
Computation and conjugacy in
hypoplactic and sylvester monoids,
and other homogeneous monoids

Alan J. Cain
Centre for Mathematics and Applications,
New University of Lisbon

Joint work with Robert D. Gray & António Malheiro

O Logotipo da FCT foi previsto em duas 
únicas versões.

Em termos de disposição nenhuma outra 
variante é possível.

logotipo
- versão vertical

CORES

POSITIVO / CINZA

NEGATIVO

Paleta policromática 

Quando o logotipo for reproduzido a mais de 
uma cor, podem ser usadas múltiplas variantes,  
as quais poderá consultar nas páginas 

O Pantone 3298 (representado ao lado) é a 
cor institucional oficial e poderá ser utilizada 
em todas as comunicações institucionais 

Para usar qualquer outra cor deverá contactar 
primeiro o gabinete de comunicação e 
imagem da FCT a fim de saber qual a cor a 
usar para o seu contexto em concreto, visto 
poderem ter sido definidas estratégias para a 
utilização destas cores que não não estejam 

INVESTIGADOR
FCT



Young tableaux & the plactic monoid
Let n ∈ N and let A = {1 < 2 < 3 < . . . < n}.
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▶ Rows non-decreasing left to right
▶ Columns decreasing top to bottom
▶ Left-justified, shorter rows on top

Schensted’s algorithm computes a tableau P(u) from a word u ∈ A∗.
Define

u ≡ v ⇐⇒ P(u) = P(v).

Theorem (Knuth 1970)
The relation ≡ is a congruence on A∗.

The factor monoid Pn = A∗/≡ is the Plactic monoid of rank n

▶ Connected with combinatorics, quantum groups, symmetric
functions, representations of sln and Sn.



‘Plactic-like’ monoids
Plactic monoid Hypoplactic monoid Sylvester monoid
Young tableaux Quasi-ribbon tableaux Binary search trees
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Bell monoid Stalactite monoid Baxter monoid
Set partitions Stalactite tableaux Pairs of binary search trees{
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Rewriting systems
A monoid is FCRS if it admits a presentation via a finite complete
rewriting system (on some generating set).

▶ Having a finite complete rewriting system presentation is
dependent on the choice of generators.

▶ Finite derivation type (FDT) is a consequence of FCRS but is not
dependent on the choice of generators.



Automaticity & biautomaticity
Let M be a monoid, A a generating set for M, and L a regular
language over A such that L maps onto M. Define relations

La = {(u, v) ∈ L× L : ua =M v},

aL = {(u, v) ∈ L× L : au =M v}.

The pair (A, L) is
▶ a automatic structure for M if La is recognizable by a

synchronous two-tape automaton for all a ∈ A ∪ {ε};
▶ an biautomatic structure for M if La and aL are recognizable by

synchronous two-tape automata for all a ∈ A ∪ {ε}.
A monoid is

▶ automatic (AUTO) if it admits an automatic structure;
▶ biautomatic (BIAUTO) if it admits an biautomatic structure.

Theorem (C, Gray, Malheiro 2015)
Pn is FCRS and BIAUTO.



Quasi-ribbon tableaux
Quasi-ribbon tableau (QRT):

5 6

3 4 4

1 2

← 3

To insert a symbol x into a
quasi-ribbon tableau T :

▶ Break the tableau two parts:
T⩽ is up to and including the
top-right-most symbol r such
that r ⩽ x; the remainder is
T>.

▶ Add x to the right of r.
▶ Attach T> to the top of x.

For a word w = w1w2 · · ·wn.
▶ Start with an empty QRT insert w1, then w2, . . . , finally wn.
▶ Call the resulting quasi-ribbon tableau Q(w).

Column reading Read columns from top to bottom, left to right:
1 32 43 54 6.

Row reading Read rows from left to right, top to bottom:
56 44 33 12.

Both give words w such that Q(w) is the original QRT.
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Hypoplactic monoid
Define ≡ on A∗ by u ≡ v ⇐⇒ Q(u) = Q(v).

Theorem (Novelli)
The relation ≡ is a congruence on A∗.

The factor monoid Hn = A∗/≡ is the hypoplactic monoid of rank n

▶ Hn is a quotient of Pn.

Theorem (C, Gray, Malheiro 2015)
Hn is FCRS and BIAUTO.



Binary search trees
Binary search tree
(BST):
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To insert x into a BST T :
▶ Add x as a leaf node in the unique

position that yields a BST.
For a word w = wkwk−1 · · ·w1.

▶ Start with an empty BST and insert
w1, then w2, . . . , finally wn.

▶ Call the resulting BST T(w).

Reading of T Any word such that T(w) = T .
Equivalently, any word made up of symbols in T , with
children before parents.

Readings of the example include

124315654 421565314

651425314 654231154
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Sylvester monoid
Define ≡ on A∗ by u ≡ v ⇐⇒ T(u) = T(v).

Theorem (Hivert et al. 2005)
The relation ≡ is a congruence on A∗.

The factor monoid Sn = A∗/≡ is the sylvester monoid of rank n

Theorem (C, Gray, Malheiro 2015)
Sn admits a regular infinite complete rewriting system and is BIAUTO.



Homogeneous and content-preserving presentations
A monoid presentation ⟨A | R⟩ is

Homogeneous if |u| = |v| for all (u, v) ∈ R;
Multihomogeneous if |u|a = |v|a for all (u, v) ∈ R and a ∈ A.

▶ Plactic, hypoplactic, and sylvester monoids are
multihomogeneous:

Pn = ⟨A | P⟩;
Hn = ⟨A | P ∪H⟩;

where
P = {(acb, cab) : a ⩽ b < c} ∪ {(bac, bca) : a < b ⩽ c}

H = {(cadb, acbd), (bdac, dbca) : a ⩽ b < c ⩽ d}

Sn = ⟨A | (caub, acud), a ⩽ b < c ⩽ d, u ∈ A∗⟩.

▶ Chinese monoids are multihomogeneous, and are BIAUTO and
FCRS.

▶ Homogeneous monoids have solvable word problem, because all
words representing an element have the same length.



Homogeneous and content-preserving presentations
What is the relationship between FCRS, FDT, AUTO, BIAUTO in the
class of homogeneous monoids?

For general monoids:
▶ FCRS =⇒ FDT

▶ BIAUTO =⇒ AUTO

▶ The properties are otherwise independent.



FCRS, FDT, AUTO, BIAUTO for homogeneous monoids

FCRS
FDTBIA

UTO

AUTO

M1: AUTO, non-BIAUTO,
FCRS, FDT (C, Gray,
Malheiro).
M2: Reverse of M1.
Non-AUTO, non-BIAUTO,
FCRS, FDT (C, Gray,
Malheiro).
M3: Constructed by
Katsura & Kobayashi, who
showed it is FDT and
non-FCRS. Also BIAUTO
and thus AUTO (C, Gray,
Malheiro).
M4: BIAUTO, AUTO,
non-FCRS, non-FDT (C,
Gray, Malheiro).
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Two concepts of conjugacy
o-conjugacy is the relation

x ∼o y ⇐⇒ (∃g, h ∈M)(xg = gy∧ hx = yh).

primary conjugacy is the relation

x ∼p y ⇐⇒ (∃u, v ∈M)(x = uv∧ y = vu).

▶ For groups, these are the usual conjugacy relation.
▶ For monoids, ∼p is not in general transitive.
▶ ∼∗p ⊆ ∼o [∼∗p =

∪∞
i=0 ∼ip]

Theorem (Narendran & Otto)
∼o is undecidable for FCRS monoids.

Theorem (C, Malheiro)
∼o is undecidable for homogeneous FCRS monoids.



Conjugacy in plactic-like monoids
For w ∈ A∗, define

ev(w) =
(
|w|1, |w|2, . . . , |w|n

)
and

u ∼e v ⇐⇒ ev(u) = ev(v).

In a multihomogeneous monoid M

u ∼o v =⇒ (∃g ∈M)(gu = vg) =⇒ ev(u) = ev(v),

so ∼o ⊆ ∼e.

We have ∼∗p = ∼o = ∼e in:
▶ Pn [Lascoux & Schützenberger 1981]
▶ Hn [easy consequence of Pn result]
▶ Sn [C, Malheiro]
▶ Chinese monoid of rank n [Cassaigne et al. 2001]



Conjugacy in Pn, Hn, Sn
Theorem (Choffrut & Mercaş 2013)
∼
⩽2n−2
p = ∼o = ∼e in Pn.

Theorem (C, Malheiro)
∼
⩽n−1
p = ∼o = ∼e in Hn. Furthermore, ∼⩽n−2

p ⊊ ∼o.

Theorem (C, Malheiro)
∼
⩽n−1
p = ∼o = ∼e in Sn. Furthermore, ∼⩽n−2

p ⊊ ∼o.
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Conjugacy in the hypoplactic monoid H5
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Conjugacy in the hypoplactic monoid H5

445231 ∼p 144523
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Conjugacy in the hypoplactic monoid H5

445231 ∼p 144523

=H5
124345 ∼p 434512

4 4 5

2 3

1

4 4 5

1 2 3

4 4 5

3

1 2

5

3 4 4

1 2

5

3 4 4

1 2

5

3 4 4

1 2

5

3 4 4

1 2

5

3 4 4

1 2



Conjugacy in the hypoplactic monoid H5

445231 ∼p 144523

=H5
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445312 ∼p 312445
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Conjugacy in the hypoplactic monoid H5

445231 ∼p 144523
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=H5
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Conjugacy in the sylvester monoid S5
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Conjugacy in the sylvester monoid S5
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Conjugacy in the sylvester monoid S5
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Conjugacy in the sylvester monoid S5
32415 ∼p 53241

5

1

4

2

3

1

4

2

3

5

2

1 4

3 5

2

1 4

3 5

2

1 4

3 5

2

1 4

3 5

2

1 4

3 5



Conjugacy in the sylvester monoid S5
32415 ∼p 53241

=S5
53241 ∼p 24153
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Conjugacy in the sylvester monoid S5
32415 ∼p 53241

=S5
53241 ∼p 24153

=S5
45213 ∼p 21345
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Conjugacy in the sylvester monoid S5
32415 ∼p 53241

=S5
53241 ∼p 24153

=S5
45213 ∼p 21345

=S5
21345 ∼p 52134
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Conjugacy in the sylvester monoid S5
32415 ∼p 53241

=S5
53241 ∼p 24153

=S5
45213 ∼p 21345

=S5
21345 ∼p 52134

=S5
21354 ∼p 13542
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Lower bounds and cocharge sequences
To calculate the cocharge sequence of 1246375:

Word

Labelling

∗

1

2

34

5

6

7

▶ Label 1 with 0.
▶ Having labelled i with k, proceed

clockwise to i+ 1.
▶ If ∗ is passed, label i+ 1 with k.
▶ If ∗ is not passed, label i+ 1

with k+ 1.

▶ The cocharge sequence comprises
the labels of 1, 2, . . ..
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▶ If ∗ is not passed, label i+ 1

with k+ 1.

▶ The cocharge sequence comprises
the labels of 1, 2, . . ..



Lower bounds and cocharge sequences
To calculate the cocharge sequence of 1246375:

Word

Labelling

∗

1

2

34

5

6

7

0

0

01

1

2

2

▶ Label 1 with 0.
▶ Having labelled i with k, proceed

clockwise to i+ 1.
▶ If ∗ is passed, label i+ 1 with k.
▶ If ∗ is not passed, label i+ 1

with k+ 1.

▶ The cocharge sequence comprises
the labels of 1, 2, . . ..

So cochseq(1246375) = (0, 0, 0, 1, 1, 2, 2).



Lower bounds and cocharge sequences

Sn = ⟨A | (cavb, acvb) : a ⩽ b < c, v ∈ A∗⟩.

Lemma
If u =Sn

v, then
cochseq(u) = cochseq(v)

Word

Labelling

∗

c

a
ba

c

b



Lower bounds and cocharge sequences

Sn = ⟨A | (cavb, acvb) : a ⩽ b < c, v ∈ A∗⟩.

Lemma
If u =Sn

v, then
cochseq(u) = cochseq(v)

Lemma
If u =Hn

v, then
cochseq(u) = cochseq(v)

Lemma
If u =Pn

v, then
cochseq(u) = cochseq(v)

Word

Labelling

∗

c

a
ba

c

b



Lower bounds and cocharge sequences
What is the effect on a cocharge sequence of applying ∼p to a word?

Word

Labelling

∗

1

2

34

5

6

7

0

0

01

1

2

2

cochseq(1246375)
= (0, 0, 0, 1, 1, 2, 2)



Lower bounds and cocharge sequences
What is the effect on a cocharge sequence of applying ∼p to a word?

Word

Labelling

∗

1

2

34

5

6

7

0

0

01

1

2

2

Word

Labelling

∗

1

2

34

5

6

7

0

0

01

2

2

3

cochseq(1246375) cochseq(7512463)
= (0, 0, 0, 1, 1, 2, 2) = (0, 0, 0, 1, 2, 2, 3)

Lemma
Applying ∼p increases or decreases each term of a cocharge
sequence by at most 1.



Lower bounds and cocharge sequences
∗

1
2

n cochseq(12 · · ·n) = (0, 0, . . . , 0)

∗
n

2
1 cochseq(n · · · 21) = (0, 1, . . . , n− 1)

In Sn, at least n− 1 applications of ∼p separate

T(12 · · ·n) =

n

2

1

and T(n · · · 21) =
1

2

n

.

In Hn, at least n− 1 applications of ∼p separate

Q(12 · · ·n) = 1 2 n and Q(n · · · 21) =

n

2

1

.



Plactic monoid Pn

Question
What is the minimum kn such that ∼⩽kn

p = ∼o = ∼e in Pn?

▶ Current best bounds: n− 1 ⩽ kn ⩽ 2n− 3.
▶ Computer searches suggest kn = n− 1.
▶ Checked for n ⩽ 9 for words with no repeated symbols.
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