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Young tableaux & the plactic monoid

LletneNandletA={1<2<3<...<nh

6 » Rows non-decreasing left to right
S15]7 » Columns decreasing top to bottom
31416 » Left-justified, shorter rows on top
11]2]3]5]7]
Schensted’s algorithm computes a tableau P(u) from a word u € A*.
Define

u=v < P(u) =P(v).

Theorem (Knuth 1970)
The relation = is a congruence on A*.

The factor monoid P,, = A*/= is the Plactic monoid of rank n

» Connected with combinatorics, quantum groups, symmetric
functions, representations of sl,, and &,,.



‘Plactic-like’ monoids
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Rewriting systems
A monoid is FCRS if it admits a presentation via a finite complete
rewriting system (on some generating set).
» Having a finite complete rewriting system presentation is
dependent on the choice of generators.
» Finite derivation type (FDT) is a consequence of FCRS but is not
dependent on the choice of generators.



Automaticity & biautomaticity

Let M be a monoid, A a generating set for M, and L a regular
language over A such that L maps onto M. Define relations

Lo ={(u,v) e L x L:ua =pm v},
{(uyv) eL x L:au=m v}

The pair (A,L) is
» a automatic structure for M if L, is recognizable by a
synchronous two-tape automaton for all a € A U {e};

» an biautomatic structure for M if L, and ,L are recognizable by
synchronous two-tape automata for all a € A U {¢}.

A monoid is
» automatic (AUTO) if it admits an automatic structure;
» biautomatic (BIAUTO) if it admits an biautomatic structure.

Theorem (C, Gray, Malheiro 2015)
P, is FCRS and BIAUTO.



Quasi-ribbon tableaux

Quasi-ribbon tableau (QRT): To insert a symbol x into a
quasi-ribbon tableau T:

» Break the tableau two parts:

5/6 \ T is up to and including the
3044 ~3 top-right-most symbol r such
12 that r < x; the remainder is
T-.

» Add x to the right of r.
» Attach T. to the top of x.
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Quasi-ribbon tableaux

Quasi-ribbon tableau (QRT): To insert a symbol x into a
quasi-ribbon tableau T:

5]6] » Break the tableau two parts:

414 T is up to and including the

303 top-right-most symbol r such
that r < x; the remainder is
T..

» Add x to the right of r.

» Attach T. to the top of x.

For a word w = wyw; - - - wy,.
» Start with an empty QRT insert wy, then w,, ..., finally w,,.
» Call the resulting quasi-ribbon tableau Q(w).

Column reading Read columns from top to bottom, left to right:
13243546.

Row reading Read rows from left to right, top to bottom:
5644 3312.

Both give words w such that Q(w) is the original QRT.



Hypoplactic monoid
Define=on A*byu=v < Q(u) = Q(v).

Theorem (Novelli)
The relation = is a congruence on A*.

The factor monoid H,, = A*/= is the hypoplactic monoid of rank n

» H,, is a quotient of Py,.

Theorem (C, Gray, Malheiro 2015)
H,, is FCRS and BIAUTO.



Binary search trees

Binary search tree
(BST):




Binary search trees

Binary search tree To insert x into a BST T:

(BST): » Add x as a leaf node in the unique
position that yields a BST.




Binary search trees

Binary search tree To insert x into a BST T:
(BST): » Add x as a leaf node in the unique
0 position that yields a BST.
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Binary search trees

Binary search tree To insert x into a BST T:
(BST): » Add x as a leaf node in the unique
9 position that yields a BST.
c 6 For a word w = wi w1 - - - wy.
» Start with an empty BST and insert
0 e e e wi, then w,, ..., finally w,,.
2) (4 » Call the resulting BST T(w).

Reading of T Any word such that T7(w) =T.
Equivalently, any word made up of symbols in T, with
children before parents.

Readings of the example include

124315654 421565314
651425314 654231154



Sylvester monoid
Define=on A*byu=v < T(u) =T(v).

Theorem (Hivert et al. 2005)
The relation = is a congruence on A*.

The factor monoid S,, = A*/= is the sylvester monoid of rank n

Theorem (C, Gray, Malheiro 2015)
S, admits a regular infinite complete rewriting system and is BIAUTO.



Homogeneous and content-preserving presentations
A monoid presentation (A | R) is
Homogeneous if [u| = |v| for all (u,v) € R;
Multihomogeneous if [u|, = |v|q for all (u,v) € R and a € A.

» Plactic, hypoplactic, and sylvester monoids are
multihomogeneous:

Pn=(A[P);
Hn, = (A | PUX);
where
={(acb,cab):a<b< c}U{(bac bca):a<b<c}
={(cadb, acbd), (bdac,dbca):a<b<c<d}

Sn:<A| (caub,acud),a < b<c < duecA”).
» Chinese monoids are multihomogeneous, and are BIAUTO and
FCRS.

» Homogeneous monoids have solvable word problem, because all
words representing an element have the same length.



Homogeneous and content-preserving presentations

What is the relationship between FCRS, FDT, AUTO, BIAUTO in the
class of homogeneous monoids?
For general monoids:

» FCRS = FDT

» BIAUTO = AUTO

» The properties are otherwise independent.






FCRS, FDT, AUTO, BIAUTO for homogeneous monoids
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FCRS, FDT, AUTO, BIAUTO for homogeneous monoids
M;: AUTO, non-BIAUTO,

FCRS, FDT (C, Gray,
% Malheiro).
M. : Reverse of M;.
Plactic Non-AUTO, non-BIAUTO,
monoid FCRS, FDT (C, Gray,
Malheiro).
M3: Constructed by
Katsura & Kobayashi, who
showed it is FDT and
non-FCRS. Also BIAUTO
and thus AuTO (C, Gray,
Malheiro).
My: BIAUTO, AUTO,

non-FCRS, non-FDT (C,
Gray, Malheiro).
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M;: AUTO, non-BIAUTO,

FCRS, FDT (C, Gray,
X Malheiro).
M. : Reverse of M;.
Plactic Non-AUTO, non-BIAUTO,
monoid FCRS, FDT (C, Gray,
Malheiro).
M3: Constructed by
Katsura & Kobayashi, who
showed it is FDT and
non-FCRS. Also BIAUTO

and thus AuTO (C, Gray,
Malheiro).
My: BIAUTO, AUTO,

My « My 4

non-FCRS, non-FDT (C,
Gray, Malheiro).
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Two concepts of conjugacy

o-conjugacy is the relation
X~ Y <= (Ig,h € M)(xg = gy Ahx =yh).
primary conjugacy is the relation
X~p Yy = (Fu,ve M)(x =uv Ay =vu).

» For groups, these are the usual conjugacy relation.
» For monoids, ~;, is not in general transitive.

> ~5 S~ [~ = U0~

Theorem (Narendran & Otto)
~o IS undecidable for FCRS monoids.

Theorem (C, Malheiro)
~o IS undecidable for homogeneous FCRS monoids.



Conjugacy in plactic-like monoids
Forw € A*, define
ev(w) = (Iwli, wlz, ..., win)

and
U~V < ev(u) =ev(v).

In a multihomogeneous monoid M
U~, v = (dg € M)(gu =vg) = ev(u) =ev(v),
S0 ~o C ~e.
We have ~} =~ =~ in:
» P, [Lascoux & Schiitzenberger 1981]
» H,, [easy consequence of P,, result]

» S, [C, Malheiro]
» Chinese monoid of rank n [Cassaigne et al. 2001]



Conjugacy in P, Hy, S,
Theorem (Choffrut & Mercas 2013)

<2n-—2 :
~p T =~ =~ in Py



Conjugacy in P, Hy, S,
Theorem (Choffrut & Mercas 2013)

< -2 .
SV =~y =~ in Py

Theorem (C, Malheiro)

<n—1 ; sn—2
~p" =~ =~c in Hy. Furthermore, ~ -

~

P = O-
Theorem (C, Malheiro)
~S™ 1 =~, =~ in S,.. Furthermore, ~5™ % C ~,.



Conjugacy in the hypoplactic monoid Hs
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Conjugacy in the hypoplactic monoid Hs

445231 ~, 144523
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Conjugacy in the hypoplactic monoid Hs

445231 ~, 144523
=1 124345 ~, 434512
4]4]5] s 4]5]
2|3 3
1 HE 11]2
5] 5] 5]

3]4]4 4 3]4]4 3]4
1]2 1 1]2 1]2




Conjugacy in the hypoplactic monoid Hs

445231 ~, 144523
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Conjugacy in the hypoplactic monoid Hs
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Conjugacy in the sylvester monoid Ss
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Conjugacy in the sylvester monoid Ss
32415 ~,, 53241




Conjugacy in the sylvester monoid Ss
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Conjugacy in the sylvester monoid Ss

32415 ~,, 53241
=s, 53241 ~p 24153
=s5 45213 ~, 21345
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Conjugacy in the sylvester monoid Ss
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Conjugacy in the sylvester monoid Ss

32415 ~, 53241
—s, 53241 ~, 24153
—s, 45213 ~, 21345
—s, 21345 ~, 52134
—s, 21354 ~, 13542
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Lower bounds and cocharge sequences
To calculate the cocharge sequence of 1246375:

» Label 1 with 0.
» Having labelled i with k, proceed
clockwise to 1 + 1.
» If x is passed, label i + 1 with k.
» If x is not passed, label i + 1
with k + 1.

» The cocharge sequence comprises
the labels of 1,2, ....

Labelling
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Lower bounds and cocharge sequences
To calculate the cocharge sequence of 1246375:

» Label 1 with 0.
» Having labelled i with k, proceed
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Lower bounds and cocharge sequences

To calculate the cocharge sequence of 1246375:

» Label 1 with 0.
» Having labelled i with k, proceed
clockwise to 1 + 1.
» If x is passed, label i + 1 with k.
» If x is not passed, label i + 1
with k + 1.

» The cocharge sequence comprises
the labels of 1,2, ....

Labelling
So cochseq(1246375) = (0,0,0,1,1,2,2).
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If u=s,_ v,then
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Lower bounds and cocharge sequences

Sn={(A|(cavb,acvb):a < b <c,v e A, *

Lemma
If u=s,_ v,then
cochseq(u) = cochseq(v)

Lemma

If u=y,_ v, then

cochseq(u) = cochseq(v) Labellind
Lemma

Ifu=p_ v,then
cochseq(u) = cochseq(v)



Lower bounds and cocharge sequences

What is the effect on a cocharge sequence of applying ~,, to a word?

Labellin®

cochseq(1246375)
= (0)0)0»1,1)2)2)



Lower bounds and cocharge sequences

What is the effect on a cocharge sequence of applying ~,, to a word?

Labelling Labelling
cochseq(1246375) cochseq(7512463)
:(0)0)0»1,1)2)2) :(0)0)0)1>2,2)3)

Lemma
Applying ~, increases or decreases each term of a cocharge
sequence by at most 1.



Lower bounds and cocharge sequences

*

@ cochseq(12---n) = (0,0,...,0)

*

@ cochseq(n---21) = (0,1,...,n—1)

In S,,, at least n — 1 applications of ~,, separate

In H,,, at least n — 1 applications of ~,, separate

0(12--n)=[1]2] [n]and o(n---21) :.



Plactic monoid P,
Question
What is the minimum k,, such that ~5*" = ~, = ~, in P, ?

» Current best bounds: n —1 <k, <2n—3.
» Computer searches suggest k,, =n —1.
» Checked for n < 9 for words with no repeated symbols.
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