Computation and conjugacy in hypoplactic and sylvester monoids, and other homogeneous monoids

Alan J. Cain Centre for Mathematics and Applications. New University of Lisbon

Joint work with Robert D. Gray & António Malheiro

Young tableaux & the plactic monoid

Let $n \in \mathbb{N}$ and let $A = \{1 < 2 < 3 < \ldots < n\}$.

- Rows non-decreasing left to right
- Columns decreasing top to bottom
- Left-justified, shorter rows on top

Schensted's algorithm computes a tableau $\mathsf{P}(\mathfrak{u})$ from a word $\mathfrak{u}\in A^*.$ Define

$$\mathfrak{u} \equiv \mathfrak{v} \iff \mathsf{P}(\mathfrak{u}) = \mathsf{P}(\mathfrak{v}).$$

Theorem (Knuth 1970)

The relation \equiv is a congruence on A^* .

The factor monoid $P_n = A^* / \equiv$ is the Plactic monoid of rank n

 Connected with combinatorics, quantum groups, symmetric functions, representations of sln and Gn.

'Plactic-like' monoids

Plactic monoid Young tableaux Hypoplactic monoid Quasi-ribbon tableaux

Stalactite monoid

Stalactite tableaux

Sylvester monoid Binary search trees

Baxter monoid Pairs of binary search trees

Bell monoid Set partitions

 $\{\{5,1\},\\\{8,6,4,2\},\\\{7,3\},\\\{9\}\}$

1	2	4	3
1	2		3
	2		3

Rewriting systems

A monoid is FCRS if it admits a presentation via a finite complete rewriting system (on some generating set).

- Having a finite complete rewriting system presentation is dependent on the choice of generators.
- Finite derivation type (FDT) is a consequence of FCRS but is not dependent on the choice of generators.

Automaticity & biautomaticity

Let M be a monoid, A a generating set for M, and L a regular language over A such that L maps onto M. Define relations

$$\begin{split} L_a = \{(u, v) \in L \times L : ua =_M v\}, \\ {}_aL = \{(u, v) \in L \times L : au =_M v\}. \end{split}$$

The pair (A, L) is

- a automatic structure for M if L_α is recognizable by a synchronous two-tape automaton for all α ∈ A ∪ {ε};
- An biautomatic structure for M if L_α and _αL are recognizable by synchronous two-tape automata for all α ∈ A ∪ {ε}.
- A monoid is
 - automatic (AUTO) if it admits an automatic structure;
 - **biautomatic** (BIAUTO) if it admits an biautomatic structure.

Theorem (C, Gray, Malheiro 2015)

 P_n is FCRS and BIAUTO.

Quasi-ribbon tableau (QRT):

To insert a symbol x into a quasi-ribbon tableau T:

- Break the tableau two parts: T_≤ is up to and including the top-right-most symbol r such that r ≤ x; the remainder is T_>.
- Add x to the right of r.
- ► Attach T_> to the top of x.

For a word $w = w_1 w_2 \cdots w_n$

- Start with an empty QRT insert w_1 , then w_2, \ldots , finally w_n .
- Call the resulting quasi-ribbon tableau $\Omega(w)$.
- Column reading Read columns from top to bottom, left to right: 13243546.
 - Row reading Read rows from left to right, top to bottom: 56443312.

Quasi-ribbon tableau (QRT):

To insert a symbol \boldsymbol{x} into a quasi-ribbon tableau T:

- Break the tableau two parts: T_≤ is up to and including the top-right-most symbol r such that r ≤ x; the remainder is T_>.
- Add x to the right of r.
- ► Attach T_> to the top of x.

For a word $w = w_1 w_2 \cdots w_n$

- Start with an empty QRT insert w_1 , then w_2, \ldots , finally w_n .
- Call the resulting quasi-ribbon tableau $\Omega(w)$.
- Column reading Read columns from top to bottom, left to right: 13243546.
 - Row reading Read rows from left to right, top to bottom: 5644 33 12.

Quasi-ribbon tableau (QRT):

To insert a symbol x into a quasi-ribbon tableau T:

- Break the tableau two parts: T_≤ is up to and including the top-right-most symbol r such that r ≤ x; the remainder is T_>.
- Add x to the right of r.
- ► Attach T_> to the top of x.

For a word $w = w_1 w_2 \cdots w_n$.

- Start with an empty QRT insert w_1 , then w_2, \ldots , finally w_n .
- Call the resulting quasi-ribbon tableau $\Omega(w)$.
- Column reading Read columns from top to bottom, left to right: 13243546.
 - Row reading Read rows from left to right, top to bottom: 5644 33 12.

Quasi-ribbon tableau (QRT):

To insert a symbol \boldsymbol{x} into a quasi-ribbon tableau T:

- Break the tableau two parts: T_≤ is up to and including the top-right-most symbol r such that r ≤ x; the remainder is T_>.
- Add x to the right of r.
- ► Attach T_> to the top of x.

For a word $w = w_1 w_2 \cdots w_n$.

- Start with an empty QRT insert w_1 , then w_2, \ldots , finally w_n .
- Call the resulting quasi-ribbon tableau $\Omega(w)$.
- Column reading Read columns from top to bottom, left to right: 13243546.
 - Row reading Read rows from left to right, top to bottom: 56443312.

Quasi-ribbon tableau (QRT):

To insert a symbol \boldsymbol{x} into a quasi-ribbon tableau T:

- Break the tableau two parts: T_≤ is up to and including the top-right-most symbol r such that r ≤ x; the remainder is T_>.
- Add x to the right of r.
- Attach $T_>$ to the top of x.

For a word $w = w_1 w_2 \cdots w_n$.

- ► Start with an empty QRT insert w₁, then w₂, ..., finally w_n.
- Call the resulting quasi-ribbon tableau Q(w).
- Column reading Read columns from top to bottom, left to right: 13243546.
 - Row reading Read rows from left to right, top to bottom: 56 44 33 12.

Hypoplactic monoid

Define
$$\equiv$$
 on A^* by $u \equiv v \iff Q(u) = Q(v)$.

Theorem (Novelli)

The relation \equiv is a congruence on A^* .

The factor monoid $H_n = A^* / \equiv$ is the hypoplactic monoid of rank n

• H_n is a quotient of P_n .

Theorem (C, Gray, Malheiro 2015) H_n is FCRS and BIAUTO.

Binary search tree (BST):

To insert x into a BST T:

Add x as a leaf node in the unique position that yields a BST.

For a word $w = w_k w_{k-1} \cdots w_1$.

- ► Start with an empty BST and insert w₁, then w₂, ..., finally w_n.
- Call the resulting BST $\mathcal{T}(w)$.

Reading of T Any word such that T(w) = T. Equivalently, any word made up of symbols in T, with children before parents.

Readings of the example include

Binary search tree (BST):

To insert x into a BST T:

 Add x as a leaf node in the unique position that yields a BST.

For a word $w = w_k w_{k-1} \cdots w_1$.

- ► Start with an empty BST and insert w₁, then w₂, ..., finally w_n.
- Call the resulting BST $\mathcal{T}(w)$.

Reading of T Any word such that T(w) = T. Equivalently, any word made up of symbols in T, with children before parents.

Readings of the example include

Binary search tree (BST):

To insert x into a BST T:

Add x as a leaf node in the unique position that yields a BST.

For a word $w = w_k w_{k-1} \cdots w_1$.

- ► Start with an empty BST and insert w₁, then w₂, ..., finally w_n.
- Call the resulting BST $\mathcal{T}(w)$.

Reading of T Any word such that T(w) = T. Equivalently, any word made up of symbols in T, with children before parents.

Readings of the example include

Binary search tree (BST):

To insert x into a BST T:

Add x as a leaf node in the unique position that yields a BST.

For a word $w = w_k w_{k-1} \cdots w_1$.

- Start with an empty BST and insert w₁, then w₂, ..., finally w_n.
- Call the resulting BST $\mathcal{T}(w)$.

Reading of T Any word such that T(w) = T. Equivalently, any word made up of symbols in T, with children before parents.

Readings of the example include

Binary search tree (BST):

To insert x into a BST T:

Add x as a leaf node in the unique position that yields a BST.

For a word $w = w_k w_{k-1} \cdots w_1$.

- Start with an empty BST and insert w₁, then w₂, ..., finally w_n.
- Call the resulting BST $\mathcal{T}(w)$.

Reading of T Any word such that T(w) = T. Equivalently, any word made up of symbols in T, with children before parents.

Readings of the example include

124315654	421565314
651425314	654231154

Sylvester monoid

Define \equiv on A^* by $u \equiv v \iff \mathfrak{T}(u) = \mathfrak{T}(v)$.

Theorem (Hivert et al. 2005)

The relation \equiv is a congruence on A^* .

The factor monoid $S_n = A^* / \equiv$ is the sylvester monoid of rank n

Theorem (C, Gray, Malheiro 2015)

 S_n admits a regular infinite complete rewriting system and is BIAUTO.

Homogeneous and content-preserving presentations

A monoid presentation $\langle A \mid \mathfrak{R} \rangle$ is

Homogeneous if |u| = |v| for all $(u, v) \in \mathbb{R}$;

Multihomogeneous if $|u|_a = |v|_a$ for all $(u, v) \in \mathcal{R}$ and $a \in A$.

 Plactic, hypoplactic, and sylvester monoids are multihomogeneous:

$$\begin{split} \mathsf{P}_n &= \langle \mathsf{A} \mid \mathfrak{P} \rangle; \\ \mathsf{H}_n &= \langle \mathsf{A} \mid \mathfrak{P} \cup \mathfrak{H} \rangle; \\ & \text{where} \\ & \mathcal{P} = \{(acb, cab) : a \leqslant b < c\} \cup \{(bac, bca) : a < b \leqslant c\} \\ & \mathcal{H} = \{(cadb, acbd), (bdac, dbca) : a \leqslant b < c \leqslant d\} \\ & S_n &= \langle \mathsf{A} \mid (caub, acud), a \leqslant b < c \leqslant d, u \in \mathsf{A}^* \rangle. \end{split}$$

- Chinese monoids are multihomogeneous, and are BIAUTO and FCRS.
- Homogeneous monoids have solvable word problem, because all words representing an element have the same length.

Homogeneous and content-preserving presentations

What is the relationship between FCRS, FDT, AUTO, BIAUTO in the class of homogeneous monoids?

For general monoids:

- \blacktriangleright FCRS \implies FDT
- ▶ BIAUTO \implies AUTO
- > The properties are otherwise independent.

 M_1 : AUTO, non-BIAUTO, FCRS, FDT (C, Gray, Malheiro).

 M_2 : Reverse of M_1 . Non-AUTO, non-BIAUTO, FCRS, FDT (C, Gray, Malheiro).

*M*₃: Constructed by Katsura & Kobayashi, who showed it is FDT and non-FCRS. Also BIAUTO and thus AUTO (C, Gray, Malheiro).

 M_4 : BIAUTO, AUTO, non-FCRS, non-FDT (C, Gray, Malheiro).

 M_1 : AUTO, non-BIAUTO, FCRS, FDT (C, Gray, Malheiro).

 M_2 : Reverse of M_1 . Non-AUTO, non-BIAUTO, FCRS, FDT (C, Gray, Malheiro).

*M*₃: Constructed by Katsura & Kobayashi, who showed it is FDT and non-FCRS. Also BIAUTO and thus AUTO (C, Gray, Malheiro).

 M_4 : BIAUTO, AUTO, non-FCRS, non-FDT (C, Gray, Malheiro).

M₁: AUTO, non-BIAUTO, FCRS, FDT (C, Gray, Malheiro).

 M_2 : Reverse of M_1 . Non-AUTO, non-BIAUTO, FCRS, FDT (C, Gray, Malheiro).

M₃: Constructed by Katsura & Kobayashi, who showed it is FDT and non-FCRS. Also BIAUTO and thus AUTO (C, Gray, Malheiro).

M₄: BIAUTO, AUTO, non-FCRS, non-FDT (C, Gray, Malheiro).

 M_1 : AUTO, non-BIAUTO, FCRS, FDT (C, Gray, Malheiro).

 M_2 : Reverse of M_1 . Non-AUTO, non-BIAUTO, FCRS, FDT (C, Gray, Malheiro).

M₃: Constructed by Katsura & Kobayashi, who showed it is FDT and non-FCRS. Also BIAUTO and thus AUTO (C, Gray, Malheiro).

M₄: BIAUTO, AUTO, non-FCRS, non-FDT (C, Gray, Malheiro).

Two concepts of conjugacy

o-conjugacy is the relation

$$x \sim_o y \iff (\exists g, h \in M)(xg = gy \land hx = yh).$$

primary conjugacy is the relation

$$x \sim_p y \iff (\exists u, v \in M)(x = uv \land y = vu).$$

- ► For groups, these are the usual conjugacy relation.
- ► For monoids, ~p is not in general transitive.
- $\blacktriangleright \ \ \sim_p^* \subseteq \sim_o \qquad \qquad [\sim_p^* = \bigcup_{i=0}^\infty \sim_p^i]$

Theorem (Narendran & Otto)

 \sim_o is undecidable for FCRS monoids.

Theorem (C, Malheiro)

 \sim_o is undecidable for homogeneous $\ensuremath{\mathsf{FCRS}}$ monoids.

Conjugacy in plactic-like monoids

For $w \in A^*$, define

$$\mathbf{ev}(w) = \left(|w|_1, |w|_2, \dots, |w|_n\right)$$

and

$$\mathfrak{u} \sim_e \nu \iff \mathsf{ev}(\mathfrak{u}) = \mathsf{ev}(\nu).$$

In a multihomogeneous monoid M

$$\mathfrak{u}\sim_o\nu\implies (\exists g\in M)(g\mathfrak{u}=\nu g)\implies \text{ev}(\mathfrak{u})=\text{ev}(\nu),$$

so $\sim_o \subseteq \sim_e$.

We have $\sim_p^* = \sim_o = \sim_e$ in:

- P_n [Lascoux & Schützenberger 1981]
- H_n [easy consequence of P_n result]
- S_n [C, Malheiro]
- Chinese monoid of rank n [Cassaigne et al. 2001]

Conjugacy in P_n, H_n, S_n

 $\begin{array}{l} \mbox{Theorem (Choffrut \& Mercaş 2013)} \\ \sim_p^{\leqslant 2n-2} = \sim_o = \sim_e \mbox{ in } P_n. \end{array}$

Theorem (C, Malheiro) $\sim_p^{\leqslant n-1} = \sim_o = \sim_e$ in H_n . Furthermore, $\sim_p^{\leqslant n-2} \subsetneq \sim_o$.

Theorem (C, Malheiro) $\sim_{p}^{\leq n-1} = \sim_{o} = \sim_{e}$ in S_n. Furthermore, $\sim_{p}^{\leq n-2} \subsetneq \sim_{o}$

Conjugacy in P_n , H_n , S_n

 $\begin{array}{l} \mbox{Theorem (Choffrut \& Mercaş 2013)} \\ \sim_p^{\leqslant 2n-2} = \sim_o = \sim_e \mbox{ in } P_n. \end{array}$

 $\begin{array}{l} \mbox{Theorem (C, Malheiro)} \\ \scriptstyle \sim_p^{\leqslant n-1} = \sim_o = \sim_e \mbox{ in } H_n. \mbox{ Furthermore, } \sim_p^{\leqslant n-2} \subsetneq \sim_o. \end{array}$

 $\begin{array}{l} \mbox{Theorem (C, Malheiro)} \\ \sim_p^{\leqslant n-1} = \sim_o = \sim_e \mbox{ in } S_n. \mbox{ Furthermore, } \sim_p^{\leqslant n-2} \subsetneq \sim_o. \end{array}$

Conjugacy in the hypoplactic monoid H_5 445231 $\sim_p 144523$

 $\begin{array}{rrrr} 445231 & \sim_{p} 144523 \\ & =_{H_{5}} 124345 & \sim_{p} 434512 \end{array}$

 $\begin{array}{rl} 445231 & \sim_{p} 144523 \\ & =_{H_{5}} 124345 & \sim_{p} 434512 \\ & =_{H_{5}} 445312 & \sim_{p} 312445 \end{array}$

Conjugacy in the sylvester monoid S_5 32415 ~_p 53241

 $\begin{array}{rl} 32415 \ \sim_{p} 53241 \\ =_{S_{5}} 53241 & \sim_{p} 24153 \end{array}$

- Label 1 with 0.
- Having labelled i with k, proceed clockwise to i + 1.
 - If * is passed, label i + 1 with k.
 - If * is not passed, label i + 1 with k + 1.
- ► The cocharge sequence comprises the labels of 1, 2,

- Label 1 with 0.
- Having labelled i with k, proceed clockwise to i + 1.
 - If * is passed, label i + 1 with k.
 - If * is not passed, label i + 1 with k + 1.
- ► The cocharge sequence comprises the labels of 1, 2,

- Label 1 with 0.
- Having labelled i with k, proceed clockwise to i + 1.
 - If * is passed, label i + 1 with k.
 - If * is not passed, label i + 1 with k + 1.
- ► The cocharge sequence comprises the labels of 1, 2,

- Label 1 with 0.
- Having labelled i with k, proceed clockwise to i + 1.
 - If * is passed, label i + 1 with k.
 - If * is not passed, label i + 1 with k + 1.
- ► The cocharge sequence comprises the labels of 1, 2,

- Label 1 with 0.
- Having labelled i with k, proceed clockwise to i + 1.
 - If * is passed, label i + 1 with k.
 - If * is not passed, label i + 1 with k + 1.
- ► The cocharge sequence comprises the labels of 1, 2,

- Label 1 with 0.
- Having labelled i with k, proceed clockwise to i + 1.
 - If * is passed, label i + 1 with k.
 - If * is not passed, label i + 1 with k + 1.
- ► The cocharge sequence comprises the labels of 1, 2,

- Label 1 with 0.
- Having labelled i with k, proceed clockwise to i + 1.
 - If * is passed, label i + 1 with k.
 - If * is not passed, label i + 1 with k + 1.
- ► The cocharge sequence comprises the labels of 1, 2,

To calculate the cocharge sequence of 1246375:

- Label 1 with 0.
- Having labelled i with k, proceed clockwise to i + 1.
 - If * is passed, label i + 1 with k.
 - If * is not passed, label i + 1 with k + 1.
- ► The cocharge sequence comprises the labels of 1, 2,

So cochseq(1246375) = (0, 0, 0, 1, 1, 2, 2).

$$S_n = \langle A \mid (cavb, acvb) : a \leq b < c, v \in A^* \rangle.$$

Lemma If $u =_{S_n} v$, then cochseq(u) = cochseq(v)

$$S_n = \langle A \mid (cavb, acvb) : a \leq b < c, v \in A^* \rangle.$$

Lemma

If $u =_{S_n} v$, then cochseq(u) = cochseq(v)

Lemma

If $u =_{H_n} v$, then cochseq(u) = cochseq(v)

Lemma

If $u =_{P_n} v$, then cochseq(u) = cochseq(v)

What is the effect on a cocharge sequence of applying \sim_p to a word?

What is the effect on a cocharge sequence of applying \sim_p to a word?

Lemma

Applying \sim_p increases or decreases each term of a cocharge sequence by at most 1.

In H_n, at least n – 1 applications of \sim_p separate $Q(12 \cdots n) = \boxed{1 \ 2} \boxed{n}$ and $Q(n \cdots 21) = \boxed{2 \ 1}$.

Plactic monoid Pn

Question

What is the minimum k_n such that $\sim_p^{\leqslant k_n} = \sim_o = \sim_e$ in P_n ?

- Current best bounds: $n 1 \leq k_n \leq 2n 3$.
- Computer searches suggest $k_n = n 1$.
- Checked for $n \leq 9$ for words with no repeated symbols.

References

A. J. Cain, R. D. Gray, & A. Malheiro.

'Finite Gröbner–Shirshov bases for Plactic algebras and biautomatic structures for Plactic monoids'.

J. Algebra, 423 (2015), pp. 37-53.

DOI: 10.1016/j.jalgebra.2014.09.037.

A. J. Cain, R. D. Gray, & A. Malheiro.

'Rewriting systems and biautomatic structures for Chinese, hypoplactic, and sylvester monoids'.

Internat. J. Algebra Comput. Forthcoming. arXiv: 1310.6572.

A. J. Cain & A. Malheiro.

'Deciding conjugacy in sylvester monoids and other homogeneous monoids'.

Internat. J. Algebra Comput. Forthcoming. arXiv: 1404.2618.

A. J. Cain, R. D. Gray, & A. Malheiro.

'On finite complete rewriting systems, finite derivation type, and automaticity for homogeneous monoids'.

Submitted, arXiv: 1407.7428.