Tackling the Generalized Star-Height Problem

Tom Bourne

School of Mathematics and Statistics
University of St Andrews
NBSAN, St Andrews 22nd April 2015

Regular Expressions

Given a finite alphabet A, we define \emptyset, ε (the empty word), and a in A to be basic regular expressions.

If E and F are regular expressions then we recursively define new regular expressions by using the following operations:

- EF (concatenation)
- $E \cup F$ (set union)
- E^{*} (Kleene star)

We use regular expressions to represent regular languages, where a language is any subset of the free monoid generated by A.

For example, if $A=\{a, b\}$ then $A^{*} a=(a \cup b)^{*} a$ represents the language in which all words end with the letter a.

Star-Height

The star-height $h(E)$ of a regular expression E is defined recursively as follows:

- $h(\emptyset)=h(\varepsilon)=h(a)=0$, where $a \in A ;$
- $h(E F)=h(E \cup F)=\max \{h(E), h(F)\}$;
- $h\left(E^{*}\right)=h(E)+1$.

Then, for a language $L \subseteq A^{*}$, we define the star-height of L by

$$
h(L)=\min \{h(E) \mid E \text { is a regular expression for } L\}
$$

It is best to think of the star-height of L as the nesting depth of Kleene stars in the regular expression representing L that features the fewest Kleene stars.

Generalized Star-Height

Now suppose that in addition to the aforementioned operations for defining regular expressions, we also allow complementation; that is, if E is a regular expression then so is E^{c}.

Including the complement operation leads us to refer to E as a generalized regular expression.

We then define $h\left(E^{c}\right)=h(E)$, and define the generalized star-height of a language L as in the restricted case.

Note that, by De Morgan's laws, we can now freely use the intersection (\cap) and set difference (\backslash) operations when dealing with regular expressions. It follows that

$$
h(E \cap F)=h(E \backslash F)=\max \{h(E), h(F)\}
$$

The Generalized Star-Height Problem

A language which has (generalized) star-height 0 is said to be star-free. We have the following result:

Theorem (Schützenberger (1965))

A language is star-free if and only if its syntactic monoid is finite and aperiodic.

This theorem gives us an algorithm for deciding whether a language has (generalized) star-height 0.

The Generalized Star-Height Problem
Does there exist a language of generalized star-height greater than 1?

Known Results

Theorem (Eggan (1963))

For every natural number n, there exists a regular language of restricted star-height n.

Theorem (Henneman (1971))

A regular language recognized by a finite commutative group is of generalized star-height at most 1.

Known Results

Theorem (Eggan (1963))

For every natural number n, there exists a regular language of restricted star-height n.

Theorem (Pin, Straubing, Thérien (1989))

A regular language recognized by a finite nilpotent group of class 0,1 or 2 is of generalized star-height at most 1 .

Theorem (Pin, Straubing, Thérien (1989))

Every regular language recognized by a group of order less than 12 is of generalized star-height at most 1 .

Removing Stars I

Lemma

For any finite alphabet A, the language $L=A^{*}$ is star-free.
The minimal automaton recognizing L is

The syntactic monoid of L is the trivial monoid, which is finite and aperiodic, so L must be star-free.

A star-free expression for L is \emptyset^{c}.

Removing Stars II

Lemma

For any finite alphabet A and any subset B of A, we have $h\left(B^{*}\right)=0$.

The minimal automaton recognizing B^{*} is

The syntactic monoid of B^{*} is $M\left(B^{*}\right)=\left\langle x \mid x^{2}=x\right\rangle$, which is finite and aperiodic, so B^{*} must be star-free.

A star-free expression for B^{*} is $\left(\emptyset^{c}(A \backslash B) \emptyset^{c}\right)^{c}$.

Counting Subwords of Length Two: Case I

Let A be a finite alphabet. For every word v in A^{*} and for any integers k and n such that $0 \leq k<n$ we define

$$
L(v, k, n)=\left\{\left.w \in A^{*}| | w\right|_{v} \equiv k \bmod n\right\} .
$$

For $a, b \in A$ with $a \neq b$, define $U \subset A^{*}$ to be the set of all words that do not feature $a b$ as a subword.

A generalized regular expression for U is $\left(\emptyset^{c} a b \emptyset^{c}\right)^{c}$, which implies that U is star-free.

Knowing this, we can obtain an expression for $L(a b, k, n)$ of star-height one:

$$
L(a b, k, n)=(U a b)^{k}\left((U a b)^{n}\right)^{*} U .
$$

Counting Subwords of Length Two: Case II

Define

$$
\begin{aligned}
& B=A \backslash\{a\} \\
& U=A^{*} \backslash A^{*} a^{2} A^{*}=\left(\emptyset^{c} a^{2} \emptyset^{c}\right)^{c}
\end{aligned}
$$

both of which are star-free. Let $W=B \cup B \cup B=B(\varepsilon \cup U B)$.
Let $L^{\prime}\left(a^{2}, k\right)$ be the set of words that begin and end with a^{2} or a higher power of a and contain precisely k occurrences of a^{2}.

k	$L^{\prime}\left(a^{2}, k\right)$
1	a^{2}
2	$a^{3} \cup a^{2} W a^{2}$
3	$a^{4} \cup a^{3} W a^{2} \cup a^{2} W a^{3} \cup a^{2} W a^{2} W a^{2}$

Counting Subwords of Length Two: Case II

In general, we have that

$$
L^{\prime}\left(a^{2}, k\right)=\bigcup_{\substack{r=1 \\ k_{1}, k_{2}, \ldots, k_{r} \geq 2 \\ k_{1}+k_{2}+\cdots+k_{r}=k+r}} a^{k_{1}} W a^{k_{2}} W \cdots W a^{k_{r}} .
$$

Note that this expression is star-free.
Now, a star-free expression for all words that have precisely k occurrences of a^{2} as a subword, denoted by $L\left(a^{2}, k\right)$, is

$$
L\left(a^{2}, k\right)=(\varepsilon \cup \cup B) \cdot L^{\prime}\left(a^{2}, k\right) \cdot(B \cup \cup \varepsilon) .
$$

Counting Subwords of Length Two: Case II

Let $M\left(a^{2}, n\right)$ denote the set of words such that $a \cdot M\left(a^{2}, n\right)$ contains precisely n occurrences of a^{2}.

n	$M\left(a^{2}, n\right)$
2	$a^{2} \cup a W a^{2} \cup W\left(a^{3} \cup a^{2} W a^{2}\right)$
3	$a^{3} \cup a^{2} W a^{2} \cup a W\left(a^{3} \cup a^{2} W a^{2}\right)$
	$\cup W\left(a^{4} \cup a^{3} W a^{2} \cup a^{2} W a^{3} \cup a^{2} W a^{2} W a^{2}\right)$

In general, we have that

$$
M\left(a^{2}, n\right)=a^{n} \cup\left(\bigcup_{i=1}^{n} a^{n-i} W \cdot L^{\prime}\left(a^{2}, i\right)\right)
$$

Counting Subwords of Length Two: Case II

For $L\left(a^{2}, k, n\right)$, where $0<k<n$, we have

$$
L\left(a^{2}, k, n\right)=(\varepsilon \cup \cup B) \cdot L^{\prime}\left(a^{2}, k\right) \cdot M\left(a^{2}, n\right)^{*} \cdot(B \cup \cup \varepsilon) .
$$

When $k=0$ we have

$$
L\left(a^{2}, 0, n\right)=U \cup(\varepsilon \cup \cup B) \cdot L^{\prime}\left(a^{2}, n\right) \cdot M\left(a^{2}, n\right)^{*} \cdot(B \cup \cup \varepsilon) .
$$

Both of these expressions are of star-height one, so the languages that they represent are of star-height at most one.

Current and Future Research

Theorem (proof under construction)

Regular languages recognized by Rees matrix semigroups over cyclic groups are of star-height at most 1.

Three Month Plan

- For any alphabet A, can we describe all $B \subseteq A^{n}$, where $n \in \mathbb{N}$, that satisfy $h\left(B^{*}\right)=0$?
- What star-height do languages recognized by Rees matrix semigroups over abelian groups have?
- What about Rees 0-matrix semigroups?

