Complexity of Reachability, Mortality and Freeness Problems for Matrix Semigroups

Paul C. Bell
Department of Computer Science
Loughborough University
P.Bell@lboro.ac.uk
Co-authors for todays topics:
V. Halava, T. Harju, M. Hirvensalo, J. Karhumäki (Turku University, Finland) I. Potapov (University of Liverpool)
North British Semigroups and Applications Network (2015)
University of St Andrews

Outline of the talk

- Introduction
- Complexity classes P, NP, PSPACE \& hardness
- Computability and undecidability
- Algorithmic problems for matrix semigroups
- Reachability (membership)
- Mortality
- Identity
- Freeness
- Open Problems
- Connections between semigroup theory, combinatorics on words and matrix problems

Computability \& Complexity

- Decidable
- P
- NP (NP-hard, NP-complete, ...)
- PSPACE
- Decidability: giving an algorithm which always halts and gives the correct answer in a finite time.
- Complexity - showing equivalence of existing NP-hard, PSPACE-hard problems or analysing properties of the problem.
- Undecidability: simulation (reduction) of a Turing or Minsky machine, Post's Correspondence Problem (PCP), Hilbert's tenth problem, other undecidable problem, etc.

Marix Semigroups (Example 1)

- Given a set of finite matrices $G=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\} \subseteq \mathbb{K}^{n \times n}$, we are interested in algorithmic decision questions regarding the semigroup S generated by G, denoted $S=\langle G\rangle$

Decision Problems for Matrix Semigroups

- Given a matrix semigroup S generated by a finite set $G=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\} \subseteq \mathbb{K}^{n \times n}($ where $\mathbb{K} \in\{\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}\})$:
- Decide whether the semigroup S
- contains the zero matrix (Mortality Problem)
- contains the identity matrix (Identity Problem)
- is free (Freeness Problem)
- is bounded, finite, etc.
- Vector reachability problems:
- Given two vectors x and y. Decide whether the semigroup S contains a matrix M such that $M x=y$
- Variants of such problems are important for probabilistic and quantum automata models

Early Reachability Results

- The Mortality Problem was one of the earliest undecidability results of reachability for matrix semigroups

Theorem ([Paterson 70])

The Mortality Problem is undecidable over $\mathbb{Z}^{3 \times 3}$

- holds even when the semigroup is generated by just 6 matrices over $\mathbb{Z}^{3 \times 3}$, or for 2 matrices over $\mathbb{Z}^{15 \times 15}$ [Cassaigne et al., 14]
- The undecidability results use a reduction of Post's Correspondence Problem (PCP).

Post's Correspondence Problem

- Posts Correspondence Problem (PCP) is a useful tool for proving undecidability.

Theorem

- $P C P(2)$ is decidable [Ehrenfeucht, Karhumäki, Rozenberg, 82]
- $P C P(7)$ is undecidable
[Matiyasevich, Sénizergues, 96]
- $P C P(5)$ is undecidable [Neary 15].

Figure: An instance of $\mathrm{PCP}(3)$

Post's Correspondence Problem

- Posts Correspondence Problem (PCP) is a useful tool for proving undecidability.

Theorem

- $P C P(2)$ is decidable [Ehrenfeucht, Karhumäki, Rozenberg, 82]
- $P C P(7)$ is undecidable [Matiyasevich, Sénizergues, 96]
- $P C P(5)$ is undecidable [Neary 15].

Figure: A solution - aabbaabba

Word Encodings

- Words over a binary alphabet can be encoded into 2×2 matrices
- Given a binary alphabet $\Sigma=\{a, b\}$, let $\gamma: \Sigma^{*} \mapsto \mathbb{Z}^{2 \times 2}$ be defined by:

$$
\gamma(a)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \gamma(b)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

then γ is a monomorphism (injective homomorphism)

- This gives us a way to embed problems on words into problems for semigroups (for example with the direct sum)

Word Encodings (2)

- Let $\sigma(a)=1, \sigma(b)=2$ and $\sigma(u v)=3^{|v|} \sigma(u)+\sigma(v)$ for every $u, v \in \Sigma^{*}$. Then σ is a monomorphism $\Sigma^{*} \rightarrow \mathbb{N}$.
- We may then define a mapping $\tau: \Sigma^{*} \times \Sigma^{*} \mapsto \mathbb{Z}^{3 \times 3}$

$$
\tau(u, v)=\left(\begin{array}{ccc}
1 & \sigma(v) & \sigma(u)-\sigma(v) \\
0 & 3^{|v|} & 3^{|u|}-3^{|v|} \\
0 & 0 & 3^{|u|}
\end{array}\right)
$$

- We can prove that $\tau\left(u_{1}, v_{1}\right) \cdot \tau\left(u_{2}, v_{2}\right)=\tau\left(u_{1} u_{2}, v_{1} v_{2}\right)$ for all $u_{1}, u_{2}, v_{1}, v_{2} \in \Sigma^{*}$, thus τ is a monomorphism.
- Note that $\tau(u, v)_{1,3}=0$ if and only if $u=v$.
- With some more work this technique can be used to show the undecidability of the Mortality Problem via a reduction of PCP, see [Cassaigne et al. 14] for example.

An aside - Skolem's Problem

- Determining if a matrix in a finitely generated matrix semigroup contains a zero in the top right element is referred to as the ZRUC (zero-in-the-right-upper-corner problem).

Definition (Linear Recurrence Sequence)

Given a sequence of recurrence coefficients $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{Z}$ and a sequence of initial values $u_{0}, u_{1}, \ldots, u_{n-1} \in \mathbb{Z}$, a linear recurrence sequence (of depth n) may be written in the form (for $k \geq n$):

$$
u_{k}=a_{n-1} u_{k-1}+a_{n-2} u_{k-2}+\ldots+a_{0} u_{k-n}
$$

An aside - Skolem's Problem

- (Very difficult) Open Problem 1: - For a linear recurrence sequence $u=\left(u_{k}\right)_{k=0}^{\infty} \subseteq \mathbb{Z}$, the zero set of u is given by $Z(u)=\left\{i \in \mathbb{N} \mid u_{i}=0\right\}$. Determine if $Z(u)$ is an empty set.
- It is known that $Z(u)$ is a semilinear set [Skolem, 34], [Mahler, 35], [Lech, 53], and that the problem is decidable when the depth is 4 or below [Vereshchagin, 85].
- It is not difficult to show that this problem is equivalent to the following: given a matrix $M \in \mathbb{Z}^{(n+2) \times(n+2)}$, determine if there exists $k>0$, such that $M_{1,(n+2)}^{k}=0$
- i.e. the ZRUC problem for a semigroup generated by a single matrix.

Mortality over Bounded Languages

Theorem (B., Halava, Harju, Karhumäki, Potapov, 2008)

Given integral matrices $X_{1}, X_{2}, \ldots, X_{k} \in \mathbb{Z}^{n \times n}$, it is algorithmically undecidable to determine whether there exists a solution to the equation:

$$
X_{1}^{i_{1}} X_{2}^{i_{2}} \cdots X_{k}^{i_{k}}=Z
$$

where Z denotes the zero matrix and $i_{1}, i_{2}, \ldots, i_{k} \in \mathbb{N}$ are unknowns.

To prove this theorem, an encoding of Hilbert's tenth problem was used (next slide).

Mortality over Bounded Languages

Hilbert's Tenth Problem - Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Semigroup Freeness

Definition (Code)

Let \mathcal{S} be a semigroup and \mathcal{G} a subset of \mathcal{S}. We call \mathcal{G} a code if the property

$$
u_{1} u_{2} \cdots u_{m}=v_{1} v_{2} \cdots v_{n}
$$

for $u_{i}, v_{i} \in \mathcal{G}$, implies that $m=n$ and $u_{i}=v_{i}$ for each $1 \leq i \leq n$.

Definition (Semigroup freeness)

A semigroup \mathcal{S} is called free if there exists a code $\mathcal{G} \subseteq \mathcal{S}$ such that $\mathcal{S}=\mathcal{G}^{+}$.

- For example, consider the semigroup $\{0,1\}^{+}$under concatenation. Then the set $\{00,01,10,11\}$ is a code, but $\{01,10,0\}$ is not (since $0 \cdot 10=01 \cdot 0$ for example)

Matrix Freeness

Problem (Matrix semigroup freeness)

Semigroup freeness problem - Given a finite set of matrices $\mathcal{G} \subseteq \mathbb{Z}^{n \times n}$ generating a semigroup \mathcal{S}, does every element $M \in \mathcal{S}$ have a single, unique factorisation over \mathcal{G} ? Alternatively, is \mathcal{G} a code?

- The semigroup freeness problem is undecidable over $\mathbb{N}^{3 \times 3}$ [Klarner, Birget and Satterfield, 91]
- In fact, the undecidability result holds even over $\mathbb{N}_{\text {uptr }}^{3 \times 3}$ [Cassaigne, Harju and Karhumäki, 99]

Matrix Freeness in Dimension 2

- Let $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}3 & 5 \\ 0 & 5\end{array}\right)$, is $\{A, B\}$ a code?
- Two groups of authors independently showed that in fact the following equation holds and thus the generated semigroup is not free[Gawrychowskia et al. 2010], [Cassaigne et al. 2012]:

$$
A B^{10} A^{2} B A^{2} B A^{10}=B^{2} A^{6} B^{2} A^{2} B A B A B A^{2} B^{2} A^{2} B A B^{2}
$$

and no shorter non-trivial equation exists.

- Open Problem 2 - Determine the decidability of the Freeness Problem over $\mathbb{N}^{2 \times 2}$ (even for two matrices, or when all matrices are upper triangular).

The Identity Problem

Problem (The Identity Problem)

Given a matrix semigroup S generated by a finite set $G=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\} \subseteq \mathbb{Z}^{n \times n}$, determine if $I_{n} \in\langle G\rangle$, where I_{n} is the n-dimensional multiplicative identity matrix.

- The Identity Problem is undecidable over $\mathbb{Z}^{4 \times 4}$ [B., Potapov, 2011].
- To show the undecidability of the Identity Problem, we introduced the Identity Correspondence Problem (next slide).

The Identity Problem - undecidability

Problem (Identity Correspondence Problem (ICP))

Identity Correspondence Problem (ICP) - Let $\Gamma=\left\{a, b, a^{-1}, b^{-1}\right\}$ generate a free group on a binary alphabet and

$$
\Pi=\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{m}, t_{m}\right)\right\} \subseteq \Gamma^{*} \times \Gamma^{*} .
$$

Determine if there exists a nonempty finite sequence of indices $i_{1}, i_{2}, \ldots, i_{k}$ where $1 \leq i_{j} \leq m$ such that

$$
s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}=t_{i_{1}} t_{i_{2}} \cdots t_{i_{k}}=\varepsilon
$$

where ε is the empty word (identity).
The Identity Correspondence can be shown to be undecidable (next slides).

The Identity Problem - encoding idea

Applications of the Identity Correspondence Problem

Problem (Group Problem)

Given a free binary group alphabet $\Gamma=\left\{a, b, a^{-1}, b^{-1}\right\}$, is the semigroup generated by a finite set of pairs of words $P=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{m}, v_{m}\right)\right\} \subset \Gamma^{*} \times \Gamma^{*}$ a group?

Theorem (B., Potapov, 2010)

The Group Problem is undecidable for $m=8(n-1)$ pairs of words where n is the minimal number of pairs for which PCP is known to be undecidable $(n=5)$.

Applications of the Identity Correspondence Problem (2)

Theorem (B., Potapov, 2010)

The Identity Problem is undecidable for a semigroup generated by 48 matrices from $\mathbb{Z}^{4 \times 4}$

- The proof uses the following injective homomorphism

$$
\rho: \Gamma^{*} \rightarrow \mathbb{Z}^{2 \times 2}
$$

$$
\rho(a)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), \rho(b)=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right), \rho\left(a^{-1}\right)=\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right), \rho\left(b^{-1}\right)=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right) .
$$

- Given an instance of the ICP - W, for each pair of words $\left(w_{1}, w_{2}\right) \in W$, define matrix $A_{w_{1}, w_{2}}=\rho\left(w_{1}\right) \oplus \rho\left(w_{2}\right)$.
- Let S be a semigroup generated by $\left\{A_{w_{1}, w_{2}} \mid\left(w_{1}, w_{2}\right) \in W\right\}$. Then the ICP instance W has a solution iff $I \in S \quad \square$.
- Open Problem 3 - Determine the decidability of the Identity Problem over $\mathbb{Z}^{3 \times 3}$.

The Identity Problem in Dimension 2

- The Identity Problem is decidable over $\mathbb{Z}^{2 \times 2}$ [Choffrut, Karhumäki, 2005] but it is at least NP-hard [B., Potapov, 2012]
- We shall see some details of the NP-hardness proof.
- A problem is said to be NP-hard if it is at least as difficult as all other problems in the class NP (the class of problems solvable in Non-deterministic Polynomial time).

The Subset Sum Problem (SSP)

The Subset Sum Problem is NP-hard and is a very useful tool to show other problems are also NP-hard.

Problem (Subset Sum Problem)

Given a positive integer x and a finite set of positive integer values $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, does there exist a (nonempty) subset of S which sums to x ?

We shall now encode an instance of the subset sum problem into a set of matrices

The Structure of an Identity

Figure: The structure of a product which forms the identity.

The Subset Sum Problem

$$
\begin{array}{ll}
\left\{1 \cdot a^{s_{1}} \cdot \overline{2},\right. & 1 \cdot \varepsilon \cdot \overline{2}, \\
2 \cdot a^{s_{2}} \cdot \overline{3}, & 2 \cdot \varepsilon \cdot \overline{3}, \\
\vdots & \vdots \\
k \cdot a^{s_{k}} \cdot \overline{(k+1)}, & k \cdot \varepsilon \cdot \overline{(k+1)}, \\
W=(k+1) \cdot \bar{a}^{x} \cdot \overline{(k+2)}, & \\
(k+2) \cdot b^{s_{1}} \cdot \overline{(k+3)}, & (k+2) \cdot \varepsilon \cdot \overline{(k+3)}, \\
& (k+3) \cdot b^{s_{2}} \cdot \overline{(k+4)}, \\
& (k+3) \cdot \varepsilon \cdot \overline{(k+4)}, \\
& \\
& (2 k+1) \cdot b^{s_{k}} \cdot \overline{(2 k+2)}, \\
& (2 k+1) \cdot \varepsilon \cdot \overline{(2 k+2)}, \\
& \left.(2 k+2) \cdot \bar{b}^{x} \cdot \overline{1}\right\} \subseteq \Sigma^{*},
\end{array}
$$

where $\Sigma=\{1,2, \ldots, 2 k+2, \overline{1}, \overline{2}, \ldots, \overline{(2 k+2)}, a, b, \bar{a}, \bar{b}\}$ is an alphabet and \bar{z} denotes z^{-1} for all alphabet characters.

The Identity Problem in Dimension 2

- We then encode the set W_{2} into a set of matrices over $\mathbb{N}^{2 \times 2}$ and ensure that the representation size of the matrices is polynomial in the size of the subset sum instance to complete the proof.

The Identity Problem in Dimension 2

- As a corollary, the following problems are also therefore NP-hard:
(1) Determining if the intersection of two finitely generated 2×2 integral matrix semigroups is empty.
(2) Given a finite set of 2×2 integer matrices, determining if they form a group.
(3) The $\operatorname{ZRUC}(k, 2)$ (zero-in-the-right-upper-corner) problem.
(4) Determining whether a finitely generated 2×2 integer matrix semigroup contains any diagonal matrix.
(5) The Scalar/Vector Reachability Problems over 2×2 integer matrices.

Conclusion

- We have seen a variety of problems on low dimensional, finitely generated matrix semigroups.
- Connections between combinatorics on words, automata theory and matrix semigroups.

Selected References

- T. Ang, G. Pighizzini, N. Rampersad, J. Shallit, Automata and Reduced Words in the Free Group, CoRR abs/0910.4555 (2009).
- L. Babai, R. Beals, J. Cai, G. Ivanyos, E. Luks, Multiplicative Equations over Commuting Matrices, Proc. 7th ACM-SIAM Sypm. on Discrete Algorithms (SODA 1996).
- P. C. Bell, I. Potapov, On Undecidability Bounds for Matrix Decision Problems, Theoretical Computer Science, (2008), 391(1-2), 3-13.
- P. C. Bell, I. Potapov, On the Computational Complexity of Matrix Semigroup Problems, Fundamenta Informaticae, (2012), 116, 1-13.
- P. C. Bell, I. Potapov, On the undecidability of the identity correspondence problem and its applications for word and matrix semigroups, Intern. J of Foundations of Computer Science, (2010), 21(6), 963-978.
- P. C. Bell, V. Halava, T. Harju, J. Karhumäki, I. Potapov, Matrix Equations and Hilbert's Tenth Problem, International Journal of Algebra and Computation, (2008), 18(8), 1231-1241.
- P. C. Bell, M. Hirvensalo, I. Potapov Mortality for 2×2 matrices is NP-hard. MFCS 2012, Lecture Notes in Computer Science, (2012), 148-159.
- O. Bournez and M. Branicky. The mortality problem for matrices of low dimensions, Theory of Computing Systems, (2002), 35(4):433-448.
- J. Cassaigne, T. Harju, J. Karhumäki, On the Undecidability of Freeness of Matrix Semigroups, Internat. J. Algebra Comput., (1999), 9(3-4):295-305.
- J. Cassaigne, V. Halava, T. Harju, F. Nicolas, Tighter Undecidability Bounds for Matrix Mortality, Zero-in-the-Corner Problems, and More, CoRR abs/1404.0644 (2014).
- J. Cassaigne, F. Nicolas, On the decidability of semigroup freeness (2012) RAIRO, 46(3): 355-399.
- V. Halava, T. Harju, Mortality in Matrix Semigroups, Amer. Math. Monthly, (2001), 108:649-653.
- D. A. Klarner, J.-C. Birget, and W. Satterfield. On the undecidability of the freeness of integer matrix semigroups, International Journal of Algebra and Computation, (1991), 1(2):223226.
- Y. Matiyasevich and G. Sénizergues, Decision problems for semi-Thue systems with a few rules, Theoretical Computer Science, (2005), 330(1):145169.
- T. Neary, Undecidability in Binary Tag Systems and the Post Correspondence Problem for Five Pairs of Words, STACS 2015, 649-661.
- M. S. Paterson. Unsolvability in 2×2 matrices, Studies in Applied Mathematics 49 (1970), 105-107.

