Complexity of Reachability, Mortality and Freeness Problems for Matrix Semigroups

Paul C. Bell

Department of Computer Science Loughborough University P.Bell@lboro.ac.uk

Co-authors for todays topics: V. Halava, T. Harju, M. Hirvensalo, J. Karhumäki (Turku University, Finland) I. Potapov (University of Liverpool)

North British Semigroups and Applications Network (2015) University of St Andrews

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

Outline ●000	Mortality 00000000	Freeness 000	Identity 00000	Decidable cases 000000000	Conclusion 00
Outline	e of the tall	k			

Introduction

- Complexity classes P, NP, PSPACE & hardness
- Computability and undecidability
- Algorithmic problems for matrix semigroups
 - Reachability (membership)
 - Mortality
 - Identity
 - Freeness
- Open Problems
- Connections between semigroup theory, combinatorics on words and matrix problems

< 17 >

Loughborough University

Outline 0000	Mortality 00000000	Freeness 000	Identity 00000	Decidable cases 0000000000	Conclusion 00
Comp	utability & (Complexit	V		

- Decidable
 - P
 - NP (NP-hard,
 - NP-complete, ...)
 - PSPACE

Undecidable

- Decidability: giving an algorithm which always halts and gives the correct answer in a finite time.
 - Complexity showing equivalence of existing NP-hard, PSPACE-hard problems or analysing properties of the problem.
- Undecidability: simulation (reduction) of a Turing or Minsky machine, Post's Correspondence Problem (PCP), Hilbert's tenth problem, other undecidable problem, etc.

Given a set of finite matrices G = {M₁, M₂,..., M_k} ⊆ K^{n×n}, we are interested in algorithmic decision questions regarding the semigroup S generated by G, denoted S = ⟨G⟩

Algorithmic Problems for Matrix Semigroups

P. C. Bell

Decision Problems for Matrix Semigroups

- Given a matrix semigroup S generated by a finite set
 - $G = \{M_1, M_2, \dots, M_k\} \subseteq \mathbb{K}^{n \times n}$ (where $\mathbb{K} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}\}$):
 - Decide whether the semigroup S
 - contains the zero matrix (MORTALITY PROBLEM)
 - contains the identity matrix (IDENTITY PROBLEM)
 - is free (FREENESS PROBLEM)
 - is bounded, finite, etc.
 - Vector reachability problems:
 - Given two vectors x and y. Decide whether the semigroup S contains a matrix M such that Mx = y
 - Variants of such problems are important for probabilistic and quantum automata models

Image: A math a math

P. C. Bell

• The MORTALITY PROBLEM was one of the earliest undecidability results of reachability for matrix semigroups

Theorem ([Paterson 70])

The Mortality Problem is undecidable over $\mathbb{Z}^{3 \times 3}$

- holds even when the semigroup is generated by just 6 matrices over Z^{3×3}, or for 2 matrices over Z^{15×15} [Cassaigne et al., 14]
- The undecidability results use a reduction of Post's Correspondence Problem (PCP).

Image: A math a math

Post's Correspondence Problem

• Posts Correspondence Problem (PCP) is a useful tool for proving undecidability.

Theorem

- PCP(2) is decidable [Ehrenfeucht, Karhumäki, Rozenberg, 82]
- PCP(7) is undecidable [Matiyasevich, Sénizergues, 96]
- PCP(5) is undecidable [Neary 15].

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion
	00000000				

Post's Correspondence Problem

• Posts Correspondence Problem (PCP) is a useful tool for proving undecidability.

Theorem

- PCP(2) is decidable [Ehrenfeucht, Karhumäki, Rozenberg, 82]
- PCP(7) is undecidable [Matiyasevich, Sénizergues, 96]
- PCP(5) is undecidable [Neary 15].

Figure : A solution - aabbaabba

Outline 0000	Mortality 000●00000	Freeness 000	Identity 00000	Decidable cases 000000000	Conclusion 00
\ \ \ \ \ \ \ \ \ \	Europelin an				
vvora	Encodings				

- Words over a binary alphabet can be encoded into 2×2 matrices
- Given a binary alphabet Σ = {a, b}, let γ : Σ* → Z^{2×2} be defined by:

$$\gamma(a) = \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight), \ \gamma(b) = \left(egin{array}{cc} 1 & 0 \ 1 & 1 \end{array}
ight)$$

then γ is a monomorphism (injective homomorphism)

• This gives us a way to embed problems on words into problems for semigroups (for example with the direct sum)

Outline 0000	Mortality 0000●0000	Freeness 000	Identity 00000	Decidable cases	Conclusion 00
Mord	Encodings (2)			

- Let $\sigma(a) = 1, \sigma(b) = 2$ and $\sigma(uv) = 3^{|v|}\sigma(u) + \sigma(v)$ for every $u, v \in \Sigma^*$. Then σ is a monomorphism $\Sigma^* \to \mathbb{N}$.
- We may then define a mapping $au: \Sigma^* imes \Sigma^* \mapsto \mathbb{Z}^{3 imes 3}$

1g3 (2)

$$\tau(u,v) = \begin{pmatrix} 1 & \sigma(v) & \sigma(u) - \sigma(v) \\ 0 & 3^{|v|} & 3^{|u|} - 3^{|v|} \\ 0 & 0 & 3^{|u|} \end{pmatrix}$$

- We can prove that $\tau(u_1, v_1) \cdot \tau(u_2, v_2) = \tau(u_1u_2, v_1v_2)$ for all $u_1, u_2, v_1, v_2 \in \Sigma^*$, thus τ is a monomorphism.
- Note that $\tau(u, v)_{1,3} = 0$ if and only if u = v.
- With some more work this technique can be used to show the undecidability of the MORTALITY PROBLEM via a reduction of PCP, see [Cassaigne et al. 14] for example.

Outline 0000	Mortality 00000●000	Freeness 000	Identity 00000	Decidable cases 000000000	Conclusion 00
An asid	e - Skolem'	s Probler	n		

• Determining if a matrix in a finitely generated matrix semigroup contains a zero in the top right element is referred to as the ZRUC (zero-in-the-right-upper-corner problem).

Definition (Linear Recurrence Sequence)

Given a sequence of recurrence coefficients $a_0, a_1, \ldots, a_{n-1} \in \mathbb{Z}$ and a sequence of initial values $u_0, u_1, \ldots, u_{n-1} \in \mathbb{Z}$, a linear recurrence sequence (of depth *n*) may be written in the form (for $k \ge n$):

$$u_k = a_{n-1}u_{k-1} + a_{n-2}u_{k-2} + \ldots + a_0u_{k-n}.$$

 Outline
 Mortality
 Freeness
 Identity
 Decidable cases
 Conclusion

 Ococo
 Ococo
 Ococo
 Ococo
 Ococo
 Ococo
 Ococo

 An aside - Skolem's Problem
 Vertice
 Vertice
 Ococo
 Ococo
 Ococo

- (Very difficult) Open Problem 1: For a linear recurrence sequence u = (u_k)[∞]_{k=0} ⊆ Z, the zero set of u is given by Z(u) = {i ∈ ℕ|u_i = 0}. Determine if Z(u) is an empty set.
- It is known that Z(u) is a semilinear set [Skolem, 34], [Mahler, 35], [Lech, 53], and that the problem is decidable when the depth is 4 or below [Vereshchagin, 85].
- It is not difficult to show that this problem is equivalent to the following: given a matrix M ∈ Z^{(n+2)×(n+2)}, determine if there exists k > 0, such that M^k_{1.(n+2)} = 0
 - i.e. the ZRUC problem for a semigroup generated by a single matrix.

Image: A math a math

P. C. Bell

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion
0000	0000000●0	000	00000	000000000	00

Mortality over Bounded Languages

Theorem (B., Halava, Harju, Karhumäki, Potapov, 2008)

Given integral matrices $X_1, X_2, ..., X_k \in \mathbb{Z}^{n \times n}$, it is algorithmically undecidable to determine whether there exists a solution to the equation:

$$X_1^{i_1}X_2^{i_2}\cdots X_k^{i_k}=Z,$$

where Z denotes the zero matrix and $i_1, i_2, \ldots, i_k \in \mathbb{N}$ are unknowns.

To prove this theorem, an encoding of Hilbert's tenth problem was used (next slide).

Loughborough University

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion
0000	0000000●	000	00000	000000000	00

Mortality over Bounded Languages

Hilbert's Tenth Problem - Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion
0000	00000000	●○○	00000	000000000	00

Semigroup Freeness

Definition (Code)

Let $\mathcal S$ be a semigroup and $\mathcal G$ a subset of $\mathcal S$. We call $\mathcal G$ a code if the property

$$u_1u_2\cdots u_m=v_1v_2\cdots v_n$$

for $u_i, v_i \in \mathcal{G}$, implies that m = n and $u_i = v_i$ for each $1 \le i \le n$.

Definition (Semigroup freeness)

A semigroup S is called free if there exists a code $\mathcal{G} \subseteq S$ such that $\mathcal{S} = \mathcal{G}^+$.

For example, consider the semigroup {0,1}⁺ under concatenation. Then the set {00,01,10,11} is a code, but {01,10,0} is not (since 0 · 10 = 01 · 0 for example).

Outline 0000	Mortality 00000000	Freeness 0●0	Identity 00000	Decidable cases	Conclusion 00
Matri	x Freeness				

Problem (Matrix semigroup freeness)

SEMIGROUP FREENESS PROBLEM - Given a finite set of matrices $\mathcal{G} \subseteq \mathbb{Z}^{n \times n}$ generating a semigroup \mathcal{S} , does every element $M \in \mathcal{S}$ have a single, unique factorisation over \mathcal{G} ? Alternatively, is \mathcal{G} a code?

- The semigroup freeness problem is undecidable over N^{3×3} [Klarner, Birget and Satterfield, 91]
- In fact, the undecidability result holds even over N^{3×3}_{uptr} [Cassaigne, Harju and Karhumäki, 99]

- ∢ ≣ ▶

Outline 0000	Mortality 00000000	Freeness 00●	Identity 00000	Decidable cases 000000000	Conclusion
Matrix	Freeness in	n Dimensi	on 2		

• Let
$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 5 \\ 0 & 5 \end{pmatrix}$, is $\{A, B\}$ a code?

 Two groups of authors independently showed that in fact the following equation holds and thus the generated semigroup is not free[Gawrychowskia et al. 2010], [Cassaigne et al. 2012]:

$AB^{10}A^2BA^2BA^{10} = B^2A^6B^2A^2BABABA^2B^2A^2BAB^2$

and no shorter non-trivial equation exists.

 Open Problem 2 - Determine the decidability of the FREENESS PROBLEM over N^{2×2} (even for two matrices, or when all matrices are upper triangular).

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion
0000	00000000	000	●0000	000000000	

The Identity Problem

Problem (The Identity Problem)

Given a matrix semigroup S generated by a finite set $G = \{M_1, M_2, \ldots, M_k\} \subseteq \mathbb{Z}^{n \times n}$, determine if $I_n \in \langle G \rangle$, where I_n is the n-dimensional multiplicative identity matrix.

- The IDENTITY PROBLEM is undecidable over Z^{4×4} [B., Potapov, 2011].
- To show the undecidability of the IDENTITY PROBLEM, we introduced the Identity Correspondence Problem (next slide).

Image: A math a math

Loughborough University

Algorithmic Problems for Matrix Semigroups

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion
			00000		

The Identity Problem - undecidability

Problem (Identity Correspondence Problem (ICP))

Identity Correspondence Problem (ICP) - Let $\Gamma = \{a, b, a^{-1}, b^{-1}\}$ generate a free group on a binary alphabet and

 $\Pi = \{(s_1, t_1), (s_2, t_2), \ldots, (s_m, t_m)\} \subseteq \Gamma^* \times \Gamma^*.$

Determine if there exists a nonempty finite sequence of indices i_1, i_2, \ldots, i_k where $1 \le i_j \le m$ such that

$$s_{i_1}s_{i_2}\cdots s_{i_k}=t_{i_1}t_{i_2}\cdots t_{i_k}=\varepsilon,$$

Loughborough University

where ε is the empty word (identity).

The Identity Correspondence can be shown to be undecidable (next slides).

P. C. Bell

Algorithmic Problems for Matrix Semigroups

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion

The Identity Problem - encoding idea

Algorithmic Problems for Matrix Semigroups

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion
			00000		

Applications of the Identity Correspondence Problem

Problem (Group Problem)

Given a free binary group alphabet $\Gamma = \{a, b, a^{-1}, b^{-1}\}$, is the semigroup generated by a finite set of pairs of words $P = \{(u_1, v_1), (u_2, v_2), \dots, (u_m, v_m)\} \subset \Gamma^* \times \Gamma^*$ a group?

Theorem (B., Potapov, 2010)

The GROUP PROBLEM is undecidable for m = 8(n - 1) pairs of words where n is the minimal number of pairs for which PCP is known to be undecidable (n = 5).

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion
			00000		

Applications of the Identity Correspondence Problem (2)

Theorem (B., Potapov, 2010)

The IDENTITY PROBLEM is undecidable for a semigroup generated by 48 matrices from $\mathbb{Z}^{4\times 4}$

• The proof uses the following injective homomorphism $\rho: \Gamma^* \to \mathbb{Z}^{2 \times 2}$:

$$\rho(a) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \rho(b) = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \rho(a^{-1}) = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, \rho(b^{-1}) = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}.$$

- Given an instance of the ICP W, for each pair of words (w₁, w₂) ∈ W, define matrix A_{w1,w2} = ρ(w₁) ⊕ ρ(w₂).
- Let S be a semigroup generated by $\{A_{w_1,w_2} | (w_1, w_2) \in W\}$. Then the ICP instance W has a solution iff $I \in S$ \Box .
- **Open Problem 3** Determine the decidability of the IDENTITY PROBLEM over $\mathbb{Z}^{3\times 3}$.

The Identity Problem in Dimension 2

- The IDENTITY PROBLEM is decidable over Z^{2×2} [Choffrut, Karhumäki, 2005] but it is at least NP-hard [B., Potapov, 2012]
- We shall see some details of the NP-hardness proof.
- A problem is said to be NP-hard if it is at least as difficult as all other problems in the class NP (the class of problems solvable in Non-deterministic Polynomial time).

< 口 > < 同

The ${\rm SUBSET}~{\rm SUM}~{\rm Problem}$ is NP-hard and is a very useful tool to show other problems are also NP-hard.

Problem (Subset Sum Problem)

Given a positive integer x and a finite set of positive integer values $S = \{s_1, s_2, ..., s_k\}$, does there exist a (nonempty) subset of S which sums to x?

We shall now encode an instance of the subset sum problem into a set of matrices

< □ > < 同 >

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion
0000	00000000	000	00000	00●0000000	00

The Structure of an Identity

Figure : The structure of a product which forms the identity.

Image: Image:

Loughborough University

Algorithmic Problems for Matrix Semigroups

Outline 0000	Mortality 00000000	Freeness 000	Identity 00000	Decidable cases 000●000000	Conclusion 00
		B 11			

The Subset Sum Problem

$$\begin{array}{ll} \left\{ \begin{matrix} 1 \cdot a^{s_1} \cdot \overline{2}, & 1 \cdot \varepsilon \cdot \overline{2}, \\ 2 \cdot a^{s_2} \cdot \overline{3}, & 2 \cdot \varepsilon \cdot \overline{3}, \end{matrix} \right. \\ \vdots & \vdots & \vdots \\ k \cdot a^{s_k} \cdot \overline{(k+1)}, & k \cdot \varepsilon \cdot \overline{(k+1)}, \\ (k+1) \cdot \overline{a}^x \cdot \overline{(k+2)}, & \\ (k+2) \cdot b^{s_1} \cdot \overline{(k+3)}, & (k+2) \cdot \varepsilon \cdot \overline{(k+3)}, \\ (k+3) \cdot b^{s_2} \cdot \overline{(k+4)}, & (k+3) \cdot \varepsilon \cdot \overline{(k+4)}, \\ \vdots & \vdots \\ (2k+1) \cdot b^{s_k} \cdot \overline{(2k+2)}, & (2k+1) \cdot \varepsilon \cdot \overline{(2k+2)}, \\ (2k+2) \cdot \overline{b}^x \cdot \overline{1} \right\} \subseteq \Sigma^*, \end{array}$$

where $\Sigma = \{1, 2, \dots, 2k + 2, \overline{1}, \overline{2}, \dots, \overline{(2k+2)}, a, b, \overline{a}, \overline{b}\}$ is an alphabet and \overline{z} denotes z^{-1} for all alphabet characters.

Algorithmic Problems for Matrix Semigroups

The Identity Problem in Dimension 2

• We then encode the set W₂ into a set of matrices over N^{2×2} and ensure that the representation size of the matrices is polynomial in the size of the subset sum instance to complete the proof.

- < A

Loughborough University

The Identity Problem in Dimension 2

- As a corollary, the following problems are also therefore NP-hard:
 - Determining if the intersection of two finitely generated 2 × 2 integral matrix semigroups is empty.
 - Given a finite set of 2 × 2 integer matrices, determining if they form a group.
 - Some The ZRUC(k, 2) (zero-in-the-right-upper-corner) problem.
 - Oetermining whether a finitely generated 2 × 2 integer matrix semigroup contains any diagonal matrix.

< □ > < 同 >

• The SCALAR/VECTOR REACHABILITY PROBLEMS over 2 × 2 integer matrices.

P. C. Bell

Outline 0000	Mortality 00000000	Freeness 000	Identity 00000	Decidable cases	Conclusion ●○
Concl	usion				

- We have seen a variety of problems on low dimensional, finitely generated matrix semigroups.
- Connections between combinatorics on words, automata theory and matrix semigroups.

Outline	Mortality	Freeness	Identity	Decidable cases	Conclusion
0000	00000000	000	00000	000000000	00

Selected References

- T. Ang, G. Pighizzini, N. Rampersad, J. Shallit, Automata and Reduced Words in the Free Group, CoRR abs/0910.4555 (2009).
- L. Babai, R. Beals, J. Cai, G. Ivanyos, E. Luks, Multiplicative Equations over Commuting Matrices, Proc. 7th ACM-SIAM Sypm. on Discrete Algorithms (SODA 1996).
- P. C. Bell, I. Potapov, On Undecidability Bounds for Matrix Decision Problems, Theoretical Computer Science, (2008), 391(1-2), 3-13.
- P. C. Bell, I. Potapov, On the Computational Complexity of Matrix Semigroup Problems, Fundamenta Informaticae, (2012), 116, 1-13.
- P. C. Bell, I. Potapov, On the undecidability of the identity correspondence problem and its applications for word and matrix semigroups, Intern. J of Foundations of Computer Science, (2010), 21(6), 963-978.
- P. C. Bell, V. Halava, T. Harju, J. Karhumäki, I. Potapov, Matrix Equations and Hilbert's Tenth Problem, International Journal of Algebra and Computation, (2008), 18(8), 1231-1241.
- P. C. Bell, M. Hirvensalo, I. Potapov Mortality for 2 × 2 matrices is NP-hard. MFCS 2012, Lecture Notes in Computer Science, (2012), 148-159.
- O. Bournez and M. Branicky. The mortality problem for matrices of low dimensions, Theory of Computing Systems, (2002), 35(4):433-448.
- J. Cassaigne, T. Harju, J. Karhumäki, On the Undecidability of Freeness of Matrix Semigroups, Internat. J. Algebra Comput., (1999), 9(3-4):295-305.
- J. Cassaigne, V. Halava, T. Harju, F. Nicolas, Tighter Undecidability Bounds for Matrix Mortality, Zero-in-the-Corner Problems, and More, CoRR abs/1404.0644 (2014).
- J. Cassaigne, F. Nicolas, On the decidability of semigroup freeness (2012) RAIRO, 46(3): 355-399.
- V. Halava, T. Harju, Mortality in Matrix Semigroups, Amer. Math. Monthly, (2001), 108:649-653.
- D. A. Klarner, J.-C. Birget, and W. Satterfield. On the undecidability of the freeness of integer matrix semigroups, International Journal of Algebra and Computation, (1991), 1(2):223226.
- Y. Matiyasevich and G. Sénizergues, Decision problems for semi-Thue systems with a few rules, Theoretical Computer Science, (2005), 330(1):145169.
- T. Neary, Undecidability in Binary Tag Systems and the Post Correspondence Problem for Five Pairs of Words, STACS 2015, 649-661.
- M. S. Paterson, Unsolvability in 2x2 matrices. Studies in Applied Mathematics 49 (1970), 105-107.