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Computing in terms of semigroups

I could (try to) talk about Turing Machines, automata, the
syntactic monoid, etc.

Instead, let us be more practical and look at how an algorithm
can be viewed as working in a semigroup.

Let B be a set, then Tran(B) = ({f : B — B},0) is the
transformation semigroup of B.
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INSERTION-SORT

Algorithm 1 INSERTION-SORT(x1,...,x,)

1. j—1

2: for j —2ton do

3: k«—xj

4: i—j-1

5: while i >0 and x; > % do
6: Xi+l < X

7: 1—1—-1

8: xi+1<—k

Everything is finite; for our example let us assume that the list is
small and that every variable is only one symbol in [8].
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In the transformation semigroup

Sorting is equivalent to computing g € Tran([¢q]*) which sorts any
list of n symbols.

_ ] ] _ _ 4
Let x = (x1,...,%0,Xn41 = §,Xp42 = J,¥n43 = k, X4 = 1) € [q]" ™.

Each update is the application of one of
FO _ F+Y e Tran([q]***), where e.g.

xF(Z) = (x1,Xf2,x3,...,xn+4)

x1 ifl =6,
xfo=+{x,:3 if1=8,
X9 otherwise.

Computing g then is done by a composition F@VF@2)  F@w),
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Sequential ANs

An Automata Network (AN) of size m is a collection of m
automata, each having a state x; € [q] and an update function
fi:lqI™ —[ql.

The state of the network is x = (x1,...,%5) € [q]™ and the network
is viewed as

f=(f1,...,fm) € Tran([g]™).

An AN is sequential if at each time step, only one automaton
updates its state. We denote this update by

xF® = X1, Xfiyen, Xm).
As such, we are interested in the semigroup
Sp:=(FD, ..., F™) < Tran((q]™).
(Henceforth, “network” refers to a sequential AN.)
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Why study ANs?

1. Many real-life networks can be modelled as ANs (gene
networks, neural networks, epidemics...).
The dynamics of these systems are difficult to predict,
especially when updates are asynchronous.

2. A lot of work has been done on distributed computational
models based on similar ideas (Cellular automata, Automata
networks from Tchuente or Dé6moési and Nehaniyv, etc.).

We want to understand what can be computed and how.

3. They have interesting connections to coding theory.
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Computing by sequential BANs

Let n <m and g € Tran([¢]").

The network f simulates (computes) g if there exists h € S¢ s.t.
hpry , =pri &,

or in other words, if for all x € [¢]™,

(xh)1.n=%1.n8

The network f is n-universal if it can simulate any
g e Tran([q]™).
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Universal network

Theorem
For any n =1, there exists an n-universal network.

Proof.
Construction: Take x;_,, copy it into x,.1. 25, and describe the
transformation g.

Basic ingredient for the description: the one-symbol switch. It
has two automata s and ¢, where

xfr = xs

xfs =x5+ 1.

The first line initialises the switch to OFF, while the second line
flicks it ON and OFF. O
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The basic universal network: in more detail

Let T = ¢"?" and Tran([q]") = {g¥,...,g D).
We use T switches, one for each g®®).

(s)
Xn+1.2n8y if Xopts # XontT4s and

xfy = Xon+r =X2n+T+r VI #s (1<v<=n)

Xy otherwise.
Xfr=%r_n, (n+l<r<2n)
xXfj=%7+), @2n+1=<sj<2n+7T)
xfr=xp+1, @2n+T+1<k<2n+2T).
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Proof of universality

We simulate g, 1<s<T, as follows.
Step 1. Make a copy the first n registers: F"*Do...o F@n),
Step 2. Turn all switches off: F@?*Do...o p2n+T),
Step 3. Turn the right switch on: F@n+T+s),
Step 4. Compute g®: FVo...o F),

Or more concisely,

h = (F(n+1)o_ . -oF(Zn))o(F(2n+1)o~ . ~OF(2n+T))OF(2n+T+S)O(F(I)O« . 'OF(n))
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Minimum size

Theorem
For any n =1, there is no n-universal network of size n.
Conversely, there is an n-universal network of size n + 2.
For size n, there are two main refinements:
1. Unless q =n =2, there is an network of size n which can
simulate any permutation of [q]" (i.e. Sym([¢]") < Sy)
[Cameron, Fairbairn, G. 14].

2. There is no network of size n which can simulate all
singular transformations (i.e. Sing([q]*) £ Sy).

The construction of size n + 2 is based on Memoryless
Computation (MC) [Burckel, Gioan, Thomé 09, G. and Riis 14].
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A bit on Memoryless Computation

In MC we have n registers, each gets updated one at a time.
Main difference with networks: the update functions
fi :[q]" — [¢q] can change over time.

Lemma
Any transformation can be simulated in MC, where each
automaton has at most two update functions.

Corollary
There exists an n-universal network of size n + 2.
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Minimum time

Updating one automaton provides one symbol of information.
We need ng” symbols to describe g.
Thus, the time is at least ng”...or is it?

Theorem
There exists an n-universal network with time q" + O(n).

Idea of the proof. Encode g1,...,g, successively as an error
added to a codeword in a Hamming code. The initial encoding
takes time ¢”, adding and removing the errors takes time O(n).

Conjecture

Any n-universal network has time at least q™.
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Complete networks and quasi-parallel simulation
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Complete networks

An network is n-complete if it can simulate any sequence of
transformations (with possible gaps in between).

Formally, if for any sequence gV, ..., g© € Tran([¢]"), there exist
Y, hD e S, such that forall 1<i <,

. 1 .
prl..ng(l) =h! )"'h(l)Pl"l..n'

The first example of an n-universal network was actually
n-complete.
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Minimum size and time for complete networks

Theorem
Any n-complete network has size at least 2n.
Conversely, there exists an n-complete network of size 2n + 3.

The minimum time is defined over any ordering gV, ..., g(q"qn) of
Tran([q]™).

Theorem

Any n-complete network has minimum time at least ¢"?".
Conversely, there exists an n-complete network with minimum
time (1+0(1))g™?".
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Parallel simulation

Let us consider parallel ANs, where all automata update their
states at the same time. This time, we are interested in

(Fr=4d,f,f%....f").

Theorem
For any n = 1, there is no n-universal parallel AN.

Therefore, asynchronism is compulsory for automata networks!
Theorem
Conversely, for any n = 1, there exists an n-complete

quasi-parallel network, where automata 1 to m — 1 operate in
parallel and automaton m is only updated once.
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