Two Kinds of Congruence Networks on Regular Semigroups

Ying-Ying Feng

${ }^{1}$ Foshan University, Guangdong, P. R. China ${ }^{2}$ University of York, York, UK

NBSAN, St Andrews, March 18, 2016

Outline

(1) Notation \& terminology
(2) $\mathcal{T K}$-network on inverse semigroups
(3) $\mathcal{T V}$-networks on regular semigroups

4 other work
$a \in S$ is regular
$-(\exists x \in S) a x a=a$

- regular semigroups
- all elements are regular
- inverse semigroup
- a regular semigroup whose idempotents commute
- congruence
- compatible equivalence relation, i.e.

$$
\left(\forall s, t, s^{\prime}, t^{\prime} \in S\right)\left[(s, t) \in \rho \text { and }\left(s^{\prime}, t^{\prime}\right) \in \rho\right] \Rightarrow\left(s s^{\prime}, t t^{\prime}\right) \in \rho
$$

- \mathcal{P}-type congruence
- S / ρ is a \mathcal{P}-type semigroup

Congruence

- kernel-trace approach

Let ρ be a congruence on S,
$\operatorname{tr} \rho=\left.\rho\right|_{E(S)}, \quad \operatorname{Ker} \rho=\{x \in S \mid(\exists e \in E(S)) \times \rho e\}$.

- inverse semigroup

1974, Scheiblich $\quad \rho=\rho_{(\operatorname{tr} \rho, \text { Ker } \rho)}$
1978, Petrich congruence pair

Definition

The pair (K, τ) is a congruence pair for S if K is a normal subsemigroup of S, τ is a normal congruence on $E(S)$, and these two satisfy:
(i) $a e \in K$, e $\tau a^{-1} a \Rightarrow a \in K \quad(a \in S, e \in E(S))$;
(ii) $k \in K \Rightarrow k k^{-1} \tau k^{-1} k$.

In such a case, define a relation $\rho_{(K, \tau)}$ on S by

$$
a \rho_{(K, \tau)} b \Longleftrightarrow a^{-1} a \tau b^{-1} b, a b^{-1} \in K
$$

Theorem

Let S be an inverse semigroup. If (K, τ) is a congruence pair for S, then $\rho_{(K, \tau)}$ is the unique congruence ρ on S for which $\operatorname{Ker} \rho=K$ and $\operatorname{tr} \rho=\tau$. Conversely, if ρ is a congruence on S, then $(\operatorname{Ker} \rho, \operatorname{tr} \rho)$ is a congruence pair for S and $\rho_{(K, \tau)}=\rho$.

Characterization of congruences

Inverse semigroup

1974, Scheiblich
1978, Petrich
$\rho=\rho_{(\operatorname{tr} \rho, \operatorname{Ker} \rho)}$
congruence pair

Regular semigroup
1979, Feigenbaum

1986, Pastijn - Petrich

Congruence pair

Definition

A pair (K, τ) is a congruence pair for S if
(i) K is a normal subset of S,
(ii) τ is a normal equivalence on $E(S)$,
(iii) $K \subseteq \operatorname{Ker}(\mathcal{L} \tau \mathcal{L} \tau \mathcal{L} \cap \mathcal{R} \tau \mathcal{R} \tau \mathcal{R})^{b}$,
(iv) $\tau \subseteq \operatorname{tr} \pi_{K}$.

In such a case, we define

$$
\rho_{(K, \tau)}=\pi_{K} \cap(\mathcal{L} \tau \mathcal{L} \tau \mathcal{L} \cap \mathcal{R} \tau \mathcal{R} \tau \mathcal{R})^{b} .
$$

Theorem

Let S be a regular semigroup. If (K, τ) is a congruence pair for S, then $\rho_{(K, \tau)}$ is the unique congruence ρ on S for which $\operatorname{Ker} \rho=K$ and $\operatorname{tr} \rho=\tau$. Conversely, if ρ is a congruence on S, then $(\operatorname{Ker} \rho, \operatorname{tr} \rho)$ is a congruence pair for S and $\rho=\rho_{(K, \tau)}$.

Definition

A triple (γ, K, δ) consisting of normal equivalences $\gamma \in \mathcal{E}(S / \mathcal{L})$ and $\delta \in \mathcal{E}(S / \mathcal{R})$ and a normal subset $K \subseteq S$, is a congruence triple if (i) $\bar{\gamma}=(\bar{\gamma} \cap \bar{\delta})^{b} \vee \mathcal{L}, \bar{\delta}=(\bar{\gamma} \cap \bar{\delta})^{b} \vee \mathcal{R}$;
(ii) $K \subseteq \operatorname{Ker} \bar{\gamma}^{b}, \bar{\gamma} \subseteq \theta_{K}^{b} \vee \mathcal{L}$;
(iii) $K \subseteq \operatorname{Ker} \bar{\delta}^{b}, \bar{\delta} \subseteq \theta_{K}^{b} \vee \mathcal{R}$.

If this is the case, we define

$$
\rho_{(\gamma, K, \delta)}=\left(\bar{\gamma} \cap \theta_{K} \cap \bar{\delta}\right)^{b} .
$$

Theorem

Let S be a regular semigroup. If (γ, K, δ) is a congruence triple for S, then $\rho_{(\gamma, K, \delta)}$ is the unique congruence ρ on S such that γ is the \mathcal{L}-part of $\rho, K=\operatorname{Ker} \rho$ and δ is the \mathcal{R}-part of ρ. Conversely, if ρ is a congruence on S, then $(\gamma, K, \delta)=((\rho \vee \mathcal{L}) / \mathcal{L}, \operatorname{Ker} \rho,(\rho \vee \mathcal{R}) / \mathcal{R})$ is a congruence triple for S and $\rho=\rho_{(\gamma, K, \delta)}$.

Congruence

- kernel-trace approach

Let ρ be a congruence on S,

$$
\begin{aligned}
& \operatorname{tr} \rho=\left.\rho\right|_{E(S)}, \quad \operatorname{Ker} \rho=\{x \in S \mid(\exists e \in E(S)) \times \rho e\} . \\
& \rho=\rho_{(\operatorname{tr} \rho, \operatorname{Ker} \rho)} .
\end{aligned}
$$

- \mathcal{T}, \mathcal{K}-relation

Let $\rho, \theta \in \mathcal{C}(S)$,

$$
\begin{array}{ll}
\rho \mathcal{T} \theta \Longleftrightarrow \operatorname{tr} \rho=\operatorname{tr} \theta, & \rho \mathcal{K} \theta \Longleftrightarrow \operatorname{Ker} \rho=\operatorname{Ker} \theta \\
\rho \mathcal{U} \theta \Longleftrightarrow \rho \cap \leq=\theta \cap \leq, & \rho \mathcal{V} \theta \Longleftrightarrow \rho \mathcal{U} \theta \text { and } \rho \mathcal{K} \theta
\end{array}
$$

where \leq is the natural partial order on $E(S)$.

- $\mathcal{T} \cap \mathcal{K}=\varepsilon_{\mathcal{C}(S)}=\mathcal{T} \cap \mathcal{V}$

Definition

A triple (γ, π, δ) consisting of normal equivalences $\gamma \in \mathcal{E}(S / \mathcal{L})$ and $\delta \in \mathcal{E}(S / \mathcal{R})$ and a \mathcal{V}-normal congruence π on S, is a $\mathcal{V} \mathcal{T}$-congruence triple if (i) $\bar{\gamma}=(\bar{\gamma} \cap \bar{\delta})^{b} \vee \mathcal{L}, \bar{\delta}=(\bar{\gamma} \cap \bar{\delta})^{b} \vee \mathcal{R}$;
(ii) $\pi \subseteq\left(\bar{\gamma}^{b}\right)^{V}, \bar{\gamma} \subseteq \pi \vee \mathcal{L}$;
(iii) $\pi \subseteq\left(\bar{\delta}^{b}\right)^{\vee}, \bar{\delta} \subseteq \pi \vee \mathcal{R}$.

If this is the case, we define

$$
\rho_{(\gamma, \pi, \delta)}=(\bar{\gamma} \cap \pi \cap \bar{\delta})^{b} .
$$

Theorem

Let S be a regular semigroup. If (γ, π, δ) is a $\mathcal{V} \mathcal{T}$-congruence triple for S, then $\rho_{(\gamma, \pi, \delta)}$ is the unique congruence ρ on S such that γ is the \mathcal{L}-part of ρ, π is the \mathcal{V}-part of ρ and δ is the \mathcal{R}-part of ρ. Conversely, if ρ is a congruence on S, then $(\gamma, \pi, \delta)=\left((\rho \vee \mathcal{L}) / \mathcal{L}, \overline{\mathcal{V}_{S / \rho}},(\rho \vee \mathcal{R}) / \mathcal{R}\right)$ is a congruence triple for S and $\rho=\rho_{(\gamma, \pi, \delta)}$.

$$
\text { - } \begin{aligned}
\rho \mathcal{T} \theta & \Longleftrightarrow \operatorname{tr} \rho=\operatorname{tr} \theta, \quad \rho \mathcal{K} \theta \Longleftrightarrow \operatorname{Ker} \rho=\operatorname{Ker} \theta, \\
\rho \mathcal{U} \theta & \Longleftrightarrow \rho \cap \leq=\theta \cap \leq, \quad \mathcal{V}=\mathcal{U} \cap \mathcal{K} .
\end{aligned}
$$

Result
For any $\rho \in \mathcal{C}(S), \rho \mathcal{T}=[\rho t, \rho T], \rho \mathcal{K}=[\rho k, \rho K], \rho \mathcal{U}=[\rho u, \rho U]$,
$\rho \mathcal{V}=[\rho v, \rho V]$, where

$$
\begin{gathered}
\rho t=(\operatorname{tr} \rho)^{\sharp}, \quad \rho T=\overline{\mathcal{H}_{S / \rho}} \\
\rho k=\left\{\left(x, x^{2}\right) \in S \times S \mid x \in \operatorname{Ker} \rho\right\}^{\sharp}, \quad \rho K=\theta_{\operatorname{Ker} \rho}^{b}, \\
\rho u=(\rho \cap \leq)^{\sharp}, \quad \rho U=\overline{\mathscr{U}_{S / \rho}} \\
\rho v=\rho_{U} \vee \rho_{K}, \quad \rho V=\rho U \cap \rho K=\overline{\mathscr{V}_{S / \rho}} b .
\end{gathered}
$$

Congruence

- kernel-trace approach
- \mathcal{T}, \mathcal{K}-relation
- congruence networks
- single out various classes of semigroups of particular interest
- structure

Congruence network

$\mathcal{T} \mathcal{K}$-network of ρ

$\mathcal{T K}$-min network of ρ

Congruence network

$\mathcal{T} \cap \mathcal{V}=\varepsilon$

$\mathcal{T} \mathcal{K}$-network of ρ
$\mathcal{T V}$-network of ρ

Inverse semigroup

$\mathcal{T} \mathcal{K}$ min-network of ω
[1982, Petrich - Reilly]

Regular semigroup

$\mathcal{T} \mathcal{K}$ min-network of ω [1988, Alimpić - Krgović]

$\mathcal{T} \mathcal{K}$-network on inverse semigroup

$\mathcal{T} \mathcal{K}$ min-network of ω

$E \omega$-Clifford semigroup and $E \omega$-E-reflexive semigroup

Proposition

The following conditions on an inverse semigroup S are equivalent.
(1) S is an $E \omega$-Clifford semigroup;
(2) $\sigma \cap \mathcal{L}$ is a congruence;
(3) $\sigma \cap \mathcal{R}$ is a congruence;
(4) $\sigma \cap \mathcal{L}=\sigma \cap \mathcal{R}$;
(5) $\sigma \cap \mathcal{L}=\sigma \cap \mu$;
(6) there exists an idempotent
separating E-unitary congruence on S;
(7) $\pi \subseteq \mu$;
(8) $\pi t=\varepsilon$;
(9) e e is a Clifford semigroup for every e $\in E(S)$,;
(10) S satisfies the implication
$x y=x \Rightarrow y \in E(S) \zeta$;
(11) $E(S) \omega \subseteq E(S) \zeta$;
(12) $\pi \cap \mathcal{F}=\varepsilon$.

Theorem

The following conditions on an inverse semigroup S are equivalent.
(1) S is $E \omega$ - E-reflexive;
(2) $\pi \cap \mathcal{F}$ is a congruence;
(3) $\pi \cap \mathcal{C}$ is a congruence;
(4) $\pi \cap \mathcal{F}=\pi \cap \tau$;
(5) $\pi \cap \mathcal{C}=\pi \cap \tau$;
(6) there exists an idempotent pure Ew-Clifford congruence on S;
(7) $\zeta \subseteq \tau$;
(8) $\zeta k=\varepsilon$;
(9) $e \pi$ is E-unitary for every $e \in E(S)$;
(10) S satisfies the implication
$x y=x, x \pi y \Rightarrow y \in E(S)$;
(11) $\zeta \cap \mathcal{L}=\varepsilon$.

Proposition

The following statements
concerning a congruence ρ on an inverse semigroup S are equivalent.
(1) ρ is an E ω-Clifford congruence;
(2) $\pi_{\rho} \subseteq \rho T$, where π_{ρ} is the least

E-unitary congruence on S
containing ρ;
(3) $\operatorname{tr} \pi_{\rho}=\operatorname{tr} \rho$.

Proposition

The following statements concerning a congruence ρ on an inverse semigroup S are equivalent.
(1) ρ is E ω-E-reflexive;
(2) $\zeta_{\rho} \subseteq \rho K$, where ζ_{ρ} is the least

E ω-Clifford congruence on S containing ρ;
(3) $\operatorname{Ker} \zeta_{\rho}=\operatorname{Ker} \rho$.

	ω	σ	η	ν	π	λ	ζ	χ	μ	τ
σ	$\begin{aligned} & E \omega= \\ & S \end{aligned}$									
η	$\begin{aligned} & \text { no c. } \\ & \text { pr. } \\ & \text { ideals } \end{aligned}$	$E \omega=$ S, no c. pr. ideals								
ν	$\begin{aligned} & \sigma= \\ & \eta= \\ & \omega \end{aligned}=$	no ideals	$\begin{aligned} & E_{A} \omega= \\ & A(\forall \eta- \\ & \text { cl. } A) \\ & \hline \end{aligned}$							
π	$\begin{array}{ll} \hline \sigma & = \\ \eta & = \\ \omega & \end{array}$	$\begin{aligned} & \operatorname{tr} \pi= \\ & \omega \end{aligned}$	$\begin{aligned} & E \omega= \\ & S \end{aligned}$							
λ	$\begin{array}{ll} \sigma & = \\ \eta & = \\ \omega \end{array}$	$\begin{aligned} & \operatorname{tr} \pi= \\ & \omega \end{aligned}$	$\begin{aligned} & E_{A} \omega= \\ & A(\forall \eta- \\ & \text { cl. } A) \end{aligned}$							
ζ	$\begin{array}{ll} \sigma & = \\ \eta & = \\ \omega \end{array}$	$\operatorname{tr}_{\omega}^{\operatorname{tr} \pi}=$	$\begin{aligned} & E_{A} \omega= \\ & A(\forall \eta- \\ & \text { cl. } A) \\ & \hline \end{aligned}$							
χ	$\begin{aligned} & \sigma= \\ & \eta= \\ & \omega \end{aligned}=$	$\begin{aligned} & \operatorname{tr} \pi= \\ & \omega \end{aligned}$	$\begin{aligned} & E_{A} \omega= \\ & A(\forall \eta- \\ & \text { cl. } A) \\ & \hline \end{aligned}$							
μ	group	trivial	Clifford	semil.	$E \omega=$ $E \zeta$ and $\operatorname{tr} \pi=$					
τ	semil.	E-un.	trivial	E-refl. $\operatorname{tr} \pi=$ $\operatorname{tr} \eta$	E-un. E-disj.	E-refl. $\operatorname{tr} \tau=$ $\operatorname{tr} \lambda$	$E \omega$ - E-refl. $\operatorname{tr} \tau=$ $\operatorname{tr} \pi$	E-disj. $E \omega-E-$ refl.	E-disj. antig.	
ε	trivial	group	semil.	Clifford	E-un.	E-refl.	$E \omega$ Clifford	$\begin{aligned} & E \omega-E- \\ & \text { refl. } \end{aligned}$	antig.	E-disj.

Question

$\mathcal{T K}$-network on inverse semigroup

$\mathcal{T} \mathcal{K}$ min-network of ω

$\mathcal{T V}$-network of ω

$$
\begin{aligned}
& \rho \mathcal{K} \theta \Longleftrightarrow \operatorname{Ker} \rho=\operatorname{Ker} \theta \\
& \rho \mathcal{U} \theta \Longleftrightarrow \rho \cap \leq=\theta \cap \leq \\
& \mathcal{V}=\mathcal{U} \cap \mathcal{K}
\end{aligned}
$$

Inverse semigroup $\quad \mathcal{V}=\varepsilon$

$\mathcal{T V}$-network of ω

$\mathcal{T V}$-network of ω

Regular semigroup

Inverse semigroup

Regular semigroup

$\mathcal{T V}$-network of ω

Regular semigroup

$\mathcal{T} \mathcal{V}$-min network of ω

$\mathcal{T V}$-network of ω

$\mathcal{T} \mathcal{V}$-min network of ω
$\mathcal{T V}$-network of ω

$\mathcal{T V}$-network of ε

Theorem

For a congruence ρ on a regular semigroup S.
(1) ρt is over bands $\Longleftrightarrow \rho t=\rho \cap \tau \Longrightarrow \rho$ is over E-unitary semigroups;
(2) ρt is over rectangular bands $\Longleftrightarrow \rho t=\rho \cap \varepsilon V \Longrightarrow \rho$ is over rectangular groups;
(3) ρv is over groups $\Longleftrightarrow \rho v=\rho \cap \mu \Longrightarrow \rho$ is over completely simple semigroups;
(4) ρk is over groups $\Longleftrightarrow \rho k=\rho \cap \mu \Longrightarrow \rho$ is over cryptogroups.

Corollary

On a regular semigroup S, the following statements hold.
(1) τT is over E-unitary semigroups;
(2) $(\varepsilon V) T$ is over rectangular groups;
(3) μV is over completely simple semigroups;
(4) $\mu \mathrm{K}$ is over cryptogroups.

$\mathcal{T} \mathcal{V}$-network of ε

Cryptogroup

$\mathcal{T} \mathcal{V}$-max network of ε
$\mathcal{T V}$-network of ε

$\mathcal{T V}$-network of η

$\mathcal{T} \mathcal{V}$-min network of η

\mathcal{V}-classes of special congruences

- orthogroup
orthodox completely regular semigroup
- rectangular group
orthodox completely simple semigroup;
equivalently, a direct product of a rectangular band and a group

S	orthodox	orthogroup	rectangular group	band
\Longleftrightarrow	$\varepsilon V=\gamma$	$\tau V=\nu$	$\varepsilon V=\sigma$	$\varepsilon V=\eta$
$\Longleftrightarrow \forall \rho \in \mathcal{C}(S)$	$\rho V=\rho \vee \gamma$	$\rho V=\rho \vee \nu$	$\rho V=\rho \vee \sigma$	$\rho V=\rho \vee \eta$
$\Longleftrightarrow \rho V$ is	inverse	Clifford	group	semilattice
$\Longleftrightarrow S$ is coextension of	inverse semigroup by rectangular bands	Clifford semigroup by rectangular bands	group by rectangular bands	

ρV inverse [Clifford, group, semilattice]

S	E-solid	CCS	CGS	completely regular
$\Longleftrightarrow \mathscr{U}^{0}$	inverse	Clifford	group	semilattice
$\Longleftrightarrow \rho U$	inverse	Clifford	group	semilattice

- E-solid
$\left.\left.\mathcal{R}\right|_{E} \circ \mathcal{L}\right|_{E}=\left.\left.\mathcal{L}\right|_{E} \circ \mathcal{R}\right|_{E}$
- CCS
coextensions of Clifford semigroups by completely simple semigroups
- CGS
coextensions of groups by completely simple semigroups

Congruence

- kernel-trace approach
- \mathcal{T}, \mathcal{K}-relation
- congruence networks
- operator semigroup

Operator semigroup

Four operators:

$$
\begin{gathered}
T: \lambda \mapsto \lambda T, \quad t: \lambda \mapsto \lambda t, \quad K: \lambda \mapsto \lambda K, \quad k: \lambda \mapsto \lambda k . \\
\Gamma=\{T, t, K, k\}
\end{gathered}
$$

- $\mathcal{T K}$-network

$$
\rho, \rho T, \rho t, \rho K, \rho k, \rho T K, \rho T k, \cdots
$$

- $\Gamma^{+}, \mathcal{T} \mathcal{K}$-operator semigroup [1992, Petrich]
- relation Σ - valid in all networks of congruences
- $\Gamma^{+} / \Sigma^{\#}$

$\mathcal{T} \mathcal{K}$-network of ω

Lemma

Operators 「 satisfy the following relations Σ.
(1) $K^{2}=k K=K, \quad k^{2}=K k=k$,

$$
t^{2}=T t=t, \quad T^{2}=t T=T
$$

(2) $K T K=T K T=T K, \quad t k t=k t k=k t$;
(3) $t K t=t K$;
(4) $k T=T k$.

$\mathcal{T K}$-operator semigroup for Clifford semigroups

Denote

$$
\begin{array}{lll}
\varepsilon=k t, & \tau=k t K, & \tau \vee \eta=k t K T, \\
\omega=T K, & \sigma=T K t, & \sigma \cap \eta=T K t k .
\end{array}
$$

Let

$$
\Delta=\{\varepsilon, \sigma, \eta, \tau, \sigma \cap \eta, \tau \vee \eta, \omega\}
$$

Theorem

Let S be a Clifford semigroup. The set
$\Omega=\{K, \quad K T, \quad K t, \quad K t K, \quad K t k, \quad K t K T, \quad k$, $t, \quad t k, \quad t K, \quad t K T, \quad T\} \cup \Delta$
is a system of representatives for the congruence on Γ^{+}generated by the relations Σ.

Theorem

The $\mathcal{T} \mathcal{K}$-operator semigroup for Clifford semigroups is $\Gamma^{+} / \Sigma^{\sharp}$.

- completely simple semigroup [1994, Petrich]
- cryptogroup [2000, Wang]
- bisimple ω-semigroup [2000, Wang]
- E-unitary completely regular semigroup [2001, Luo - Wang]
- free monogenic inverse semigroup [2014, Long - Wang]
- congruence

$$
\rho=\rho_{(\operatorname{tr} \rho, \operatorname{Ker} \rho)}
$$

- $\mathcal{T}, \mathcal{K}, \mathcal{U}, \mathcal{V}$
$\rho \mathcal{T} \theta \Longleftrightarrow \operatorname{tr} \rho=\operatorname{tr} \theta$,
$\rho \mathcal{K} \theta \Longleftrightarrow \operatorname{Ker} \rho=\operatorname{Ker} \theta$,
$\rho \mathcal{U} \theta \Longleftrightarrow \rho \cap \leq=\theta \cap \leq$,
$\mathcal{V}=\mathcal{U} \cap \mathcal{K}$.
- congruence network
- operator semigroup
$\Gamma^{+} / \Sigma^{\sharp}$, where $\Gamma=\{T, t, K, k\}$.

\mathcal{T} K-min network of ω

