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Left-regular bands (LRBs)

Definition (LRB)

A left-regular band is a semigroup B satisfying the identities:

• x2 = x (B is a “band”)
• xyx = xy (“left-regularity”)

Remarks

• Informally: identities say ignore “repetitions”.

• We consider only finite monoids here.
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Theorem
Let B be a semigroup consisting of idempotents. The
following are equivalent:

1. B is an LRB.

2. The relation on B defined by x ≤ y iff xB ⊆ yB is a
partial order.

Thus, for all x, y ∈ B, xB = yB iff x = y.
B is a left partially ordered monoid with respect to ≤:

xB ⊆ yB ⇒ mxB ⊆ myB for all x, y,m ∈ B.

B also acts on the left of the order complex Δ((B,≤)), the
simplicial complex of all chains in the poset (B,≤).
Δ((B,≤)) is contractible, since 1 is a cone point.
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2 consisting of three distinct lines. The geometric product is just
multiplication in {0,+,−}3.

All hyperplane arrangement LRBs are submonoids of
{0,+,−}n, where n = the number of hyperplanes.
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• Simple KB-modules and its Jacobson Radical

Let Λ(B) denote the lattice of principal left ideals of B,
ordered by inclusion:

Λ(B) = {Bb : b ∈ B} Ba ∩Bb = B(ab)

Monoid surjection:
σ : B → Λ(B)

b �→ Bb

ker(σ) = rad(KB)

where σ : KB → K(Λ(B)) is the extended morphism.
K(Λ(B)) is semisimple and so simple KB-modules SX are
indexed by X ∈ Λ(B).
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Semisimple Quotient and Simple Modules

KB/ rad(KB) ∼= KB/ ker(σ) ∼= KΛ(B) ∼= K
Λ(B)

For each X ∈ Λ(B), the corresponding simple module is 1
dimensional and is given by the following action.

ρX(a) =

{
1, if σ(a) ≥ X,

0, otherwise

Let SX denote the corresponding simple module.
We see then that KB is a basic algebra: All of its simple
modules are 1 dimensional. Equivalently, KB has a faithful
representation by triangular matrices.
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Free LRB on a set V :

◮ elements : repetition-free words on V

◮ product : concatenate and remove repetitions

c · adecb = cadeb

Tsetlin Library : “use a book, then put it at the front”



Free Partially-Commutative LRB

The free partially-commutative LRB F (G) on a graph
G = (V,E) is the LRB with presentation:

F (G) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉



Free Partially-Commutative LRB

The free partially-commutative LRB F (G) on a graph
G = (V,E) is the LRB with presentation:

F (G) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉

Examples

• If E = ∅, then F (G) = free LRB on V .



Free Partially-Commutative LRB

The free partially-commutative LRB F (G) on a graph
G = (V,E) is the LRB with presentation:

F (G) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉

Examples

• If E = ∅, then F (G) = free LRB on V .

• F (Kn) = free commutative LRB, that is the free
semilattice, on n generators.



Free Partially-Commutative LRB

The free partially-commutative LRB F (G) on a graph
G = (V,E) is the LRB with presentation:

F (G) =
〈
V

∣∣∣ xy = yx for all edges {x, y} ∈ E
〉

Examples

• If E = ∅, then F (G) = free LRB on V .

• F (Kn) = free commutative LRB, that is the free
semilattice, on n generators.

• LRB-version of the Cartier-Foata free
partially-commutative monoid (aka trace monoids).



Acyclic orientations

Elements of F (G) correspond to acyclic orientations of
induced subgraphs of the complement G.

Example

G =
a b

d c
G =

a b

d c

Acyclic orientation on induced subgraph on vertices {a, d, c}:

a

d c

In F (G): cad = cda = dca (c comes before a since c → a)
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Random walk on F (G)

States: acyclic orientations of the complement G

a b

d c

Step: left-multiplication by a generator (vertex) reorients all
the edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a
different LRB (graphical arrangement of G)
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The (Karnofsky)-Rhodes Expansion of a Semilattice

If Λ is a semilattice let Δ(Λ) = {x1 > x2 . . . > xk|xi ∈ Λ} be
the set of chains in Λ. Define a product on Δ(Λ) by:

(x1 > x2 . . . > xk)(y1 > y2 . . . > yl) =

(x1 > x2 . . . > xk ≥ xky1 ≥ xky2 ≥ . . . ≥ xkyl)

and then erasing equalities.

• This is the (right) Rhodes expansion of Λ.

• It is an LRB whose R order has Hasse diagram a tree and
L order is the Hasse diagram of Λ.
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◮ oriented matroids

◮ complex arrangements (Björner-Zeigler)

◮ oriented interval greedoids (Thomas-S.)

◮ CAT(0) cube complexes (M-S-S)

◮ path algebra of an acyclic quiver (M-S-S)

LRBs are everywhere :

Bidigare-Hanlon-Rockmore, Aguiar, Athanasiadis, Björner,
Brown, Chung, Diaconis, Fulman, Graham, Hsiao, Lawvere,
Mahajan, Margolis, Pike, Schützenberger, Steinberg, . . .

Other combinatorial semigroups :

Ayyer, Denton, Hivert, Schilling, Steinberg, Thiery, . . .
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for simple modules S and T
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Question : Given two modules S and T , how can

they be combined to make new modules M ?

S ⊆ M and T ∼= M/S

Answers are encapsulated by short exact sequences :

0 −−−→ S
f

−−−−→ M
g

−−−−→ T −−−→ 0

Ext1(S, T ) : vector space of equiv. classes of SES



Main theorem as a haiku

For a LRB

the Extensions are poset

cohomology.
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Quiver of an algebra is the directed graph where

◮ vertices are the simple modules

◮ # arrows S → T is dimExt1(S, T )
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Let A be a finite dimensional algebra.

• The projective dimension of an A-module M is the
minimum length of a projective resolution

· · · −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ M −→ 0

• The global dimension gl. dimA is the sup of the
projective dimensions of A-modules.

• gl. dimA = 0 iff A is semisimple.

• A is hereditary (submodules of projective modules are
projective) iff gl. dimA ≤ 1.

• For finite-dimensional algebras, the sup can be taken over
simple modules.
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gl. dimKB = sup
{
n : H̃n−1

(
ΔB[X,Y ),K

) 	= 0 for all X < Y
}

For a simplicial complex C with vertex set V ,

Leray
K
(C) = min

{
d : H̃d(C[W ],K) = 0 for all W ⊆ V

}

Consequently:

1. gl. dimKB ≤ Leray
K
(Δ(B))

2. If the Hasse diagram of the poset ≤R is a tree then
gl. dimKB ≤ 1, that is, KB is hereditary.

3. (K. Brown) The free LRB is hereditary.

4. gl. dimKF (G) = Leray
K
(Cliq(G))

5. KF (G) is hereditary iff G is chordal, that is, has no
induced cycles greater than length 3.
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◦ topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

◦ gldim = max{n : Extn 6= 0} ≤ Leray(∆(B))

◦ For the FPC LRB of a graph G, gldim is Leray(Cliq(G)),
Castelnuovo-Mumford regularity of Stanley-Reisner ring of Cliq(G)

Hyperplane arrangements :

◦ EL-labellings of Λ(B) give bases for eigenspaces of random walks

◦ faces of a non-central arrangement form a semigroup (no identity),
yet the semigroup algebra is still unital !

CAT(0) cube complexes :

◦ Λ(B) is Cohen-Macaulay (we prove the incidence algebra is Koszul)
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Proof outline of the Main Theorem

We define the topology of an LRB B to be that of its order
complex Δ((B,≤)).
This is justified by the following Theorem.

Theorem
Let B be an LRB and let K be a commutative ring with unity.
Then the augmented chain complex of Δ((B,≤)) is a
projective resolution of the trivial K(B) module.

This is used to compute all the spaces Extn(S, T ) between
simple K(B) modules, S, T when K is a field and obtain the
main theorem.
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CW Posets and CW LRBs

Definition
A poset (P,≤) is a CW poset if it is the poset of faces of a
regular CW complex.

Theorem
(P,≤) is a CW poset if and only if (P,≤) is graded and for
every p ∈ P , {q|q < p} is isomorphic to a sphere of dimension
rank(p)− 1.

Definition
An LRB B is a CW LRB if every poset (BX ,≤), X ∈ Λ(B) is
a CW poset.
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Examples of CW LRBs

Theorem
The following are examples of CW LRBs.

• Real Hyperplane Monoids

• Complex Hyperplane Monoids

• Interval Greedoid Monoids

• CAT(0) Cubic Complex Semigroups
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Main Theorem on CW LRBs

Theorem
Suppose that B is a CW left regular band. Then the following
hold.

(a) The quiver Q = Q(K(B)) of B is the Hasse diagram of
Λ(B).

(b) Λ(B) is graded.

(c) B has a quiver presentation (Q, I) where I is has minimal
system of relations

rX,Y =
∑

X<Z<Y

(X → Z → Y )

ranging over rank 2

(d) KB is a Koszul algebra and its Koszul dual is isomorphic
to the dual of the incidence algebra of Λ(B).
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(e) The Ext algebra Ext(KB) is isomorphic to the incidence
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Main Theorem on CW LRBs

(e) The Ext algebra Ext(KB) is isomorphic to the incidence
algebra of Λ(B).

(f) Every open interval of Λ(B) is a Cohen-Macauley poset.
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