $\left\{w w \mid w \in\{a, b\}^{+}\right\}$

Linguistic motivations

MCFG is mildly context-sensitive formalism
(Further generalizes 'linear indexed grammars')
Believed to be powerful enough for natural language
And unable to generate anything that is unlike natural language

MIX language

$\mathrm{MIX}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a}=|w|_{b}=|w|_{c}\right\}$
One combination of a, b, c represents phrase with:
a is main verb
b is its subject
c is its object
Any number of such triples scrambled in any order
Models extreme free word order
Doesn't seem to happen in natural language
So people didn't expect this to be MCFL

MIX is MCFL!

Sylvain Salvati:

- MIX is rationally equivalent to O_{2} (to be discussed)
- So MIX is MCFL iff O_{2} is MCFL
- Proof that O_{2} is generated by MCFG
- Geometric arguments (two-dimensional)
- Uses $z \mapsto e^{2 i \pi z}$, for $z \in \mathbb{C} \backslash\{0\}$

Journal of Computer and System Sciences 81, pp. 1252-1277, 2015

O_{n} languages

For $n \geq 1$, let $\Sigma_{n}=\left\{a_{1}, \ldots, a_{n}, \overline{a_{1}}, \ldots, \overline{a_{n}}\right\}$

$$
O_{n}=\left\{\left.w \in \Sigma_{n}^{*}\left|\forall_{i}\right| w\right|_{a_{i}}=|w| \overline{a_{i}}\right\}
$$

State of the art:

- O_{1} is an MCFL(1) = CFL Easy
- O_{2} is an MCFL(2) Salvati's proof
- O_{3} is an MCFL(3) ???

There seems to be no way to generalize Salvati's proof

Proof for O_{1}

$$
\begin{align*}
S(x) & \leftarrow R(x) \tag{1}\\
R(x y y) & \leftarrow R(x) R(y) \\
R(a x \bar{a}) & \leftarrow R(x) \\
R(\bar{a} x a a) & \leftarrow R(x) \\
R(\varepsilon) & \leftarrow \tag{5}
\end{align*}
$$

$R(\bar{a} \bar{a} a a a \bar{a})$? Use (2), $R(\bar{a} \bar{a} a a), R(a \bar{a})$
$R(\bar{a} \bar{a} a a)$? Use (4), $R(\bar{a} a)$
Etc.

Needed grammar for O_{2}

$$
\begin{align*}
S(x y) & \leftarrow R(x, y) \tag{1}\\
R(x p, y q) & \leftarrow R(x, y) R(p, q) \tag{2}\\
R(x p, q y) & \leftarrow R(x, y) R(p, q) \tag{3}\\
R(x p y, q) & \leftarrow R(x, y) R(p, q) \tag{4}\\
R(p, x q y) & \leftarrow R(x, y) R(p, q) \\
R(a, \bar{a}) & \leftarrow \\
R(\bar{a}, a) & \leftarrow \\
R(b, \bar{b}) & \leftarrow \\
R(\bar{b}, b) & \leftarrow \\
R(\varepsilon, \varepsilon) & \leftarrow
\end{align*}
$$

Derivation for O_{2}

$S(a \bar{b} \bar{a} \bar{b} \bar{a} b b a)$

(1)

Remember:

$$
\begin{equation*}
R(x p y, q) \leftarrow R(x, y) R(p, q) \tag{4}
\end{equation*}
$$

Mark-Jan Nederhof University of St Andrews

Does grammar generate O_{2} ?

Easy: if there is derivation of $R(x, y)$ then $x y \in O_{2}$
Difficult: if $x y \in O_{2}$ then there is derivation of $R(x, y)$
This is all we need !!!
Remember:

$$
\begin{equation*}
S(x y) \leftarrow R(x, y) \tag{1}
\end{equation*}
$$

Proof by induction

How to prove $x y \in O_{2}$ implies $R(x, y)$?
Induction on |xy|
Only interesting case requiring inductive hypothesis:

- $|x y| \geq 4$
- no non-empty substring of x or of y is in O_{2}

To prove:
Some binary rule is always applicable to divide pair (x, y) into four strings, to use inductive hypothesis on two shorter pairs

Geometry for O_{2}

- a is 'right'
- \bar{a} is 'left'
- bis 'up'
- \bar{b} is 'down'
$a \bar{b} \bar{a} \bar{b} \bar{a} b, b a$
$-2-1 \quad 0 \quad 1 \quad 2$

-3
$P[1]=(-1,-1), P[k]=k * P[1]$ for $k \in \mathbb{Z}$
E.g. $P[0]=(0,0), P[-5]=(5,5)$
$A[k]$ is path of first string from $P[k]$
$B[k]$ is path of second string from $P[k]$

Three rule applications (1)

$a b a \bar{b} \bar{b}, \bar{a} \bar{a} b$

Remember:

$$
\begin{equation*}
R(x p, y q) \leftarrow R(x, y) R(p, q) \tag{2}
\end{equation*}
$$

Let $x=a, y=\bar{a}$

Three rule applications (2)

baaab, $\bar{a} \bar{a} \bar{b} \bar{b} \bar{a}$

Remember:

$$
\begin{equation*}
R(x p, q y) \leftarrow R(x, y) R(p, q) \tag{3}
\end{equation*}
$$

Let $x=b a$ and $y=\bar{b} \bar{a}$

Three rule applications (3)

$b b a a \bar{b} a a \bar{b} \bar{a}, \bar{a} \bar{a} \bar{a}$

Remember:

$$
\begin{equation*}
R(x p y, q) \leftarrow R(x, y) R(p, q) \tag{4}
\end{equation*}
$$

Let $x=b$ and $y=a \bar{b} \bar{a}$
Note $d_{A[0]}(Q)=6>d_{A[1]}(Q)=1$
where $d_{C}(Q)$ is path distance of Q from start of path C

Suppose no rules are applicable

Then four constraints must hold:
(i) angle in $P[0]$ between beginning of $A[0]$ and that of $B[0]$ is not 180°
(ii) $A[0] \cap B[1]=\{P[0], P[1]\}$
(iii) $\nexists Q \in(A[0] \cap A[1]) \backslash\{P[1]\}$ such that $d_{A[0]}(Q)>d_{A[1]}(Q)$
(iv) $\nexists Q \in(B[0] \cap B[1]) \backslash\{P[0]\}$ such that $d_{B[1]}(Q)>d_{B[0]}(Q)$
(No self-intersections: no non-empty substring of x or y in O_{2})
Can we derive a contradiction from this ?
How to 'tame' the myriad possibilities of paths A and B ?

Excursion

Excursion from right between Q_{1} and Q_{2}

Excursion truncated

$$
\ell[k-1]
$$

$$
\ell[k+1]
$$

\vdots
\vdots $P\left[{ }^{\bullet}+2\right]$

Truncate excursions without violating four constraints !!!

Regions and area of excursion

Regions of excursion: enclosed by path and line
Area of excursion: total surface area of regions

Excursion is filled:
if its regions contain some $P\left[k^{\prime}\right]$
Excursion is unfilled: otherwise

Normal form

A and B are in normal form if all excursions exhaustively truncated
(without violating four constraints or introducing self-intersections)

Suppose some unfilled excursions remain
Take one with smallest area and find contradiction
Suppose some filled excursions remains and find contradiction
So no excursions remain !!!

Suppose truncation would introduce self-intersection

.... in unfilled excursion with smallest area
Exactly one crossing Two or more crossings $\ell[k]$ $\ell[k]$

Filled !!!

Area not smallest !!!

Suppose truncation would violate constraint (iii)

... in unfilled excursion with smallest area, one crossing,
$d_{A\left[k^{\prime}-1\right]}(Q)>d_{A\left[k^{\prime}\right]}\left(Q_{2}\right)$

Filled !!!

Area not smallest !!!

Filled excursions are impossible

One of two cases:

Final contradiction

Four constraints: L_{B} above L_{A} iff R_{A} above R_{B} (Impossible !!!)

Outlook

O_{3} is likely MCFL too, with fanout 3
Three dimensional arguments required
Partitioning space into 'top' and 'bottom' applicable to 3D
One more idea needed (related to braid theory)
Unclear yet how to redefine 'excursion' for 3D
Are $\mathrm{O}_{4}, \mathrm{O}_{5}, \ldots$ also MCFLs ?
Would mean MCFLs are closed under permutation closure
Full paper: http://arxiv.org/abs/1603.03610

