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Plactic monoid: Three sides of the same coin

Let An be the finite ordered alphabet {1 < 2 < . . . < n}.

I want to give three different ways of defining a certain congruence ∼ on the
free monoid A∗n :

1. Presentation (Knuth relations)
2. Tableaux (Schensted insertion algorithm)
3. Crystal bases (in the sense of Kashiwara)

We call ∼ the Plactic congruence and the resulting quotient monoid
Pl(An) = A∗n/ ∼ is called the Plactic monoid (of rank n).



The Plactic monoid

I Has origins in work of Schensted (1961) and Knuth (1970) concerned
with combinatorial problems on Young tableaux.

I Later studied in depth by Lascoux and Shützenberger (1981).

Due to close relations to Young tableaux, has become a tool in several
aspects of representation theory and algebraic combinatorics.

Applications of the Plactic monoid
I proof of the Littlewood–Richardson rule for Schur functions (an

important result in the theory of symmetric functions);
I see appendix of J. A. Green’s “Polynomial representations of GLn”.

I a combinatorial description of the Kostka–Foulkes polynomials, which
arise as entries of the character table of the finite linear groups.

M. P. Schützenberger ‘Pour le monoïde plaxique’ (1997)
Argues that the Plactic monoid ought to be considered as “one of the most
fundamental monoids in algebra”.



Plactic monoid via Knuth relations

Definition
Let An be the finite ordered alphabet {1 < 2 < . . . < n}.
LetR be the set of defining relations:

zxy = xzy and yzx = yxz x < y < z,

xyx = xxy and xyy = yxy x < y.

The Plactic monoid Pl(An) is the monoid defined by the presentation
〈An|R〉.

That is, Pl(An) = A∗n/ ∼ where ∼ is the smallest congruence on the free
monoid A∗n containingR.

I This is the most efficient way to define the Plactic congruence ∼.
I The relations in this presentation are called the Knuth relations.



A (semi-standard) tableau

1 1 1 2 2 4 4
2 2 3 3
4 5 5 6
6 8

Properties

I Is a filling of the Young diagram with symbols from the alphabet An.
I Rows read left-to-right are non-decreasing.
I Columns read down are strictly increasing.
I Never have a longer row below a strictly shorter one.



Schensted column insertion algorithm

I Associates to each word w ∈ A∗n a tableau P(w).
I The algorithm which produces P(w) is recursive.

Input: Any letter x ∈ An and a tableau T .

Output: A new tableau denoted x→ T .

The idea: Suppose T = C1C2 . . .Cr where the Ci are the columns of T .

I We try to insert the box x under the column C1 if we can.

I If this fails, the box x will be put into column C1 higher up (in an

appropriate place) and will “bump out” a box y .

I We then take the bumped out box y and try and insert it under the
column C2, and so on...



Schensted’s column insertion algorithm
Algorithm:

I If T = ∅ then x→ T = x
I If T = C has only on column then

x→ T =


C
x

if
C
x

is a column

C′ y otherwise

where y is the minimal letter in C such that x ≤ y and
C′ = C − {y}+ {x}.

I If T = C1C2 . . .Cr has r ≥ 2 columns

x→ T =


C1

x
C2 . . .Cr if x→ C1 =

C1

x

C′1(y→ C2 . . .Cr) if x→ C1 = C′1 y



Schensted’s column insertion algorithm

Example
A4 = {1 < 2 < 3 < 4} if w = 232143 then P(w) is obtained as:

2 , 2
3
, 2 2

3
, 1 2 2

3
,

1 2 2
3
4

,
1 2 2
3 3
4

= P(w).

Observation: 231 = 213 is one of the Knuth relations in the presentation of
the Plactic monoid and P(231) = P(213):

2 , 2
3
, 1 2

3
= P(231), 2 , 1 2 , 1 2

3
= P(213).

Theorem (Lascoux and Shützenberger (1981))
Define a relation ∼ on A∗n by

u ∼ w⇔ P(u) = P(w).

Then∼ is the Plactic congruence and Pl(An) = A∗n/ ∼ is the Plactic monoid.



The Plactic monoid via tableaux

w(T) = the word obtained by reading the columns of a tableau T from right
to left and top to bottom (Japanese reading).

Example: If T =
1 1 4
2 5
3

then w(T) = 415123.

Theorem (Lascoux and Shützenberger (1981))
For any word u ∈ A∗n we have

I u = w(P(u)) in the Plactic monoid Pl(An) and
I P(u) is the unique tableau such that this is true.

Conclusion: the set of word readings of tableaux is a set of normal forms
for the elements of the Plactic monoid. So, the Plactic monoid is the monoid
of tableaux:

Elements The set of all tableaux over An = {1 < 2 < · · · < n}.
Products Computed using Schensted insertion.



Crystals

1

1Fig 8.4 from Hong and Kang’s book An introduction to quantum groups and crystal bases.



Crystal graphs
(following Kashiwara and Nakashima (1994))

Idea: Define a directed labelled digraph ΓAn with the properties:
I Vertex set = A∗n
I Each directed edge is labelled by a symbol from the label set

I = {1, 2, . . . , n− 1}.
I For each vertex u ∈ A∗n every i ∈ I there is at most one directed edge

labelled by i leaving u, and there is at most one directed edge labelled
by i entering u,

u vi
, w ui

I If u vi
then |u| = |v|, so words in the same component have

the same length as each other. In particular, connected components are
all finite.



Building the crystal graph ΓAn

An = {1 < 2 < . . . < n}

We begin by specifying structure on the words of length one

1 2 . . . n− 1 n1 2 n − 2 n − 1

This is known as a Crystal basis.

Kashiwara operators
For each i ∈ {1, . . . , n− 1} we define partial maps ẽi and f̃i on the letters An

called the Kashiwara crystal graph operators. For each edge

a b
i

,

we define f̃i(a) = b and ẽi(b) = a.



The crystal graph ΓAn

1 2 . . . n− 1 n1 2 n − 2 n − 1

a f̃i(a)
i

,
ẽi(b) b

i

Kashiwara operators on words
For u, v ∈ A+

n define inductively

ẽi(uv) =

{
u ẽi(v) if ϕi(u) < εi(v)

ẽi(u) v if ϕi(u) ≥ εi(v)
, f̃i(uv) =

{
f̃i(u) v if ϕi(u) > εi(v)

u f̃i(v) if ϕi(u) ≤ εi(v)
.

where εi and ϕi are auxiliary maps defined by

εi(w) = max{k ∈ N ∪ {0} : ẽi · · · ẽi︸ ︷︷ ︸
k times

(w) is defined}

ϕi(w) = max{k ∈ N ∪ {0} : f̃i · · · f̃i︸ ︷︷ ︸
k times

(w) is defined}



The crystal graph ΓAn

Definition
The crystal graph ΓAn is the directed labelled graph with:

I Vertex set: A∗n
I Directed labelled edges: for u ∈ A∗n

u f̃i(u)
i

,
ẽi(u) ui

Note: When defined ẽi(f̃i(u)) = u and f̃i(ẽi(u)) = u.



Practical computation of ẽi(u) and f̃i(u)

Let u ∈ A∗n and i ∈ I.

Question: Are either / both of the following edges in ΓAn ?

u f̃i(u),
i

ẽi(u) ui

Algorithm:
I Under each letter a of w write:

I εi(a) times the symbol − and ϕi(a) times the symbol +.

I Take the resulting string of −’s and +’s and delete all adjacent +−.
I The resulting string is then −εi(w)+ϕi(w).
I ẽi(w): obtained by applying ẽi to the letter a above the rightmost

remaining −, if it exists.
I f̃i(w): obtained by applying f̃i to the letter a above the leftmost

remaining +, if it exists.



Example with A3 = {1 < 2 < 3}

1 2 3
1 2

a f̃i(a)
i

,
ẽi(b) b

i

Example
Let u = 33212313232 and let i = 2 ∈ I = {1, 2}.

3 3 2 1 2 3 1 3 2 3 2
− − + + − − + − +
− − + + − − + − +
− − +

3 3 2 1 2 3 1 3 2 3 3 = f̃2(u)
3 2 2 1 2 3 1 3 2 3 2 = ẽ2(u)



Crystal graph components for A3 = {1 < 2 < 3}

Word length one

1 2 3
1 2

Word length two

11 12 13

21 22 23

31 32 33

2

11

1

2

1 2

2



Crystal graph components for A3 = {1 < 2 < 3}

Word length three

112

113 212

213 312

223 313

323

2

1

1

2

1

2

2

1

121

131 122

231 132

232 133

233

2

1

1

2

1

2

2

1



Plactic monoid via crystals

Definition: Two connected components B(w) and B(w′) of ΓAn are
isomorphic if there is a label-preserving digraph isomorphism
f : B(w)→ B(w′).

Fact: In ΓAn if B(w) ∼= B(w′) then there is a unique isomorphism
f : B(w)→ B(w′).

Theorem (Kashiwara and Nakashima (1994))
Let ΓAn be the crystal graph with crystal basis

1 2 . . . n− 1 n1 2 n − 2 n − 1

Define a relation ∼ on A∗n by

u ∼ w⇔ ∃ an isomorphism f : B(u)→ B(w) with f (u) = w.

Then∼ is the Plactic congruence and Pl(An) = A∗n/ ∼ is the Plactic monoid.



Crystal graph components for A3 = {1 < 2 < 3}

∼=

112

113 212

213 312

223 313

323

2

1

1

2

1

2

2

1

121

131 122

231 132

232 133

233

2

1

1

2

1

2

2

1

(Confession: I lied a bit. Actually, crystal isomorphisms must also preserve
“weight”. For Pl(An) weight preserving means “content preserving”.)



Where do crystals come from?

WARNING!

Lie algebras are not algebras

Quantum groups are not groups

and

Good enough is not good enough



Where do crystals come from?

J. Hong, S.-J. Kang,
Introduction to Quantum Groups and Crystal Bases.
Stud. Math., vol. 42, Amer. Math. Soc., Providence, RI, 2002.

I Take a “nice” Lie algebra g. Nice means symmetrizable Kac-Moody
Lie algebra e.g. a finite-dimensional semisimple Lie algebra.

I From g construct its universal enveloping algebra U(g) which is an
associative algebra.

I Drinfeld and Jimbo (1985): defined q-analogues Uq(g), quantum
deformations, with parameter q

I q = 1: Uq(g) coincides with U(g)
I q = 0: is called crystallisation (Kashiwara (1990)). The parameter q

corresponds to temperature, q = 0 is absolute temperature zero.



Where do crystals come from?

I Crystal bases are bases of Uq(g)-modules at q = 0 that satisfy certain
axioms.

I Kashiwara (1991): proves existence and uniqueness of crystal bases of
finite dimensional representations of Uq(g).

I Every crystal basis has the structure of a coloured digraph (called a
crystal graph). The structure of these coloured digraphs has been
explicitly determined for certain semisimple Lie algebras (special
linear, special orthogonal, symplectic, some exceptional types).

I The crystal constructed from the crystal basis using Kashiwara
operators is then a useful combinatorial tool for studying
representations of Uq(g).

I e.g. Gives information about decomposing tensor products of finite
dimensional Uq(g)-modules into direct sums of irreducible components.



Crystal bases and crystal monoids
Lie algebra Crystal basis Monoid

type

An: sln+1
1 2 . . . n− 1 n1 2 n − 2 n − 1

Pl(An)

Bn: so2n+1 1 2 . . . n 0 n . . . 2 1
1 2 n − 1 n n n − 1 2 1

Pl(Bn)

Cn: sp2n
1 2 . . . n n . . . 2 1

1 2 n − 1 n n − 1 2 1
Pl(Cn)

Dn: so2n

1 2 . . . n− 1

n

n

n− 1 . . . 2 1
1 2 n − 2

n − 1

n

n

n − 1

n − 2 2 1

Pl(Dn)

G2
1 2 3 0 3 2 1

1 2 1 1 2 1
Pl(G2)



Crystal monoids in general

Combinatorial crystals

I Crystal basis = finite labelled directed graph, vertex set X, label set I,
satisfying certain axioms so that Kashiwara operators ẽi, f̃i (i ∈ I) and
functions εi and ϕi make sense.

I A weight function wt : X → P where P is some finitely generated free
abelian group.

I Construct a (weighted) crystal graph ΓX from this data
I Vertex set: X∗

I Directed labelled edges: determined by ẽi, f̃i

Definition (Crystal monoid)
Let ΓX be a crystal graph. Define ≈ on X∗ where u ≈ v if there is a (weight
preserving) isomorphism θ : B(u)→ B(v) with θ(u) = v. Then ≈ is a
congruence on X∗ and X∗/ ≈ is called the crystal monoid of ΓX .



Known results and our interest
Known results on crystals An, Bn, Cn, Dn, or G2 and their crystal monoids:

1. Crystal bases - combinatorial description Kashiwara and Nakashima
(1994).

2. Tableaux theory and Schensted-type insertion algorithms - Kashiwara
and Nakashima (1994), Lecouvey (2002, 2003, 2007).

3. Finite presentations for Pl(X) via Knuth-type relations - Lecouvey
(2002, 2003, 2007).

Theory we have been developing for crystal monoids:

4. Finite complete rewriting systems
5. Automatic structures

A. J. Cain, R. D. Gray, A. Malheiro
Crystal bases, finite complete rewriting systems, and biautomatic structures for
Plactic monoids of types An, Bn, Cn, Dn, and G2.
arXiv:math.GR/1412.7040, 50 pages.



Complete rewriting systems

X - alphabet, R ⊆ X∗ × X∗ - rewrite rules, 〈X | R〉 - rewriting system
Write r = (r+1, r−1) ∈ R as r+1 → r−1.

Define a binary relation→
R

on X∗ by

u→
R

v ⇔ u ≡ w1r+1w2 and v ≡ w1r−1w2

for some (r+1, r−1) ∈ R and w1,w2 ∈ X∗.

−→∗ R is the transitive and reflexive closure of→
R

Noetherian: No infinite descending
chain

w1→R
w2→R

· · ·→
R

wn→R
· · ·

Confluent: Whenever

u−→∗ R v and u−→∗ R v′

there is a word w ∈ X∗:

v−→∗ R w and v′−→∗ R w

Definition: 〈X | R〉 is a finite complete rewriting system if it is complete
(noetherian and confluent) and |X| <∞ and |R| <∞.



Finite complete rewriting systems

Theorem (Cain, RG, Malheiro (2014))
For any X ∈ {An,Bn,Cn,Dn,G2}, there is a finite complete rewriting system
(Σ,T) that presents Pl(X).

Notes on the proof:
I Builds on our earlier results on the Plactic monoid Pl(An).
I In each case there is a tableau theory. Admissible columns are columns

of tableaux.
I Key idea: work with the larger generating set of admissible columns.
I A tabloid is a sequence of admissible columns.
I The rewriting system takes a tabloid and rewrites it by multiplying

adjacent pairs of admissible columns.
I Kashiwara operators preserve shapes of tabloids so it suffices to

consider pairs of columns whose readings are highest-weight words.



Crystal graph components and tableaux

=

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

2 2
3

1 3
3

2 3
3

2

1

1

2

1

2

2

1

∼=

112

113 212

213 312

223 313
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2

1

1

2

1

2

2

1
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2

1

1

2

1

2

2

1



Rewriting tabloids

I Multiplying two adjacent admissible columns of a tabloid brings us one
step closer to being a tableau.



Complete rewriting system

I Rewriting converges to the unique tableau representative of the element.



Automatic structures

Automatic groups and monoids
I Automatic groups

I Capture a large class of groups with easily solvable word problem
I Examples: finite groups, free groups, free abelian groups, various small

cancellation groups, Artin groups of finite and large type, Braid groups,
hyperbolic groups.

I Automatic semigroups and monoids
I Classes of monoids that have been shown to be automatic include

divisibility monoids and singular Artin monoids of finite type.

Defining property: existence of rational set of normal forms (with respect
to some finite generating set A) such that ∀a ∈ A, there is a finite automaton
recognising pairs of normal forms that differ by multiplication by a.

Proposition (Campbell et al. (2001))
Automatic monoids have word problem solvable in quadratic time.



Automaticity

Theorem (Cain, RG, Malheiro (2014))
The monoids Pl(An), Pl(Bn), Pl(Cn), Pl(Dn), and Pl(G2) are all biautomatic.

I Biautomatic = the strongest form of automaticity for monoids.
I The language of representatives of the biautomatic structure is the

language of irreducible words of the rewriting systems (Σ,T)
constructed above.

I As above, crystal bases theory can be used to reduce the problem to just
considering highest-weight words.



Current and future work

I Further develop the theory of crystal monoids in general
I We can obtain other examples (e.g. bicyclic monoid is a crystal monoid).
I They all have decidable word problem.
I Under what conditions do they admit finite complete rewriting systems /

are automatic?
I What do our results say about the Plactic algebras of Littelmann?

P. Littelmann,
A Plactic Algebra for Semisimple Lie Algebras.
Advances in Mathematics 124 (1996), 312–331.

I Investigate how our results might be applied to give new computational
tools for working with crystals (e.g. using rewriting systems / finite
automata to compute with crystals).


