Computation and conjugacy in hypoplactic and sylvester monoids, and other homogeneous monoids

Alan J. Cain

Centre for Mathematics and Applications, New University of Lisbon

Joint work with Robert D. Gray \& António Malheiro

Young tableaux \& the plactic monoid

Let $n \in \mathbb{N}$ and let $A=\{1<2<3<\ldots<n\}$.

6					
5	5	7			
3	4	6			
1	1	2	3	5	

- Rows non-decreasing left to right
- Columns decreasing top to bottom
- Left-justified, shorter rows on top

Schensted's algorithm computes a tableau $\mathrm{P}(\mathrm{u})$ from a word $u \in A^{*}$. Define

$$
u \equiv v \Longleftrightarrow \mathrm{P}(\mathrm{u})=\mathrm{P}(v) .
$$

Theorem (Knuth 1970)
The relation \equiv is a congruence on A^{*}.

The factor monoid $P_{n}=A^{*} / \equiv$ is the Plactic monoid of rank n

- Connected with combinatorics, quantum groups, symmetric functions, representations of $\mathfrak{s l}_{n}$ and \mathfrak{S}_{n}.

‘Plactic-like’ monoids

Plactic monoid Hypoplactic monoid Young tableaux Quasi-ribbon tableaux

3						
2	3	4				
1	1	2		$	$	3
:---						

Stalactite monoid Stalactite tableaux

Sylvester monoid Binary search trees

Baxter monoid Pairs of binary search trees

Rewriting systems

A monoid is FCRS if it admits a presentation via a finite complete rewriting system (on some generating set).

- Having a finite complete rewriting system presentation is dependent on the choice of generators.
- Finite derivation type (FDT) is a consequence of FCRS but is not dependent on the choice of generators.

Automaticity \& biautomaticity

Let M be a monoid, A a generating set for M, and L a regular language over A such that L maps onto M. Define relations

$$
\begin{aligned}
L_{a} & =\left\{(u, v) \in L \times L: u a={ }_{M} v\right\}, \\
a & =\left\{(u, v) \in L \times L: a u={ }_{M} v\right\} .
\end{aligned}
$$

The pair (A, L) is

- a automatic structure for M if L_{a} is recognizable by a synchronous two-tape automaton for all $a \in A \cup\{\varepsilon\}$;
- an biautomatic structure for M if L_{a} and ${ }_{a} L$ are recognizable by synchronous two-tape automata for all $a \in A \cup\{\varepsilon\}$.
A monoid is
- automatic (AUTO) if it admits an automatic structure;
- biautomatic (BIAUTO) if it admits an biautomatic structure.

Theorem (C, Gray, Malheiro 2015)
P_{n} is FCRS and BIAUTO.

Quasi-ribbon tableaux

Quasi-ribbon tableau (QRT):

To insert a symbol x into a quasi-ribbon tableau T :

- Break the tableau two parts: T_{\leqslant}is up to and including the top-right-most symbol r such that $r \leqslant x$; the remainder is $\mathrm{T}_{>}$.
- Add x to the right of r.
- Attach $T_{>}$to the top of x.
- Start with an empty QRT insert w_{1}, then w_{2}, \ldots, finally w_{n}.
- Call the resulting quasi-ribbon tableau $\mathcal{Q}(w)$.

Column reading Read columns from top to bottom, left to right:
Row reading Read rows from left to right, top to bottom:
56443312.

Quasi-ribbon tableaux

Quasi-ribbon tableau (QRT):

	5	6
4	4	

	3
1	2

$\leftarrow 3$

To insert a symbol x into a quasi-ribbon tableau T :

- Break the tableau two parts: T_{\leqslant}is up to and including the top-right-most symbol r such that $r \leqslant x$; the remainder is $\mathrm{T}_{>}$.
- Add x to the right of r.
- Attach $T_{>}$to the top of x.

Quasi-ribbon tableaux

Quasi-ribbon tableau (QRT):

	5	6
4	4	

To insert a symbol x into a quasi-ribbon tableau T :

- Break the tableau two parts: T_{\leqslant}is up to and including the top-right-most symbol r such that $r \leqslant x$; the remainder is $\mathrm{T}_{>}$.
- Add x to the right of r.
- Attach $\mathrm{T}_{>}$to the top of x.

Quasi-ribbon tableaux

Quasi-ribbon tableau (QRT):

To insert a symbol x into a quasi-ribbon tableau T :

- Break the tableau two parts: T_{\leqslant}is up to and including the top-right-most symbol r such that $r \leqslant x$; the remainder is $\mathrm{T}_{>}$.
- Add x to the right of r.
- Attach $\mathrm{T}_{>}$to the top of x.

Quasi-ribbon tableaux

Quasi-ribbon tableau (QRT):

To insert a symbol x into a quasi-ribbon tableau T :

- Break the tableau two parts: T_{\leqslant}is up to and including the top-right-most symbol r such that $r \leqslant x$; the remainder is $\mathrm{T}_{>}$.
- Add x to the right of r.
- Attach $T_{>}$to the top of x.

For a word $w=w_{1} w_{2} \cdots w_{n}$.

- Start with an empty QRT insert w_{1}, then w_{2}, \ldots, finally w_{n}.
- Call the resulting quasi-ribbon tableau $\mathcal{Q}(w)$.

Column reading Read columns from top to bottom, left to right: 13243546.

Row reading Read rows from left to right, top to bottom: 56443312.

Both give words w such that $Q(w)$ is the original QRT.

Hypoplactic monoid

Define \equiv on A^{*} by $u \equiv v \Longleftrightarrow \mathcal{Q}(u)=\mathcal{Q}(v)$.
Theorem (Novelli)
The relation \equiv is a congruence on A^{*}.

The factor monoid $H_{n}=A^{*} / \equiv$ is the hypoplactic monoid of rank n

- H_{n} is a quotient of P_{n}.

Theorem (C, Gray, Malheiro 2015)
H_{n} is FCRS and BIAUTO.

Binary search trees

Binary search tree (BST):

To insert x into a BST T:

- Add x as a leaf node in the unique position that yields a BST.
For a word $w=w_{k} w_{k-1} \cdots w_{1}$.
- Start with an empty BST and insert w_{1}, then w_{2}, \ldots, finally w_{n}.
- Call the resulting BST $\mathcal{T}(w)$.

Reading of T Any word such that $\mathcal{T}(w)=T$
Equivalently, any word made up of symbols in T, with children before parents.

Readings of the example include

Binary search trees

Binary search tree (BST):

To insert x into a BST T:

- Add x as a leaf node in the unique position that yields a BST.
For a word $w=w_{k} w_{k-1} \cdots w_{1}$
- Start with an empty BST and insert w_{1}, then w_{2}, \ldots, finally w_{n}.
- Call the resulting BST $\mathcal{T}(w)$.

Reading of T Any word such that $\mathcal{T}(w)=T$.
Equivalently, any word made up of symbols in T, with children before parents.

Readings of the example include

Binary search trees

Binary search tree (BST):

To insert x into a BST T:

- Add x as a leaf node in the unique position that yields a BST.
For a word $w=w_{k} w_{k-1} \cdots w_{1}$
- Start with an empty BST and insert w_{1}, then w_{2}, \ldots, finally w_{n}.
- Call the resulting BST $\mathcal{T}(w)$.

Reading of T Any word such that $\mathcal{T}(w)=T$.
Equivalently, any word made up of symbols in T, with children before parents.

Readings of the example include

Binary search trees

Binary search tree (BST):

To insert x into a BST T:

- Add x as a leaf node in the unique position that yields a BST.
For a word $w=w_{k} w_{k-1} \cdots w_{1}$.
- Start with an empty BST and insert w_{1}, then w_{2}, \ldots, finally w_{n}.
- Call the resulting BST $\mathcal{T}(w)$.

Reading of T Any word such that $\mathcal{T}(w)=T$.
Equivalently, any word made up of symbols in T, with children before parents.

Readings of the example include

Binary search trees

Binary search tree (BST):

To insert x into a BST T:

- Add x as a leaf node in the unique position that yields a BST.
For a word $w=w_{k} w_{k-1} \cdots w_{1}$.
- Start with an empty BST and insert w_{1}, then w_{2}, \ldots, finally w_{n}.
- Call the resulting BST $\mathcal{T}(w)$.

Reading of T Any word such that $\mathcal{T}(w)=\mathrm{T}$. Equivalently, any word made up of symbols in T, with children before parents.

Readings of the example include

124315654
651425314

421565314
654231154

Sylvester monoid

Define \equiv on A^{*} by $u \equiv v \Longleftrightarrow \mathcal{T}(u)=\mathcal{T}(v)$.
Theorem (Hivert et al. 2005)
The relation \equiv is a congruence on A^{*}.
The factor monoid $S_{n}=A^{*} / \equiv$ is the sylvester monoid of rank n
Theorem (C, Gray, Malheiro 2015)
S_{n} admits a regular infinite complete rewriting system and is BIAUTO.

Homogeneous and content-preserving presentations

A monoid presentation $\langle A \mid \mathcal{R}\rangle$ is
Homogeneous if $|u|=|v|$ for all $(u, v) \in \mathcal{R}$;
Multihomogeneous if $|\mathfrak{u}|_{a}=|v|_{a}$ for all $(u, v) \in \mathcal{R}$ and $a \in \mathcal{A}$.

- Plactic, hypoplactic, and sylvester monoids are multihomogeneous:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}}= & \langle\mathcal{A} \mid \mathcal{P}\rangle ; \\
\mathrm{H}_{\mathrm{n}}= & \langle\mathcal{A} \mid \mathcal{P} \cup \mathcal{H}\rangle ; \\
& \text { where } \\
& \mathcal{P}=\{(\mathrm{acb}, \mathrm{cab}): \mathrm{a} \leqslant \mathrm{~b}<\mathrm{c}\} \cup\{(\mathrm{bac}, \mathrm{bca}): \mathrm{a}<\mathrm{b} \leqslant \mathrm{c}\} \\
& \mathcal{H}=\{(\mathrm{cadb}, \mathrm{acbd}),(\mathrm{bdac}, \mathrm{dbca}): \mathrm{a} \leqslant \mathrm{~b}<\mathrm{c} \leqslant \mathrm{~d}\} \\
\mathrm{S}_{\mathrm{n}}= & \left\langle\mathcal{A} \mid(c a u b, a c u d), \mathrm{a} \leqslant \mathrm{~b}<\mathrm{c} \leqslant \mathrm{~d}, \boldsymbol{u} \in \mathcal{A}^{*}\right\rangle .
\end{aligned}
$$

- Chinese monoids are multihomogeneous, and are BIAUTO and FCRS.
- Homogeneous monoids have solvable word problem, because all words representing an element have the same length.

Homogeneous and content-preserving presentations

What is the relationship between FCRS, FDT, AUTO, BIAUTO in the class of homogeneous monoids?

For general monoids:

- FCRS \Longrightarrow FDT
- BIAUTO \Longrightarrow AUTO
- The properties are otherwise independent.

FCRS, FDT, AUTO, BIAUTO for homogeneous monoids

M_{1} : AUTO, non-BIAUTO,
FCRS, FDT (C, Gray,
Malheiro).
M_{2} : Reverse of M_{1}.
Non-AUTO, non-BIAUTO,
FCRS, FDT (C, Gray,
Malheiro).
M_{3} : Constructed by
Katsura \& Kobayashi, who showed it is FDT and
non-FCRS. Also BIAUTO and thus AUTO (C, Gray, Malheiro).
M_{4} : BIAUTO, AUTO,
non-FCRS, non-FDT (C
Gray, Malheiro).

FCRS, FDT, AUTO, BIAUTO for homogeneous monoids

M_{1} : AUTO, non-BIAUTO,
FCRS, FDT (C, Gray,
Malheiro).
M_{2} : Reverse of M_{1}. Non-Auto, non-Biauto,
FCRS, FDT (C, Gray, Malheiro).
M_{3} : Constructed by
Katsura \& Kobayashi, who showed it is FDT and
non-FCRS. Also BIAUTO and thus AUTO (C, Gray, Malheiro).
M_{4} : BIAUTO, AUTO,
non-FCRS, non-FDT (C
Gray, Malheiro).

FCRS, FDT, AUTO, BIAUTO for homogeneous monoids

M_{1} : auto, non-biauto, FCRs, FDT (C, Gray, Malheiro).
M_{2} : Reverse of M_{1}. Non-Auto, non-biauto, FCRS, FDT (C, Gray, Malheiro).
M_{3} : Constructed by Katsura \& Kobayashi, who showed it is FDT and non-FCRs. Also BIAUTO and thus Auto (C, Gray, Malheiro).
M_{4} : BIAUTO, AUTO, non-FCRS, non-FDT (C, Gray, Malheiro).

FCRS, FDT, AUTO, BIAUTO for homogeneous monoids

M_{1} : auto, non-biauto, FCRs, FDT (C, Gray, Malheiro).
M_{2} : Reverse of M_{1}. Non-AUTO, non-bIAUTO, FCRS, FDT (C, Gray, Malheiro).
M_{3} : Constructed by Katsura \& Kobayashi, who showed it is FDT and non-FCRs. Also BIAUTO and thus Auto (C, Gray, Malheiro).
M_{4} : BIAUTO, AUTO, non-FCRS, non-FDT (C, Gray, Malheiro).

Two concepts of conjugacy

o-conjugacy is the relation

$$
x \sim_{o} y \Longleftrightarrow(\exists g, h \in M)(x g=g y \wedge h x=y h)
$$

primary conjugacy is the relation

$$
x \sim_{\mathfrak{p}} y \Longleftrightarrow(\exists \mathfrak{u}, v \in M)(x=\mathfrak{u} v \wedge y=v u)
$$

- For groups, these are the usual conjugacy relation.
- For monoids, \sim_{p} is not in general transitive.
- $\sim_{\mathfrak{p}}^{*} \subseteq \sim_{o}$

$$
\left[\sim_{\mathfrak{p}}^{*}=\bigcup_{i=0}^{\infty} \sim \sim_{p}^{i}\right]
$$

Theorem (Narendran \& Otto)
\sim_{o} is undecidable for FCRS monoids.
Theorem (C, Malheiro)
\sim_{o} is undecidable for homogeneous FCRS monoids.

Conjugacy in plactic-like monoids

For $w \in A^{*}$, define

$$
\operatorname{ev}(w)=\left(|w|_{1},|w|_{2}, \ldots,|w|_{n}\right)
$$

and

$$
u \sim_{e} v \Longleftrightarrow \operatorname{ev}(u)=\operatorname{ev}(v) .
$$

In a multihomogeneous monoid M

$$
u \sim_{o} v \Longrightarrow(\exists g \in M)(g u=v g) \Longrightarrow \operatorname{ev}(u)=\operatorname{ev}(v)
$$

$\mathrm{SO} \sim \mathrm{o} \subseteq \sim_{e}$.
We have $\sim_{p}^{*}=\sim_{o}=\sim_{e}$ in:

- P_{n} [Lascoux \& Schützenberger 1981]
- H_{n} [easy consequence of P_{n} result]
- S_{n} [C, Malheiro]
- Chinese monoid of rank n [Cassaigne et al. 2001]

Conjugacy in $\mathrm{P}_{\mathrm{n}}, \mathrm{H}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$

Theorem (Choffrut \& Mercaş 2013)
$\sim_{p} \leqslant^{2 n-2}=\sim_{o}=\sim_{e}$ in P_{n}.
Theorem (C, Malheiro)
$=\sim_{o}=\sim_{e}$ in H_{n}. Furthermore,
Theorem (C, Malheiro)

Conjugacy in $\mathrm{P}_{\mathrm{n}}, \mathrm{H}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$

Theorem (Choffrut \& Mercaş 2013)
$\sim_{p} \leqslant^{2 n-2}=\sim_{o}=\sim_{e}$ in P_{n}.
Theorem (C, Malheiro)
$\sim_{\mathfrak{p}}^{\leqslant n-1}=\sim_{o}=\sim_{e}$ in H_{n}. Furthermore, $\sim_{\mathcal{p}}^{\leqslant n-2} \subsetneq \sim_{o}$.
Theorem (C, Malheiro)
$\sim_{\mathfrak{p}}^{\leqslant n-1}=\sim_{o}=\sim_{e}$ in S_{n}. Furthermore, $\sim_{\mathcal{p}}^{\leqslant n-2} \subsetneq \sim_{o}$.

Conjugacy in the hypoplactic monoid H_{5}

Conjugacy in the hypoplactic monoid H_{5}

	4	4	5
2	3		
1			

			5				5				5				5				5
	3	4	4		3	4	4		3	4	4		3	4	4		3	4	4
1	2			1	2			1	2			1	2				2		

Conjugacy in the hypoplactic monoid H_{5}

 $445231 \sim_{p} 144523$

Conjugacy in the hypoplactic monoid H_{5}

$$
445231 \begin{array}{rlr}
& \sim_{\mathfrak{p}} 144523 \\
& =\mathrm{H}_{5} 124345 & \sim_{\mathfrak{p}} 434512
\end{array}
$$

Conjugacy in the hypoplactic monoid H_{5}

$$
\begin{aligned}
& 445231 \sim_{p} 144523 \\
& =\mathrm{H}_{5} 124345 \quad \sim_{p} 434512 \\
& =\mathrm{H}_{5} 445312 \sim \sim_{\mathfrak{p}} 312445
\end{aligned}
$$

Conjugacy in the hypoplactic monoid H_{5}

$$
\begin{aligned}
& 445231 \sim_{p} 144523 \\
& =\mathrm{H}_{5} 124345 \quad \sim_{\mathfrak{p}} 434512 \\
& =\mathrm{H}_{5} 445312 \sim \sim_{p} 312445 \\
& =\mathrm{H}_{5} 132445 \sim \sim_{p} 513244
\end{aligned}
$$

Conjugacy in the sylvester monoid S_{5}

Conjugacy in the sylvester monoid S_{5}

Conjugacy in the sylvester monoid S_{5}

Conjugacy in the sylvester monoid S_{5}

$32415 \sim_{\sim} 53241$

Conjugacy in the sylvester monoid S_{5}

$32415 \sim_{\sim} 53241$
$=\mathrm{S}_{5} 53241 \quad \sim_{p} 24153$

Conjugacy in the sylvester monoid S_{5}

$$
\begin{array}{rlrl}
32415 & \sim_{\mathfrak{p}} 53241 \\
& =s_{5} 53241 & & \\
& \sim_{p} 24153 \\
& =s_{5} 45213 & \sim_{p} 21345
\end{array}
$$

Conjugacy in the sylvester monoid S_{5}

$$
\begin{aligned}
& 32415 \sim_{\sim} 53241 \\
& =s_{5} 53241 \quad \sim_{p} 24153 \\
& =s_{5} 45213 \sim \sim_{p} 21345 \\
& =s_{5} 21345 \sim \sim_{p} 52134
\end{aligned}
$$

Conjugacy in the sylvester monoid S_{5}

Lower bounds and cocharge sequences

To calculate the cocharge sequence of 1246375 :

- Label 1 with 0 .
- Having labelled i with k, proceed clockwise to $\mathfrak{i}+1$.
- If $*$ is passed, label $i+1$ with k.
- If $*$ is not passed, label $i+1$ with $k+1$.
- The cocharge sequence comprises the labels of $1,2, \ldots$.

Lower bounds and cocharge sequences

To calculate the cocharge sequence of 1246375:

- Label 1 with 0 .
- Having labelled i with k, proceed clockwise to $\mathfrak{i}+1$.
- If $*$ is passed, label $i+1$ with k.
- If $*$ is not passed, label $i+1$ with $k+1$.
- The cocharge sequence comprises the labels of $1,2, \ldots$.

Lower bounds and cocharge sequences

To calculate the cocharge sequence of 1246375 :

- Label 1 with 0 .
- Having labelled i with k, proceed clockwise to $\mathfrak{i}+1$.
- If $*$ is passed, label $i+1$ with k.
- If $*$ is not passed, label $i+1$ with $k+1$.
- The cocharge sequence comprises the labels of $1,2, \ldots$.

Lower bounds and cocharge sequences

To calculate the cocharge sequence of 1246375 :

- Label 1 with 0 .
- Having labelled i with k, proceed clockwise to $\mathfrak{i}+1$.
- If $*$ is passed, label $i+1$ with k.
- If $*$ is not passed, label $i+1$ with $k+1$.
- The cocharge sequence comprises the labels of $1,2, \ldots$.

Lower bounds and cocharge sequences

To calculate the cocharge sequence of 1246375 :

- Label 1 with 0 .
- Having labelled i with k, proceed clockwise to $\mathfrak{i}+1$.
- If $*$ is passed, label $i+1$ with k.
- If $*$ is not passed, label $i+1$ with $k+1$.
- The cocharge sequence comprises the labels of $1,2, \ldots$.

Lower bounds and cocharge sequences

To calculate the cocharge sequence of 1246375 :

- Label 1 with 0 .
- Having labelled i with k, proceed clockwise to $\mathfrak{i}+1$.
- If $*$ is passed, label $i+1$ with k.
- If $*$ is not passed, label $i+1$ with $k+1$.
- The cocharge sequence comprises the labels of $1,2, \ldots$.

Lower bounds and cocharge sequences

To calculate the cocharge sequence of 1246375 :

- Label 1 with 0 .
- Having labelled i with k, proceed clockwise to $\mathfrak{i}+1$.
- If $*$ is passed, label $i+1$ with k.
- If $*$ is not passed, label $i+1$ with $k+1$.
- The cocharge sequence comprises the labels of $1,2, \ldots$.

Lower bounds and cocharge sequences

To calculate the cocharge sequence of 1246375 :

- Label 1 with 0.
- Having labelled i with k, proceed clockwise to $\mathfrak{i}+1$.
- If $*$ is passed, label $i+1$ with k.
- If $*$ is not passed, label $i+1$ with $k+1$.
- The cocharge sequence comprises the labels of $1,2, \ldots$.

So cochseq(1246375) $=(0,0,0,1,1,2,2)$.

Lower bounds and cocharge sequences

$S_{n}=\left\langle A \mid(c a v b, a c v b): a \leqslant b<c, v \in A^{*}\right\rangle$.
Lemma
If $u=S_{n} v$, then $\operatorname{cochseq}(u)=\operatorname{cochseq}(v)$

Lower bounds and cocharge sequences

$S_{n}=\left\langle A \mid(c a v b, a c v b): a \leqslant b<c, v \in A^{*}\right\rangle$.
Lemma
If $u=s_{n} v$, then
$\operatorname{cochseq}(u)=\operatorname{cochseq}(v)$
Lemma
If $u=H_{n} v$, then
$\operatorname{cochseq}(u)=\operatorname{cochseq}(v)$

Lemma
If $u={ }_{p_{n}} v$, then
$\operatorname{cochseq}(u)=\operatorname{cochseq}(v)$

Lower bounds and cocharge sequences

What is the effect on a cocharge sequence of applying $\sim_{\mathfrak{p}}$ to a word?

cochseq(1246375)
$=(0,0,0,1,1,2,2)$

Lower bounds and cocharge sequences

What is the effect on a cocharge sequence of applying $\sim_{\mathfrak{p}}$ to a word?

cochseq (1246375)
$=(0,0,0,1,1,2,2)$

cochseq(7512463)
$=(0,0,0,1,2,2,3)$

Lemma
Applying $\sim_{\mathfrak{p}}$ increases or decreases each term of a cocharge sequence by at most 1 .

Lower bounds and cocharge sequences

$$
\operatorname{cochseq}(12 \cdots n)=(0,0, \ldots, 0)
$$

$$
\operatorname{cochseq}(n \cdots 21)=(0,1, \ldots, n-1)
$$

In S_{n}, at least $n-1$ applications of \sim_{p} separate

In H_{n}, at least $\mathrm{n}-1$ applications of \sim_{p} separate

$$
\mathcal{Q}(12 \cdots n)=\begin{array}{|l|l|}
\hline 1 & 2 \\
- & n \\
& \text { and } Q(n \cdots 21)= \\
\hline 2 \\
\hline 1 \\
\hline
\end{array}
$$

Plactic monoid P_{n}

Question

What is the minimum k_{n} such that $\sim_{\mathfrak{p}}^{\leqslant k_{n}}=\sim_{o}=\sim_{e}$ in P_{n} ?

- Current best bounds: $n-1 \leqslant k_{n} \leqslant 2 n-3$.
- Computer searches suggest $k_{n}=n-1$.
- Checked for $n \leqslant 9$ for words with no repeated symbols.

References

(R. J. Cain, R. D. Gray, \& A. Malheiro.
'Finite Gröbner-Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids'.
J. Algebra, 423 (2015), pp. 37-53.

DOI: 10.1016/j.jalgebra.2014.09.037.
(A. J. Cain, R. D. Gray, \& A. Malheiro.
'Rewriting systems and biautomatic structures for Chinese, hypoplactic, and sylvester monoids'.
Internat. J. Algebra Comput. Forthcoming. arXiv: 1310.6572.
圊 A. J. Cain \& A. Malheiro.
'Deciding conjugacy in sylvester monoids and other homogeneous monoids'.
Internat. J. Algebra Comput. Forthcoming. arXiv: 1404.2618.
國 A. J. Cain, R. D. Gray, \& A. Malheiro.
'On finite complete rewriting systems, finite derivation type, and automaticity for homogeneous monoids'.
Submitted. arXiv: 1407.7428.

