CW-decompositions, Leray numbers and the representation theory and cohomology of left regular band algebras

Stuart Margolis, Bar-Ilan University
Franco Saliola, Université du Québec à Montréal Benjamin Steinberg, City College of New York

ALFA15 and Volkerfest: LABRI, Bordeaux, France June 15-17, 2015

algebraic invariants of monoids
 combinatorial topology of posets

The monoid of faces of a central hyperplane arrangement a set of hyperplanes partitions \mathbb{R}^{n} into faces:

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:
the origin

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

rays emanating from the origin

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

The monoid of faces of a central hyperplane arrangement
a set of hyperplanes partitions \mathbb{R}^{n} into faces:

chambers cut out by the hyperplanes

The Monoid Structure: Product of Faces

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

The Monoid Structure: Product of Faces

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

The Monoid Structure: Product of Faces

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

The Monoid Structure: Product of Faces

$x y:=\left\{\begin{array}{l}\text { the face first encountered after a small } \\ \text { movement along a line from } x \text { toward } y\end{array}\right.$

Left-regular bands (LRBs)

Definition (LRB)
A left-regular band is a semigroup B satisfying the identities:

- $x^{2}=x$
- $x y x=x y$

Left-regular bands (LRBs)

Definition (LRB)

A left-regular band is a semigroup B satisfying the identities:
$x^{2}=x$

- $x y x=x y$
(B is a "band")
("left-regularity")

Left-regular bands (LRBs)

Definition (LRB)

A left-regular band is a semigroup B satisfying the identities:

- $x^{2}=x$
- $x y x=x y$
(B is a "band")
("left-regularity")

Remarks

- Informally: identities say ignore "repetitions".
- We consider only finite monoids here.

Theorem
Let B be a semigroup consisting of idempotents. The following are equivalent:

1. B is an $L R B$.

Theorem
Let B be a semigroup consisting of idempotents. The following are equivalent:

1. B is an $L R B$.
2. The relation on B defined by $x \leq y$ iff $x B \subseteq y B$ is a partial order.

Theorem
Let B be a semigroup consisting of idempotents. The following are equivalent:

1. B is an $L R B$.
2. The relation on B defined by $x \leq y$ iff $x B \subseteq y B$ is a partial order.

Thus, for all $x, y \in B, x B=y B$ iff $x=y$.

Theorem
Let B be a semigroup consisting of idempotents. The following are equivalent:

1. B is an $L R B$.
2. The relation on B defined by $x \leq y$ iff $x B \subseteq y B$ is a partial order.

Thus, for all $x, y \in B, x B=y B$ iff $x=y$.
B is a left partially ordered monoid with respect to \leq :

Theorem
Let B be a semigroup consisting of idempotents. The following are equivalent:

1. B is an $L R B$.
2. The relation on B defined by $x \leq y$ iff $x B \subseteq y B$ is a partial order.

Thus, for all $x, y \in B, x B=y B$ iff $x=y$.
B is a left partially ordered monoid with respect to \leq :
$x B \subseteq y B \Rightarrow m x B \subseteq m y B$ for all $x, y, m \in B$.

Theorem

Let B be a semigroup consisting of idempotents. The following are equivalent:

1. B is an $L R B$.
2. The relation on B defined by $x \leq y$ iff $x B \subseteq y B$ is a partial order.

Thus, for all $x, y \in B, x B=y B$ iff $x=y$.
B is a left partially ordered monoid with respect to \leq :
$x B \subseteq y B \Rightarrow m x B \subseteq m y B$ for all $x, y, m \in B$.
B also acts on the left of the order complex $\Delta((B, \leq))$, the simplicial complex of all chains in the poset (B, \leq).

Theorem
Let B be a semigroup consisting of idempotents. The following are equivalent:

1. B is an $L R B$.
2. The relation on B defined by $x \leq y$ iff $x B \subseteq y B$ is a partial order.

Thus, for all $x, y \in B, x B=y B$ iff $x=y$.
B is a left partially ordered monoid with respect to \leq :
$x B \subseteq y B \Rightarrow m x B \subseteq m y B$ for all $x, y, m \in B$.
B also acts on the left of the order complex $\Delta((B, \leq))$, the simplicial complex of all chains in the poset (B, \leq).
$\Delta((B, \leq))$ is contractible, since 1 is a cone point.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

Figure: The sign sequences of the faces of the hyperplane arrangement in \mathbb{R}^{2} consisting of three distinct lines. The geometric product is just multiplication in $\{0,+,-\}^{3}$.

All hyperplane arrangement LRBs are submonoids of $\{0,+,-\}^{n}$, where $n=$ the number of hyperplanes.

Representation Theory of LRBs

- Simple $\mathbb{K} B$-modules and its Jacobson Radical Let $\Lambda(B)$ denote the lattice of principal left ideals of B, ordered by inclusion:

$$
\Lambda(B)=\{B b: b \in B\} \quad B a \cap B b=B(a b)
$$

Monoid surjection:

$$
\begin{aligned}
\sigma: B & \rightarrow \Lambda(B) \\
b & \mapsto B b
\end{aligned}
$$

Representation Theory of LRBs

- Simple $\mathbb{K} B$-modules and its Jacobson Radical Let $\Lambda(B)$ denote the lattice of principal left ideals of B, ordered by inclusion:

$$
\Lambda(B)=\{B b: b \in B\} \quad B a \cap B b=B(a b)
$$

Monoid surjection:

$$
\begin{aligned}
\sigma: B & \rightarrow \Lambda(B) \\
b & \mapsto B b \\
\operatorname{ker}(\bar{\sigma}) & =\operatorname{rad}(\mathbb{K} B)
\end{aligned}
$$

where $\bar{\sigma}: \mathbb{K} B \rightarrow \mathbb{K}(\Lambda(B))$ is the extended morphism.

Representation Theory of LRBs

- Simple $\mathbb{K} B$-modules and its Jacobson Radical Let $\Lambda(B)$ denote the lattice of principal left ideals of B, ordered by inclusion:

$$
\Lambda(B)=\{B b: b \in B\} \quad B a \cap B b=B(a b)
$$

Monoid surjection:

$$
\begin{aligned}
\sigma: B & \rightarrow \Lambda(B) \\
b & \mapsto B b \\
\operatorname{ker}(\bar{\sigma}) & =\operatorname{rad}(\mathbb{K} B)
\end{aligned}
$$

where $\bar{\sigma}: \mathbb{K} B \rightarrow \mathbb{K}(\Lambda(B))$ is the extended morphism. $\mathbb{K}(\Lambda(B))$ is semisimple and so simple $\mathbb{K} B$-modules S_{X} are indexed by $X \in \Lambda(B)$.

Semisimple Quotient and Simple Modules

$$
\mathbb{K} B / \operatorname{rad}(\mathbb{K} B) \cong \mathbb{K} B / \operatorname{ker}(\bar{\sigma}) \cong \mathbb{K} \Lambda(B) \cong \mathbb{K}^{\Lambda(B)}
$$

For each $X \in \Lambda(B)$, the corresponding simple module is 1 dimensional and is given by the following action.

$$
\rho_{X}(a)= \begin{cases}1, & \text { if } \sigma(a) \geq X, \\ 0, & \text { otherwise }\end{cases}
$$

Let S_{X} denote the corresponding simple module.

Semisimple Quotient and Simple Modules

$$
\mathbb{K} B / \operatorname{rad}(\mathbb{K} B) \cong \mathbb{K} B / \operatorname{ker}(\bar{\sigma}) \cong \mathbb{K} \Lambda(B) \cong \mathbb{K}^{\Lambda(B)}
$$

For each $X \in \Lambda(B)$, the corresponding simple module is 1 dimensional and is given by the following action.

$$
\rho_{X}(a)= \begin{cases}1, & \text { if } \sigma(a) \geq X \\ 0, & \text { otherwise }\end{cases}
$$

Let S_{X} denote the corresponding simple module. We see then that $\mathbb{K} B$ is a basic algebra: All of its simple modules are 1 dimensional. Equivalently, $\mathbb{K} B$ has a faithful representation by triangular matrices.

Free $L R B$ on a set V :

- elements : repetition-free words on V

Free $L R B$ on a set V :

- elements : repetition-free words on V
- product : concatenate and remove repetitions

$$
c \cdot a d e c b=c a d e b
$$

Free $L R B$ on a set V :

- elements : repetition-free words on V
- product : concatenate and remove repetitions

$$
c \cdot a d e c b=c a d e b
$$

Tsetlin Library: "use a book, then put it at the front"

Free Partially-Commutative LRB

The free partially-commutative $\operatorname{LRB} F(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
F(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

Free Partially-Commutative LRB

The free partially-commutative $\operatorname{LRB} F(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
F(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

Examples

- If $E=\varnothing$, then $F(G)=$ free LRB on V.

Free Partially-Commutative LRB

The free partially-commutative $\operatorname{LRB} F(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
F(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

Examples

- If $E=\varnothing$, then $F(G)=$ free LRB on V.
- $F\left(K_{n}\right)=$ free commutative LRB, that is the free semilattice, on n generators.

Free Partially-Commutative LRB

The free partially-commutative $\operatorname{LRB} F(G)$ on a graph $G=(V, E)$ is the LRB with presentation:

$$
F(G)=\langle V| x y=y x \text { for all edges }\{x, y\} \in E\rangle
$$

Examples

- If $E=\varnothing$, then $F(G)=$ free LRB on V.
- $F\left(K_{n}\right)=$ free commutative LRB, that is the free semilattice, on n generators.
- LRB-version of the Cartier-Foata free partially-commutative monoid (aka trace monoids).

Acyclic orientations

Elements of $F(G)$ correspond to acyclic orientations of induced subgraphs of the complement \bar{G}.
Example

Acyclic orientation on induced subgraph on vertices $\{a, d, c\}$:

In $F(G): c a d=c d a=d c a(c$ comes before a since $c \rightarrow a)$

Random walk on $F(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Random walk on $F(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Random walk on $F(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Random walk on $F(G)$

States: acyclic orientations of the complement \bar{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a different LRB (graphical arrangement of G)

The (Karnofsky)-Rhodes Expansion of a Semilattice

If Λ is a semilattice let $\Delta(\Lambda)=\left\{x_{1}>x_{2} \ldots>x_{k} \mid x_{i} \in \Lambda\right\}$ be the set of chains in Λ.

The (Karnofsky)-Rhodes Expansion of a Semilattice

If Λ is a semilattice let $\Delta(\Lambda)=\left\{x_{1}>x_{2} \ldots>x_{k} \mid x_{i} \in \Lambda\right\}$ be the set of chains in Λ. Define a product on $\Delta(\Lambda)$ by:

The (Karnofsky)-Rhodes Expansion of a Semilattice

If Λ is a semilattice let $\Delta(\Lambda)=\left\{x_{1}>x_{2} \ldots>x_{k} \mid x_{i} \in \Lambda\right\}$ be the set of chains in Λ. Define a product on $\Delta(\Lambda)$ by:

$$
\left(x_{1}>x_{2} \ldots>x_{k}\right)\left(y_{1}>y_{2} \ldots>y_{l}\right)=
$$

The (Karnofsky)-Rhodes Expansion of a Semilattice

If Λ is a semilattice let $\Delta(\Lambda)=\left\{x_{1}>x_{2} \ldots>x_{k} \mid x_{i} \in \Lambda\right\}$ be the set of chains in Λ. Define a product on $\Delta(\Lambda)$ by:

$$
\begin{gathered}
\left(x_{1}>x_{2} \ldots>x_{k}\right)\left(y_{1}>y_{2} \ldots>y_{l}\right)= \\
\left(x_{1}>x_{2} \ldots>x_{k} \geq x_{k} y_{1} \geq x_{k} y_{2} \geq \ldots \geq x_{k} y_{l}\right)
\end{gathered}
$$

and then erasing equalities.

The (Karnofsky)-Rhodes Expansion of a Semilattice

If Λ is a semilattice let $\Delta(\Lambda)=\left\{x_{1}>x_{2} \ldots>x_{k} \mid x_{i} \in \Lambda\right\}$ be the set of chains in Λ. Define a product on $\Delta(\Lambda)$ by:

$$
\begin{gathered}
\left(x_{1}>x_{2} \ldots>x_{k}\right)\left(y_{1}>y_{2} \ldots>y_{l}\right)= \\
\left(x_{1}>x_{2} \ldots>x_{k} \geq x_{k} y_{1} \geq x_{k} y_{2} \geq \ldots \geq x_{k} y_{l}\right)
\end{gathered}
$$

and then erasing equalities.

- This is the (right) Rhodes expansion of Λ.

The (Karnofsky)-Rhodes Expansion of a Semilattice

If Λ is a semilattice let $\Delta(\Lambda)=\left\{x_{1}>x_{2} \ldots>x_{k} \mid x_{i} \in \Lambda\right\}$ be the set of chains in Λ. Define a product on $\Delta(\Lambda)$ by:

$$
\begin{gathered}
\left(x_{1}>x_{2} \ldots>x_{k}\right)\left(y_{1}>y_{2} \ldots>y_{l}\right)= \\
\left(x_{1}>x_{2} \ldots>x_{k} \geq x_{k} y_{1} \geq x_{k} y_{2} \geq \ldots \geq x_{k} y_{l}\right)
\end{gathered}
$$

and then erasing equalities.

- This is the (right) Rhodes expansion of Λ.
- It is an LRB whose \mathcal{R} order has Hasse diagram a tree and \mathcal{L} order is the Hasse diagram of Λ.

Other examples of LRBs :

Other examples of LRBs :

- oriented matroids

Other examples of LRBs :

- oriented matroids
- complex arrangements (Björner-Zeigler)

Other examples of LRBs :

- oriented matroids
- complex arrangements (Björner-Zeigler)
- oriented interval greedoids (Thomas-S.)

Other examples of LRBs :

- oriented matroids
- complex arrangements (Björner-Zeigler)
- oriented interval greedoids (Thomas-S.)
- CAT(0) cube complexes (M-S-S)

Other examples of LRBs :

- oriented matroids
- complex arrangements (Björner-Zeigler)
- oriented interval greedoids (Thomas-S.)
- CAT(0) cube complexes (M-S-S)
- path algebra of an acyclic quiver (M-S-S)

Other examples of LRBs:

- oriented matroids
- complex arrangements (Björner-Zeigler)
- oriented interval greedoids (Thomas-S.)
- CAT(0) cube complexes (M-S-S)
- path algebra of an acyclic quiver (M-S-S)

LRBs are everywhere:
Bidigare-Hanlon-Rockmore, Aguiar, Athanasiadis, Björner, Brown, Chung, Diaconis, Fulman, Graham, Hsiao, Lawvere, Mahajan, Margolis, Pike, Schützenberger, Steinberg, ...

Other examples of LRBs:

- oriented matroids
- complex arrangements (Björner-Zeigler)
- oriented interval greedoids (Thomas-S.)
- CAT(0) cube complexes (M-S-S)
- path algebra of an acyclic quiver (M-S-S)

LRBs are everywhere:
Bidigare-Hanlon-Rockmore, Aguiar, Athanasiadis, Björner, Brown, Chung, Diaconis, Fulman, Graham, Hsiao, Lawvere, Mahajan, Margolis, Pike, Schützenberger, Steinberg, ...

Other combinatorial semigroups :
Ayyer, Denton, Hivert, Schilling, Steinberg, Thiery, ...

Goal : Extensions

$$
\operatorname{Ext}_{B}^{n}(S, T)
$$

for simple modules S and T

Question: Given two modules S and T, how can they be combined to make new modules M ?

$$
S \subseteq M \quad \text { and } \quad T \cong M / S
$$

Question: Given two modules S and T, how can they be combined to make new modules M ?

$$
S \subseteq M \quad \text { and } \quad T \cong M / S
$$

Answers are encapsulated by short exact sequences :

$$
0 \longrightarrow S \xrightarrow{f} M \xrightarrow{g} T \longrightarrow 0
$$

Question: Given two modules S and T, how can they be combined to make new modules M ?

$$
S \subseteq M \quad \text { and } \quad T \cong M / S
$$

Answers are encapsulated by short exact sequences :

$$
0 \longrightarrow S \xrightarrow{f} M \xrightarrow{g} T \longrightarrow 0
$$

$\operatorname{Ext}^{1}(S, T)$: vector space of equiv. classes of SES

Main theorem as a haiku

For a LRB
the Extensions are poset
cohomology.

$$
\begin{gathered}
(B, \leq) \\
x \leq y \Leftrightarrow y x=x
\end{gathered}
$$

$$
\begin{gathered}
(B, \leq) \\
x \leq y \Leftrightarrow y x=x
\end{gathered}
$$

hyperplane arrangements :
face relation

$$
(\Lambda(B), \subseteq)
$$

$$
B x=\{b x: b \in B\}
$$

$$
\begin{gathered}
(B, \leq) \\
x \leq y \Leftrightarrow y x=x
\end{gathered}
$$

hyperplane arrangements :
face relation

$$
(\Lambda(B), \subseteq)
$$

$$
B x=\{b x: b \in B\}
$$

hyperplane arrangements : intersection lattice

$$
\begin{gathered}
(B, \leq) \\
x \leq y \Leftrightarrow y x=x
\end{gathered}
$$

hyperplane arrangements : face relation

$B_{[B x, B y)}=\left\{\begin{array}{c}\text { elements of } B \text { strictly below } y \text { and } \\ \text { weakly above elements that generate } B x\end{array}\right\}$

$B_{[B x, B y)}=\left\{\begin{array}{c}\text { elements of } B \text { strictly below } y \text { and } \\ \text { weakly above elements that generate } B x\end{array}\right\}$

$B_{[B x, B y)}=\left\{\begin{array}{c}\text { elements of } B \text { strictly below } y \text { and } \\ \text { weakly above elements that generate } B x\end{array}\right\}$

$B_{[B x, B y)}=\left\{\begin{array}{c}\text { elements of } B \text { strictly below } y \text { and } \\ \text { weakly above elements that generate } B x\end{array}\right\}$

$B_{[B x, B y)}=\left\{\begin{array}{c}\text { elements of } B \text { strictly below } y \text { and } \\ \text { weakly above elements that generate } B x\end{array}\right\}$

hyperplane arrangements: restriction and contraction

Main Theorem (M-S-S)

$$
\operatorname{Ext}^{n}\left(S_{X}, S_{Y}\right) \cong \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}\right)
$$

Main Theorem (M-S-S)

- simple modules are indexed by $\Lambda(B)$

Main Theorem (M-S-S)

- simple modules are indexed by $\Lambda(B)$
- $\Delta B_{[X, Y)}$ is the order complex of $B_{[X, Y)}$

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

	B	
$B a$	$B b$	$B c$
$B a b$	$B a c$	$B b c$
	$B a b c$	

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

B	B
$B a b$	$B a c$
$B a b c$	$B b c$

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

	B	
$B a$	$B b$	$B c$
$B a b$	$B a c$	$B b c$
	$B a b c$	

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

	B	
$B a$	$B b$	$B c$
$B a b$	$B a c$	$B b c$
	$B a b c$	

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ext}^{1}\left(S_{X}, S_{Y}\right) & =\operatorname{dim} \widetilde{H}^{0}\left(\Delta B_{[X, Y)}\right) \\
& =\#\left(\text { connected components of } \Delta B_{[X, Y)}\right)-1
\end{aligned}
$$

Quiver of an algebra is the directed graph where

- vertices are the simple modules
- \# arrows $S \rightarrow T$ is $\operatorname{dim} \operatorname{Ext}^{1}(S, T)$

Global dimension

Let A be a finite dimensional algebra.

- The projective dimension of an A-module M is the minimum length of a projective resolution
$\cdots \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$

Global dimension

Let A be a finite dimensional algebra.

- The projective dimension of an A-module M is the minimum length of a projective resolution
$\cdots \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$

Global dimension

Let A be a finite dimensional algebra.

- The projective dimension of an A-module M is the minimum length of a projective resolution
$\cdots \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$
- The global dimension $g l . \operatorname{dim} A$ is the sup of the projective dimensions of A-modules.

Global dimension

Let A be a finite dimensional algebra.

- The projective dimension of an A-module M is the minimum length of a projective resolution
$\cdots \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$
- The global dimension $g l . \operatorname{dim} A$ is the sup of the projective dimensions of A-modules.
- $\operatorname{gl} . \operatorname{dim} A=0$ iff A is semisimple.

Global dimension

Let A be a finite dimensional algebra.

- The projective dimension of an A-module M is the minimum length of a projective resolution
$\cdots \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$
- The global dimension $g l . \operatorname{dim} A$ is the sup of the projective dimensions of A-modules.
- $\operatorname{gl} . \operatorname{dim} A=0$ iff A is semisimple.
- A is hereditary (submodules of projective modules are projective) iff gl. $\operatorname{dim} A \leq 1$.

Global dimension

Let A be a finite dimensional algebra.

- The projective dimension of an A-module M is the minimum length of a projective resolution
$\cdots \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$
- The global dimension gl. $\operatorname{dim} A$ is the sup of the projective dimensions of A-modules.
- gl. $\operatorname{dim} A=0$ iff A is semisimple.
- A is hereditary (submodules of projective modules are projective) iff gl. $\operatorname{dim} A \leq 1$.
- For finite-dimensional algebras, the sup can be taken over simple modules.

Global dimension and Leray numbers

$$
\text { gl. } \operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0 \text { for all } X<Y\right\}
$$

Global dimension and Leray numbers

$$
\text { gl. } \operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0 \text { for all } X<Y\right\}
$$

For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Global dimension and Leray numbers

$$
\text { gl. } \operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0 \text { for all } X<Y\right\}
$$

For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Consequently:

1. gl. $\operatorname{dim} \mathbb{K} B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$

Global dimension and Leray numbers

$$
\text { gl. } \operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0 \text { for all } X<Y\right\}
$$

For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Consequently:

1. gl. $\operatorname{dim} \mathbb{K} B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$

Global dimension and Leray numbers

$$
\text { gl. } \operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0 \text { for all } X<Y\right\}
$$

For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Consequently:

1. gl. $\operatorname{dim} \mathbb{K} B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
2. If the Hasse diagram of the poset $\leq_{\mathcal{R}}$ is a tree then gl. $\operatorname{dim} \mathbb{K} B \leq 1$, that is, $\mathbb{K} B$ is hereditary.

Global dimension and Leray numbers

$$
\text { gl. } \operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0 \text { for all } X<Y\right\}
$$

For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Consequently:

1. gl. $\operatorname{dim} \mathbb{K} B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
2. If the Hasse diagram of the poset $\leq_{\mathcal{R}}$ is a tree then gl. $\operatorname{dim} \mathbb{K} B \leq 1$, that is, $\mathbb{K} B$ is hereditary.
3. (K. Brown) The free LRB is hereditary.

Global dimension and Leray numbers

$$
\text { gl. } \operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0 \text { for all } X<Y\right\}
$$

For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Consequently:

1. gl. $\operatorname{dim} \mathbb{K} B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
2. If the Hasse diagram of the poset $\leq_{\mathcal{R}}$ is a tree then gl. $\operatorname{dim} \mathbb{K} B \leq 1$, that is, $\mathbb{K} B$ is hereditary.
3. (K. Brown) The free LRB is hereditary.
4. gl. $\operatorname{dim} \mathbb{K} F(G)=\operatorname{Leray}_{\mathbb{K}}(\operatorname{Cliq}(G))$

Global dimension and Leray numbers

$$
\text { gl. } \operatorname{dim} \mathbb{K} B=\sup \left\{n: \widetilde{H}^{n-1}\left(\Delta B_{[X, Y)}, \mathbb{K}\right) \neq 0 \text { for all } X<Y\right\}
$$

For a simplicial complex \mathcal{C} with vertex set V,

$$
\operatorname{Leray}_{\mathbb{K}}(\mathcal{C})=\min \left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K})=0 \text { for all } W \subseteq V\right\}
$$

Consequently:

1. gl. $\operatorname{dim} \mathbb{K} B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
2. If the Hasse diagram of the poset $\leq_{\mathcal{R}}$ is a tree then gl. $\operatorname{dim} \mathbb{K} B \leq 1$, that is, $\mathbb{K} B$ is hereditary.
3. (K. Brown) The free LRB is hereditary.
4. gl. $\operatorname{dim} \mathbb{K} F(G)=\operatorname{Leray}_{\mathbb{K}}(\operatorname{Cliq}(G))$
5. $\mathbb{K} F(G)$ is hereditary iff G is chordal, that is, has no induced cycles greater than length 3 .

Low-degrees: quivers and relations

- arrows in quiver : $\operatorname{Ext}^{1}=\widetilde{H}^{0}[\#$ connected components -1$]$

Low-degrees: quivers and relations

- arrows in quiver : $\operatorname{Ext}^{1}=\widetilde{H}^{0}$ [\# connected components -1$]$
- quiver relations : $\operatorname{Ext}^{2}=\widetilde{H}^{1}$

Low-degrees: quivers and relations

- arrows in quiver : $\operatorname{Ext}^{1}=\widetilde{H}^{0}$ [\# connected components -1]
- quiver relations : $\operatorname{Ext}^{2}=\widetilde{H}^{1}$
- topological classification of LRBs with hereditary algebras

Low-degrees: quivers and relations

- arrows in quiver : $\operatorname{Ext}^{1}=\widetilde{H}^{0}$ [\# connected components -1]
- quiver relations : $\mathrm{Ext}^{2}=\widetilde{H}^{1}$
- topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

- gldim $=\max \left\{n: \operatorname{Ext}^{n} \neq 0\right\} \leq \operatorname{Leray}(\Delta(B))$

Low-degrees: quivers and relations

- arrows in quiver : $\operatorname{Ext}^{1}=\widetilde{H}^{0}$ [\# connected components -1]
- quiver relations : $\mathrm{Ext}^{2}=\widetilde{H}^{1}$
- topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

- gldim $=\max \left\{n: \operatorname{Ext}^{n} \neq 0\right\} \leq \operatorname{Leray}(\Delta(B))$
- For the FPC LRB of a graph G, gldim is $\operatorname{Leray}(\operatorname{Cliq}(G))$, Castelnuovo-Mumford regularity of Stanley-Reisner ring of $\operatorname{Cliq}(G)$

Low-degrees: quivers and relations

- arrows in quiver : $\operatorname{Ext}^{1}=\widetilde{H}^{0}$ [\# connected components -1]
- quiver relations : $\operatorname{Ext}^{2}=\widetilde{H}^{1}$
- topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

- gldim $=\max \left\{n: \operatorname{Ext}^{n} \neq 0\right\} \leq \operatorname{Leray}(\Delta(B))$
- For the FPC LRB of a graph G, gldim is $\operatorname{Leray}(\operatorname{Cliq}(G))$, Castelnuovo-Mumford regularity of Stanley-Reisner ring of $\operatorname{Cliq}(G)$

Hyperplane arrangements:

- EL-labellings of $\Lambda(B)$ give bases for eigenspaces of random walks

Low-degrees: quivers and relations

- arrows in quiver : $\operatorname{Ext}^{1}=\widetilde{H}^{0}$ [\# connected components -1]
- quiver relations : $\mathrm{Ext}^{2}=\widetilde{H}^{1}$
- topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

- gldim $=\max \left\{n: \operatorname{Ext}^{n} \neq 0\right\} \leq \operatorname{Leray}(\Delta(B))$
- For the FPC LRB of a graph G, gldim is $\operatorname{Leray}(\operatorname{Cliq}(G))$, Castelnuovo-Mumford regularity of Stanley-Reisner ring of $\operatorname{Cliq}(G)$

Hyperplane arrangements:

- EL-labellings of $\Lambda(B)$ give bases for eigenspaces of random walks
- faces of a non-central arrangement form a semigroup (no identity), yet the semigroup algebra is still unital!

Low-degrees: quivers and relations

- arrows in quiver : $\operatorname{Ext}^{1}=\widetilde{H}^{0}$ [\# connected components -1$]$
- quiver relations : $\operatorname{Ext}^{2}=\widetilde{H}^{1}$
- topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

- gldim $=\max \left\{n: \operatorname{Ext}^{n} \neq 0\right\} \leq \operatorname{Leray}(\Delta(B))$
- For the FPC LRB of a graph G, gldim is $\operatorname{Leray}(\operatorname{Cliq}(G))$, Castelnuovo-Mumford regularity of Stanley-Reisner ring of $\operatorname{Cliq}(G)$

Hyperplane arrangements :

- EL-labellings of $\Lambda(B)$ give bases for eigenspaces of random walks
- faces of a non-central arrangement form a semigroup (no identity), yet the semigroup algebra is still unital!
CAT(0) cube complexes :
- $\Lambda(B)$ is Cohen-Macaulay (we prove the incidence algebra is Koszul)

Proof outline of the Main Theorem

Proof outline of the Main Theorem

We define the topology of an LRB B to be that of its order complex $\Delta((B, \leq))$.

Proof outline of the Main Theorem

We define the topology of an LRB B to be that of its order complex $\Delta((B, \leq))$.
This is justified by the following Theorem.

Proof outline of the Main Theorem

We define the topology of an LRB B to be that of its order complex $\Delta((B, \leq))$.
This is justified by the following Theorem.
Theorem
Let B be an $L R B$ and let K be a commutative ring with unity. Then the augmented chain complex of $\Delta((B, \leq))$ is a projective resolution of the trivial $K(B)$ module.

Proof outline of the Main Theorem

We define the topology of an LRB B to be that of its order complex $\Delta((B, \leq))$.
This is justified by the following Theorem.
Theorem
Let B be an $L R B$ and let K be a commutative ring with unity. Then the augmented chain complex of $\Delta((B, \leq))$ is a projective resolution of the trivial $K(B)$ module.

This is used to compute all the spaces $\operatorname{Ext}^{n}(S, T)$ between simple $K(B)$ modules, S, T when K is a field and obtain the main theorem.

CW Posets and CW LRBs

CW Posets and CW LRBs

Definition
A poset (P, \leq) is a CW poset if it is the poset of faces of a regular CW complex.

CW Posets and CW LRBs

Definition
A poset (P, \leq) is a CW poset if it is the poset of faces of a regular CW complex.

Theorem
(P, \leq) is a CW poset if and only if (P, \leq) is graded and for every $p \in P,\{q \mid q<p\}$ is isomorphic to a sphere of dimension $\operatorname{rank}(p)-1$.

Definition
An LRB B is a CW LRB if every poset $\left(B_{X}, \leq\right), X \in \Lambda(B)$ is a CW poset.

Examples of CW LRBs

Examples of CW LRBs

Theorem
The following are examples of CW LRBs.

- Real Hyperplane Monoids

Examples of CW LRBs

Theorem
The following are examples of CW LRBs.

- Real Hyperplane Monoids
- Complex Hyperplane Monoids

Examples of CW LRBs

Theorem
The following are examples of CW LRBs.

- Real Hyperplane Monoids
- Complex Hyperplane Monoids
- Interval Greedoid Monoids

Examples of CW LRBs

Theorem
The following are examples of CW LRBs.

- Real Hyperplane Monoids
- Complex Hyperplane Monoids
- Interval Greedoid Monoids
- CAT(0) Cubic Complex Semigroups

Main Theorem on CW LRBs

Theorem
Suppose that B is a CW left regular band. Then the following hold.

Main Theorem on CW LRBs

Theorem
Suppose that B is a CW left regular band. Then the following hold.
(a) The quiver $Q=Q(K(B))$ of B is the Hasse diagram of $\Lambda(B)$.

Main Theorem on CW LRBs

Theorem
Suppose that B is a CW left regular band. Then the following hold.
(a) The quiver $Q=Q(K(B))$ of B is the Hasse diagram of $\Lambda(B)$.
(b) $\Lambda(B)$ is graded.

Main Theorem on CW LRBs

Theorem
Suppose that B is a CW left regular band. Then the following hold.
(a) The quiver $Q=Q(K(B))$ of B is the Hasse diagram of $\Lambda(B)$.
(b) $\Lambda(B)$ is graded.
(c) B has a quiver presentation (Q, I) where I is has minimal system of relations

$$
r_{X, Y}=\sum_{X<Z<Y}(X \rightarrow Z \rightarrow Y)
$$

ranging over rank 2

Main Theorem on CW LRBs

Theorem
Suppose that B is a CW left regular band. Then the following hold.
(a) The quiver $Q=Q(K(B))$ of B is the Hasse diagram of $\Lambda(B)$.
(b) $\Lambda(B)$ is graded.
(c) B has a quiver presentation (Q, I) where I is has minimal system of relations

$$
r_{X, Y}=\sum_{X<Z<Y}(X \rightarrow Z \rightarrow Y)
$$

ranging over rank 2
(d) KB is a Koszul algebra and its Koszul dual is isomorphic to the dual of the incidence algebra of $\Lambda(B)$.

Main Theorem on CW LRBs

Main Theorem on CW LRBs

(e) The Ext algebra $\operatorname{Ext}(K B)$ is isomorphic to the incidence algebra of $\Lambda(B)$.

Main Theorem on CW LRBs

(e) The Ext algebra $\operatorname{Ext}(K B)$ is isomorphic to the incidence algebra of $\Lambda(B)$.
(f) Every open interval of $\Lambda(B)$ is a Cohen-Macauley poset.

TOR anosuurus EXT!

image from Sean Sather-Wagstaff

