CW-decompositions, Leray numbers and the representation theory and cohomology of left regular band algebras

> **Stuart Margolis**, Bar-Ilan University Franco Saliola, Université du Québec à Montréal Benjamin Steinberg, City College of New York

ALFA15 and Volkerfest: LABRI, Bordeaux, France June 15-17, 2015

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

the origin

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

rays emanating from the origin

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

rays emanating from the origin

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

rays emanating from the origin

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

rays emanating from the origin

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

rays emanating from the origin

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

rays emanating from the origin

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

chambers cut out by the hyperplanes

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

chambers cut out by the hyperplanes

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

chambers cut out by the hyperplanes

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

chambers cut out by the hyperplanes

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

chambers cut out by the hyperplanes

a set of hyperplanes partitions \mathbb{R}^n into *faces*:

chambers cut out by the hyperplanes

 $xy := \begin{cases} \text{the face first encountered after a small} \\ \text{movement along a line from } x \text{ toward } y \end{cases}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $xy := \begin{cases} \text{the face first encountered after a small} \\ \text{movement along a line from } x \text{ toward } y \end{cases}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $xy := \begin{cases} \text{the face first encountered after a small} \\ \text{movement along a line from } x \text{ toward } y \end{cases}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $xy := \begin{cases} \text{the face first encountered after a small} \\ \text{movement along a line from } x \text{ toward } y \end{cases}$

Left-regular bands (LRBs)

Definition (LRB)

A *left-regular band* is a semigroup B satisfying the identities:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

•
$$x^2 = x$$

•
$$xyx = xy$$

Left-regular bands (LRBs)

Definition (LRB)

A *left-regular band* is a semigroup B satisfying the identities:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへぐ

Left-regular bands (LRBs)

Definition (LRB)

A *left-regular band* is a semigroup B satisfying the identities:

▲日▼▲□▼▲□▼▲□▼ □ ○○○

Remarks

- Informally: identities say ignore "repetitions".
- We consider only finite monoids here.

Let B be a semigroup consisting of idempotents. The following are equivalent:

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

1. B is an LRB.

Let B be a semigroup consisting of idempotents. The following are equivalent:

- 1. B is an LRB.
- 2. The relation on B defined by $x \le y$ iff $xB \subseteq yB$ is a partial order.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

Let B be a semigroup consisting of idempotents. The following are equivalent:

- 1. B is an LRB.
- 2. The relation on B defined by $x \le y$ iff $xB \subseteq yB$ is a partial order.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Thus, for all $x, y \in B$, xB = yB iff x = y.

Let B be a semigroup consisting of idempotents. The following are equivalent:

- 1. B is an LRB.
- 2. The relation on B defined by $x \le y$ iff $xB \subseteq yB$ is a partial order.

- Thus, for all $x, y \in B$, xB = yB iff x = y.
- B is a left partially ordered monoid with respect to $\leq:$

Let B be a semigroup consisting of idempotents. The following are equivalent:

- 1. B is an LRB.
- 2. The relation on B defined by $x \le y$ iff $xB \subseteq yB$ is a partial order.

Thus, for all
$$x, y \in B$$
, $xB = yB$ iff $x = y$.

B is a left partially ordered monoid with respect to $\leq:$

 $xB \subseteq yB \Rightarrow mxB \subseteq myB$ for all $x, y, m \in B$.

Let B be a semigroup consisting of idempotents. The following are equivalent:

- 1. B is an LRB.
- 2. The relation on B defined by $x \le y$ iff $xB \subseteq yB$ is a partial order.

Thus, for all
$$x, y \in B$$
, $xB = yB$ iff $x = y$.

B is a left partially ordered monoid with respect to \leq :

 $xB \subseteq yB \Rightarrow mxB \subseteq myB$ for all $x, y, m \in B$.

B also acts on the left of the order complex $\Delta((B, \leq))$, the simplicial complex of all chains in the poset (B, \leq) .

Let B be a semigroup consisting of idempotents. The following are equivalent:

- 1. B is an LRB.
- 2. The relation on B defined by $x \le y$ iff $xB \subseteq yB$ is a partial order.

Thus, for all $x, y \in B$, xB = yB iff x = y. B is a left partially ordered monoid with respect to \leq :

 $xB \subseteq yB \Rightarrow mxB \subseteq myB$ for all $x, y, m \in B$.

B also acts on the left of the order complex $\Delta((B,\leq))$, the simplicial complex of all chains in the poset (B,\leq) . $\Delta((B,\leq))$ is contractible, since 1 is a cone point.

All hyperplane arrangement LRBs are **submonoids** of $\{0, +, -\}^n$, where n = the number of hyperplanes.

Representation Theory of LRBs

• Simple $\mathbb{K}B$ -modules and its Jacobson Radical Let $\Lambda(B)$ denote the lattice of principal left ideals of B, ordered by inclusion:

$$\Lambda(B) = \{Bb : b \in B\} \qquad Ba \cap Bb = B(ab)$$

Monoid surjection:

$$\begin{array}{rccc} \sigma:B & \to & \Lambda(B) \\ & b & \mapsto & Bb \end{array}$$

A D M 4 目 M 4 日 M 4 1 H 4

Representation Theory of LRBs

• Simple $\mathbb{K}B$ -modules and its Jacobson Radical Let $\Lambda(B)$ denote the lattice of principal left ideals of B, ordered by inclusion:

$$\Lambda(B) = \{Bb : b \in B\} \qquad Ba \cap Bb = B(ab)$$

Monoid surjection:

$$\begin{array}{rccc} \sigma:B & \to & \Lambda(B) \\ & b & \mapsto & Bb \end{array}$$

$$\ker(\overline{\sigma}) = \operatorname{rad}(\mathbb{K}B)$$

where $\overline{\sigma} : \mathbb{K}B \to \mathbb{K}(\Lambda(B))$ is the extended morphism.

Representation Theory of LRBs

• Simple $\mathbb{K}B$ -modules and its Jacobson Radical Let $\Lambda(B)$ denote the lattice of principal left ideals of B, ordered by inclusion:

$$\Lambda(B) = \{Bb : b \in B\} \qquad Ba \cap Bb = B(ab)$$

Monoid surjection:

$$\begin{array}{rccc} \sigma:B & \to & \Lambda(B) \\ & b & \mapsto & Bb \end{array}$$

$$\ker(\overline{\sigma}) = \operatorname{rad}(\mathbb{K}B)$$

where $\overline{\sigma} : \mathbb{K}B \to \mathbb{K}(\Lambda(B))$ is the extended morphism. $\mathbb{K}(\Lambda(B))$ is semisimple and so simple $\mathbb{K}B$ -modules S_X are indexed by $X \in \Lambda(B)$.

Semisimple Quotient and Simple Modules

$$\mathbb{K}B/\operatorname{rad}(\mathbb{K}B) \cong \mathbb{K}B/\ker(\overline{\sigma}) \cong \mathbb{K}\Lambda(B) \cong \mathbb{K}^{\Lambda(B)}$$

For each $X \in \Lambda(B)$, the corresponding simple module is 1 dimensional and is given by the following action.

$$\rho_X(a) = \begin{cases} 1, & \text{if } \sigma(a) \ge X, \\ 0, & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let S_X denote the corresponding simple module.

Semisimple Quotient and Simple Modules

$$\mathbb{K}B/\operatorname{rad}(\mathbb{K}B) \cong \mathbb{K}B/\ker(\overline{\sigma}) \cong \mathbb{K}\Lambda(B) \cong \mathbb{K}^{\Lambda(B)}$$

For each $X \in \Lambda(B)$, the corresponding simple module is 1 dimensional and is given by the following action.

$$\rho_X(a) = \begin{cases} 1, & \text{if } \sigma(a) \ge X, \\ 0, & \text{otherwise} \end{cases}$$

Let S_X denote the corresponding simple module. We see then that $\mathbb{K}B$ is a basic algebra: All of its simple modules are 1 dimensional. Equivalently, $\mathbb{K}B$ has a faithful representation by triangular matrices.

Free LRB on a set V :

 \blacktriangleright *elements :* repetition-free words on V

Free LRB on a set V :

- *elements* : repetition-free words on V
- product : concatenate and remove repetitions

 $\mathbf{c} \cdot ade\mathbf{c}b = \mathbf{c}adeb$

Free LRB on a set V :

- *elements* : repetition-free words on V
- product : concatenate and remove repetitions

 $\mathbf{c} \cdot ade\mathbf{c}b = \mathbf{c}adeb$

Tsetlin Library : "use a book, then put it at the front"

The free partially-commutative LRB F(G) on a graph G = (V, E) is the LRB with presentation:

$$F(G) = \left\langle V \mid xy = yx \text{ for all edges } \{x, y\} \in E \right\rangle$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

The free partially-commutative LRB F(G) on a graph G = (V, E) is the LRB with presentation:

$$F(G) = \left\langle V \mid xy = yx \text{ for all edges } \{x, y\} \in E \right\rangle$$

▲日▼▲□▼▲□▼▲□▼ □ ○○○

Examples

• If $E = \emptyset$, then F(G) = free LRB on V.

The *free partially-commutative LRB* F(G) on a graph G = (V, E) is the LRB with presentation:

$$F(G) = \left\langle V \mid xy = yx \text{ for all edges } \{x, y\} \in E \right\rangle$$

Examples

- If $E = \emptyset$, then F(G) = free LRB on V.
- $F(K_n) =$ free commutative LRB, that is the free semilattice, on n generators.

A D M 4 目 M 4 日 M 4 1 H 4

The *free partially-commutative LRB* F(G) on a graph G = (V, E) is the LRB with presentation:

$$F(G) = \left\langle V \mid xy = yx \text{ for all edges } \{x, y\} \in E \right\rangle$$

Examples

- If $E = \emptyset$, then F(G) =free LRB on V.
- $F(K_n) =$ free commutative LRB, that is the free semilattice, on n generators.
- LRB-version of the Cartier-Foata free partially-commutative monoid (aka trace monoids).

Acyclic orientations

Elements of F(G) correspond to acyclic orientations of induced subgraphs of the complement \overline{G} .

Example

Acyclic orientation on induced subgraph on vertices $\{a, d, c\}$:

・ コット ふぼう ふほう ・ ロッ

In F(G): cad = cda = dca (c comes before a since $c \to a$)

States: acyclic orientations of the complement \overline{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

States: acyclic orientations of the complement \overline{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

States: acyclic orientations of the complement \overline{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

States: acyclic orientations of the complement \overline{G}

Step: left-multiplication by a generator (vertex) reorients all the edges incident to the vertex away from it

Athanasiadis-Diaconis (2010): studied this chain using a different LRB (graphical arrangement of G)

If Λ is a semilattice let $\Delta(\Lambda) = \{x_1 > x_2 \dots > x_k | x_i \in \Lambda\}$ be the set of chains in Λ .

If Λ is a semilattice let $\Delta(\Lambda) = \{x_1 > x_2 \dots > x_k | x_i \in \Lambda\}$ be the set of chains in Λ . Define a product on $\Delta(\Lambda)$ by:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If Λ is a semilattice let $\Delta(\Lambda) = \{x_1 > x_2 \dots > x_k | x_i \in \Lambda\}$ be the set of chains in Λ . Define a product on $\Delta(\Lambda)$ by:

$$(x_1 > x_2 \ldots > x_k)(y_1 > y_2 \ldots > y_l) =$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If Λ is a semilattice let $\Delta(\Lambda) = \{x_1 > x_2 \dots > x_k | x_i \in \Lambda\}$ be the set of chains in Λ . Define a product on $\Delta(\Lambda)$ by:

$$(x_1 > x_2 \ldots > x_k)(y_1 > y_2 \ldots > y_l) =$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$(x_1 > x_2 \ldots > x_k \ge x_k y_1 \ge x_k y_2 \ge \ldots \ge x_k y_l)$$

and then erasing equalities.

If Λ is a semilattice let $\Delta(\Lambda) = \{x_1 > x_2 \dots > x_k | x_i \in \Lambda\}$ be the set of chains in Λ . Define a product on $\Delta(\Lambda)$ by:

$$(x_1 > x_2 \ldots > x_k)(y_1 > y_2 \ldots > y_l) =$$

$$(x_1 > x_2 \dots > x_k \ge x_k y_1 \ge x_k y_2 \ge \dots \ge x_k y_l)$$

▲日▼▲□▼▲□▼▲□▼ □ ○○○

and then erasing equalities.

• This is the (right) Rhodes expansion of Λ .

If Λ is a semilattice let $\Delta(\Lambda) = \{x_1 > x_2 \dots > x_k | x_i \in \Lambda\}$ be the set of chains in Λ . Define a product on $\Delta(\Lambda)$ by:

$$(x_1 > x_2 \ldots > x_k)(y_1 > y_2 \ldots > y_l) =$$

$$(x_1 > x_2 \dots > x_k \ge x_k y_1 \ge x_k y_2 \ge \dots \ge x_k y_l)$$

and then erasing equalities.

- This is the (right) Rhodes expansion of Λ .
- It is an LRB whose *R* order has Hasse diagram a tree and *L* order is the Hasse diagram of Λ.

oriented matroids

- oriented matroids
- complex arrangements (Björner-Zeigler)

- oriented matroids
- complex arrangements (Björner-Zeigler)
- oriented interval greedoids (Thomas-S.)

- oriented matroids
- complex arrangements (Björner-Zeigler)
- oriented interval greedoids (Thomas-S.)
- CAT(0) cube complexes (M-S-S)

- oriented matroids
- complex arrangements (Björner-Zeigler)
- oriented interval greedoids (Thomas-S.)
- CAT(0) cube complexes (M-S-S)
- path algebra of an acyclic quiver (M-S-S)
Other examples of LRBs :

- oriented matroids
- complex arrangements (Björner-Zeigler)
- oriented interval greedoids (Thomas-S.)
- CAT(0) cube complexes (M-S-S)
- path algebra of an acyclic quiver (M-S-S)

LRBs are everywhere :

Bidigare-Hanlon-Rockmore, Aguiar, Athanasiadis, Björner, Brown, Chung, Diaconis, Fulman, Graham, Hsiao, Lawvere, Mahajan, Margolis, Pike, Schützenberger, Steinberg, ...

Other examples of LRBs :

- oriented matroids
- complex arrangements (Björner-Zeigler)
- oriented interval greedoids (Thomas-S.)
- CAT(0) cube complexes (M-S-S)
- path algebra of an acyclic quiver (M-S-S)

LRBs are everywhere :

Bidigare-Hanlon-Rockmore, Aguiar, Athanasiadis, Björner, Brown, Chung, Diaconis, Fulman, Graham, Hsiao, Lawvere, Mahajan, Margolis, Pike, Schützenberger, Steinberg, ...

Other combinatorial semigroups :

Ayyer, Denton, Hivert, Schilling, Steinberg, Thiery,

Goal : Extensions

$\operatorname{Ext}_B^n(S,T)$

for simple modules \boldsymbol{S} and \boldsymbol{T}

Question : Given two modules S and T, <u>how</u> can they be combined to make new modules M?

$$S\subseteq M \quad \text{and} \quad T\cong M/S$$

Question : Given two modules S and T, <u>how</u> can they be combined to make new modules M?

$$S\subseteq M \quad \text{and} \quad T\cong M/S$$

Answers are encapsulated by short exact sequences :

$$0 \longrightarrow \underline{S} \xrightarrow{f} \underline{M} \xrightarrow{g} \underline{T} \longrightarrow 0$$

Question : Given two modules S and T, <u>how</u> can they be combined to make new modules M?

$$S\subseteq M \quad \text{and} \quad T\cong M/S$$

Answers are encapsulated by *short exact sequences* :

$$0 \longrightarrow \overline{S} \xrightarrow{f} \overline{M} \xrightarrow{g} \overline{T} \longrightarrow 0$$

 $\operatorname{Ext}^1(S,T)$: vector space of equiv. classes of SES

Main theorem as a haiku

For a LRB the Extensions are poset cohomology.

$$(B, \leq)$$
$$x \leq y \Leftrightarrow yx = x$$

$$(B, \leq)$$
$$x \leq y \Leftrightarrow yx = x$$

hyperplane arrangements : face relation

$$\left(\Lambda(B),\subseteq\right)$$
$$Bx = \{bx : b \in B\}$$

$$(B, \leq)$$
$$x \leq y \Leftrightarrow yx = x$$

hyperplane arrangements : face relation

$$(\Lambda(B), \subseteq)$$

 $Bx = \{bx : b \in B\}$

$$(B, \leq)$$
$$x \leq y \Leftrightarrow yx = x$$

hyperplane arrangements : intersection lattice

hyperplane arrangements : face relation

hyperplane arrangements : restriction and contraction

Main Theorem (M-S-S)

$$\operatorname{Ext}^{n}(S_{X}, S_{Y}) \cong \widetilde{H}^{n-1}(\Delta B_{[X,Y)})$$

Main Theorem (M-S-S)

• simple modules are indexed by $\Lambda(B)$

Main Theorem (M-S-S)

- simple modules are indexed by $\Lambda(B)$
- $\Delta B_{[X,Y)}$ is the order complex of $B_{[X,Y)}$

Quiver of an algebra is the directed graph where

- vertices are the simple modules
- # arrows $S \to T$ is dim $\operatorname{Ext}^1(S,T)$

Global dimension

Let A be a finite dimensional algebra.

• The projective dimension of an A-module M is the minimum length of a projective resolution

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Global dimension

Let A be a finite dimensional algebra.

• The projective dimension of an A-module M is the minimum length of a projective resolution

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Global dimension

Let A be a finite dimensional algebra.

• The projective dimension of an A-module M is the minimum length of a projective resolution

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

• The global dimension gl. dim A is the sup of the projective dimensions of A-modules.
Global dimension

Let A be a finite dimensional algebra.

• The projective dimension of an A-module M is the minimum length of a projective resolution

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

- The global dimension gl. dim A is the sup of the projective dimensions of A-modules.
- gl. dim A = 0 iff A is semisimple.

Global dimension

Let A be a finite dimensional algebra.

• The projective dimension of an A-module M is the minimum length of a projective resolution

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

- The global dimension gl. dim A is the sup of the projective dimensions of A-modules.
- gl. dim A = 0 iff A is semisimple.
- A is hereditary (submodules of projective modules are projective) iff gl. dim A ≤ 1.

Global dimension

Let A be a finite dimensional algebra.

• The projective dimension of an A-module M is the minimum length of a projective resolution

$$\cdots \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

- The global dimension gl. dim A is the sup of the projective dimensions of A-modules.
- gl. dim A = 0 iff A is semisimple.
- A is hereditary (submodules of projective modules are projective) iff gl. dim A ≤ 1.
- For finite-dimensional algebras, the sup can be taken over simple modules.

gl. dim
$$\mathbb{K}B = \sup\left\{n : \widetilde{H}^{n-1}(\Delta B_{[X,Y)}, \mathbb{K}) \neq 0 \text{ for all } X < Y\right\}$$

gl. dim
$$\mathbb{K}B = \sup\left\{n : \widetilde{H}^{n-1}(\Delta B_{[X,Y)}, \mathbb{K}) \neq 0 \text{ for all } X < Y\right\}$$

For a simplicial complex C with vertex set V,

$$\operatorname{Leray}_{\mathbb{K}}(\mathcal{C}) = \min\left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K}) = 0 \text{ for all } W \subseteq V\right\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

gl. dim
$$\mathbb{K}B = \sup\left\{n : \widetilde{H}^{n-1}(\Delta B_{[X,Y)}, \mathbb{K}) \neq 0 \text{ for all } X < Y\right\}$$

For a simplicial complex $\mathcal C$ with vertex set V,

$$\operatorname{Leray}_{\mathbb{K}}(\mathcal{C}) = \min\left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K}) = 0 \text{ for all } W \subseteq V\right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへぐ

Consequently:

1. gl. dim $\mathbb{K}B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$

gl. dim
$$\mathbb{K}B = \sup\left\{n : \widetilde{H}^{n-1}(\Delta B_{[X,Y)}, \mathbb{K}) \neq 0 \text{ for all } X < Y\right\}$$

For a simplicial complex $\mathcal C$ with vertex set V,

$$\operatorname{Leray}_{\mathbb{K}}(\mathcal{C}) = \min\left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K}) = 0 \text{ for all } W \subseteq V\right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへぐ

Consequently:

1. gl. dim $\mathbb{K}B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$

gl. dim
$$\mathbb{K}B = \sup\left\{n : \widetilde{H}^{n-1}(\Delta B_{[X,Y)}, \mathbb{K}) \neq 0 \text{ for all } X < Y\right\}$$

For a simplicial complex $\mathcal C$ with vertex set V,

$$\operatorname{Leray}_{\mathbb{K}}(\mathcal{C}) = \min\left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K}) = 0 \text{ for all } W \subseteq V\right\}$$

Consequently:

- 1. gl. dim $\mathbb{K}B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
- 2. If the Hasse diagram of the poset $\leq_{\mathcal{R}}$ is a tree then gl. dim $\mathbb{K}B \leq 1$, that is, $\mathbb{K}B$ is hereditary.

gl. dim
$$\mathbb{K}B = \sup\left\{n : \widetilde{H}^{n-1}(\Delta B_{[X,Y)}, \mathbb{K}) \neq 0 \text{ for all } X < Y\right\}$$

For a simplicial complex $\mathcal C$ with vertex set V,

$$\operatorname{Leray}_{\mathbb{K}}(\mathcal{C}) = \min\left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K}) = 0 \text{ for all } W \subseteq V\right\}$$

Consequently:

- 1. gl. dim $\mathbb{K}B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
- If the Hasse diagram of the poset ≤_R is a tree then gl. dim KB ≤ 1, that is, KB is hereditary.

▲日▼▲□▼▲□▼▲□▼ □ ○○○

3. (K. Brown) The free LRB is hereditary.

gl. dim
$$\mathbb{K}B = \sup\left\{n : \widetilde{H}^{n-1}(\Delta B_{[X,Y)}, \mathbb{K}) \neq 0 \text{ for all } X < Y\right\}$$

For a simplicial complex $\mathcal C$ with vertex set V,

$$\operatorname{Leray}_{\mathbb{K}}(\mathcal{C}) = \min\left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K}) = 0 \text{ for all } W \subseteq V\right\}$$

Consequently:

- 1. gl. dim $\mathbb{K}B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
- 2. If the Hasse diagram of the poset $\leq_{\mathcal{R}}$ is a tree then gl. dim $\mathbb{K}B \leq 1$, that is, $\mathbb{K}B$ is hereditary.

- 3. (K. Brown) The free LRB is hereditary.
- 4. gl. dim $\mathbb{K}F(G) = \text{Leray}_{\mathbb{K}}(\text{Cliq}(G))$

gl. dim
$$\mathbb{K}B = \sup\left\{n : \widetilde{H}^{n-1}(\Delta B_{[X,Y)}, \mathbb{K}) \neq 0 \text{ for all } X < Y\right\}$$

For a simplicial complex $\mathcal C$ with vertex set V,

$$\operatorname{Leray}_{\mathbb{K}}(\mathcal{C}) = \min\left\{d: \widetilde{H}^{d}(\mathcal{C}[W], \mathbb{K}) = 0 \text{ for all } W \subseteq V\right\}$$

Consequently:

- 1. gl. dim $\mathbb{K}B \leq \operatorname{Leray}_{\mathbb{K}}(\Delta(B))$
- 2. If the Hasse diagram of the poset $\leq_{\mathcal{R}}$ is a tree then gl. dim $\mathbb{K}B \leq 1$, that is, $\mathbb{K}B$ is hereditary.
- 3. (K. Brown) The free LRB is hereditary.
- 4. gl. dim $\mathbb{K}F(G) = \text{Leray}_{\mathbb{K}}(\text{Cliq}(G))$
- 5. $\mathbb{K}F(G)$ is hereditary iff G is chordal, that is, has no induced cycles greater than length 3.

 $\circ~$ arrows in quiver : $\mathrm{Ext}^1 = \widetilde{H}^0$ [# connected components -1]

- $\circ~{\rm arrows}~{\rm in}~{\rm quiver}: {\rm Ext}^1 = \widetilde{H}^0$ [# connected components -1]
- $\circ~{\rm quiver~relations}: {\rm Ext}^2 = \widetilde{H}^1$

- $\circ~$ arrows in quiver : $\operatorname{Ext}^1=\widetilde{H}^0$ [# connected components -1]
- $\circ~{\rm quiver~relations}$: ${\rm Ext}^2=\widetilde{H}^1$
- $\circ\,$ topological classification of LRBs with hereditary algebras

- $\circ~$ arrows in quiver : $\operatorname{Ext}^1=\widetilde{H}^0$ [# connected components -1]
- $\circ~{\rm quiver~relations}$: ${\rm Ext}^2=\widetilde{H}^1$
- $\circ\;$ topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

 $\circ \ \operatorname{gldim} = \max\{n:\operatorname{Ext}^n \neq 0\} \leq \operatorname{Leray}(\Delta(B))$

- $\circ~$ arrows in quiver : $\operatorname{Ext}^1=\widetilde{H}^0$ [# connected components -1]
- $\circ~{\rm quiver~relations}$: ${\rm Ext}^2=\widetilde{H}^1$
- $\circ\;$ topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

- $\circ \ \operatorname{gldim} = \max\{n : \operatorname{Ext}^n \neq 0\} \le \operatorname{Leray}(\Delta(B))$
- For the FPC LRB of a graph G, gldim is Leray(Cliq(G)), Castelnuovo-Mumford regularity of Stanley-Reisner ring of Cliq(G)

- $\circ~$ arrows in quiver : $\operatorname{Ext}^1=\widetilde{H}^0$ [# connected components -1]
- $\circ~{\rm quiver~relations}$: ${\rm Ext}^2=\widetilde{H}^1$
- $\circ\;$ topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

- $\circ \ \operatorname{gldim} = \max\{n : \operatorname{Ext}^n \neq 0\} \le \operatorname{Leray}(\Delta(B))$
- For the FPC LRB of a graph G, gldim is Leray(Cliq(G)), Castelnuovo-Mumford regularity of Stanley-Reisner ring of Cliq(G)

Hyperplane arrangements :

 $\circ~EL\mbox{-labellings}$ of $\Lambda(B)$ give bases for eigenspaces of random walks

- $\circ~$ arrows in quiver : $\operatorname{Ext}^1=\widetilde{H}^0$ [# connected components -1]
- $\circ~{\rm quiver~relations}$: ${\rm Ext}^2=\widetilde{H}^1$
- topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

- $\circ \ \operatorname{gldim} = \max\{n : \operatorname{Ext}^n \neq 0\} \le \operatorname{Leray}(\Delta(B))$
- For the FPC LRB of a graph G, gldim is Leray(Cliq(G)), Castelnuovo-Mumford regularity of Stanley-Reisner ring of Cliq(G)

Hyperplane arrangements :

- $\circ~EL\mbox{-labellings}$ of $\Lambda(B)$ give bases for eigenspaces of random walks
- faces of a non-central arrangement form a semigroup (no identity), yet the semigroup algebra is still unital !

- $\circ~$ arrows in quiver : $\operatorname{Ext}^1=\widetilde{H}^0$ [# connected components -1]
- $\circ~{\rm quiver~relations}$: ${\rm Ext}^2=\widetilde{H}^1$
- topological classification of LRBs with hereditary algebras

Highest non-vanishing degree :

- $\circ \ \operatorname{gldim} = \max\{n : \operatorname{Ext}^n \neq 0\} \le \operatorname{Leray}(\Delta(B))$
- For the FPC LRB of a graph G, gldim is Leray(Cliq(G)), Castelnuovo-Mumford regularity of Stanley-Reisner ring of Cliq(G)

Hyperplane arrangements :

- $\circ~EL\mbox{-labellings}$ of $\Lambda(B)$ give bases for eigenspaces of random walks
- faces of a non-central arrangement form a semigroup (no identity), yet the semigroup algebra is still unital !

CAT(0) cube complexes :

 $\circ~\Lambda(B)$ is Cohen-Macaulay (we prove the incidence algebra is Koszul)

We define the topology of an LRB B to be that of its order complex $\Delta((B,\leq)).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

We define the topology of an LRB B to be that of its order complex $\Delta((B,\leq)).$ This is justified by the following Theorem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

We define the topology of an LRB B to be that of its order complex $\Delta((B,\leq)).$ This is justified by the following Theorem.

Theorem

Let B be an LRB and let K be a commutative ring with unity. Then the augmented chain complex of $\Delta((B, \leq))$ is a projective resolution of the trivial K(B) module.

▲日▼▲□▼▲□▼▲□▼ □ ○○○

We define the topology of an LRB B to be that of its order complex $\Delta((B,\leq)).$ This is justified by the following Theorem.

Theorem

Let B be an LRB and let K be a commutative ring with unity. Then the augmented chain complex of $\Delta((B, \leq))$ is a projective resolution of the trivial K(B) module.

This is used to compute all the spaces ${\rm Ext}^n(S,T)$ between simple K(B) modules, S,T when K is a field and obtain the main theorem.

CW Posets and CW LRBs

CW Posets and CW LRBs

Definition

A poset (P, \leq) is a CW poset if it is the poset of faces of a regular CW complex.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへ⊙

CW Posets and CW LRBs

Definition

A poset (P,\leq) is a CW poset if it is the poset of faces of a regular CW complex.

Theorem

 (P, \leq) is a CW poset if and only if (P, \leq) is graded and for every $p \in P$, $\{q|q < p\}$ is isomorphic to a sphere of dimension rank(p) - 1.

Definition

An LRB B is a CW LRB if every poset $(B_X,\leq), X\in \Lambda(B)$ is a CW poset.

▲日▼▲□▼▲□▼▲□▼ □ ○○○

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへ⊙

Theorem

The following are examples of CW LRBs.

• Real Hyperplane Monoids

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ⊙

Theorem

The following are examples of CW LRBs.

- Real Hyperplane Monoids
- Complex Hyperplane Monoids

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Theorem

The following are examples of CW LRBs.

- Real Hyperplane Monoids
- Complex Hyperplane Monoids
- Interval Greedoid Monoids

▲日▼▲□▼▲□▼▲□▼ □ ○○○

Theorem

The following are examples of CW LRBs.

- Real Hyperplane Monoids
- Complex Hyperplane Monoids
- Interval Greedoid Monoids
- CAT(0) Cubic Complex Semigroups

Theorem

Suppose that B is a CW left regular band. Then the following hold.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem

Suppose that B is a CW left regular band. Then the following hold.

(a) The quiver Q = Q(K(B)) of B is the Hasse diagram of $\Lambda(B)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Theorem

Suppose that B is a CW left regular band. Then the following hold.

(a) The quiver Q = Q(K(B)) of B is the Hasse diagram of $\Lambda(B)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

(b) $\Lambda(B)$ is graded.

Theorem

Suppose that B is a CW left regular band. Then the following hold.

- (a) The quiver Q = Q(K(B)) of B is the Hasse diagram of $\Lambda(B)$.
- (b) $\Lambda(B)$ is graded.
- (c) B has a quiver presentation (Q, I) where I is has minimal system of relations

$$r_{X,Y} = \sum_{X < Z < Y} (X \to Z \to Y)$$

▲日▼▲□▼▲□▼▲□▼ □ ○○○

ranging over rank 2
Theorem

Suppose that B is a CW left regular band. Then the following hold.

- (a) The quiver Q = Q(K(B)) of B is the Hasse diagram of $\Lambda(B)$.
- (b) $\Lambda(B)$ is graded.
- (c) B has a quiver presentation (Q, I) where I is has minimal system of relations

$$r_{X,Y} = \sum_{X < Z < Y} (X \to Z \to Y)$$

▲日▼▲□▼▲□▼▲□▼ □ ○○○

ranging over rank 2

(d) KB is a Koszul algebra and its Koszul dual is isomorphic to the dual of the incidence algebra of $\Lambda(B)$.

(e) The Ext algebra $\operatorname{Ext}(KB)$ is isomorphic to the incidence algebra of $\Lambda(B)$.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- (e) The Ext algebra Ext(KB) is isomorphic to the incidence algebra of $\Lambda(B)$.
- (f) Every open interval of $\Lambda(B)$ is a Cohen-Macauley poset.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへ⊙

image from Sean Sather-Wagstaff