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Outline of the talk

Introduction

Complexity classes P, NP, PSPACE & hardness
Computability and undecidability

Algorithmic problems for matrix semigroups
Reachability (membership)

Mortality
Identity

Freeness

Open Problems

Connections between semigroup theory, combinatorics on
words and matrix problems
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Computability & Complexity

Decidable

P
NP (NP-hard,
NP-complete, ...)
PSPACE

Undecidable

Decidability: giving an algorithm which always halts and gives
the correct answer in a finite time.

Complexity - showing equivalence of existing NP-hard,
PSPACE-hard problems or analysing properties of the problem.

Undecidability: simulation (reduction) of a Turing or Minsky
machine, Post’s Correspondence Problem (PCP), Hilbert’s
tenth problem, other undecidable problem, etc.
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Marix Semigroups (Example 1)

Given a set of finite matrices G = {M1,M2, . . . ,Mk} ⊆ Kn×n,
we are interested in algorithmic decision questions regarding
the semigroup S generated by G , denoted S = 〈G 〉
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Decision Problems for Matrix Semigroups

Given a matrix semigroup S generated by a finite set
G = {M1,M2, . . . ,Mk} ⊆ Kn×n (where K ∈ {Z,Q,R,C,H}):

Decide whether the semigroup S

contains the zero matrix (Mortality Problem)
contains the identity matrix (Identity Problem)
is free (Freeness Problem)
is bounded, finite, etc.

Vector reachability problems:

Given two vectors x and y . Decide whether the semigroup S
contains a matrix M such that Mx = y
Variants of such problems are important for probabilistic and
quantum automata models
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Early Reachability Results

The Mortality Problem was one of the earliest
undecidability results of reachability for matrix semigroups

Theorem ([Paterson 70])

The Mortality Problem is undecidable over Z3×3

holds even when the semigroup is generated by just 6 matrices
over Z3×3, or for 2 matrices over Z15×15 [Cassaigne et al., 14]

The undecidability results use a reduction of Post’s
Correspondence Problem (PCP).
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Post’s Correspondence Problem

Posts Correspondence Problem (PCP) is a useful tool for
proving undecidability.

Theorem

PCP(2) is decidable
[Ehrenfeucht, Karhumäki,
Rozenberg, 82]

PCP(7) is undecidable
[Matiyasevich, Sénizergues,
96]

PCP(5) is undecidable
[Neary 15].

Figure : An instance of PCP(3)
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Post’s Correspondence Problem

Posts Correspondence Problem (PCP) is a useful tool for
proving undecidability.

Theorem

PCP(2) is decidable
[Ehrenfeucht, Karhumäki,
Rozenberg, 82]

PCP(7) is undecidable
[Matiyasevich, Sénizergues,
96]

PCP(5) is undecidable
[Neary 15].

Figure : A solution - aabbaabba
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Word Encodings

Words over a binary alphabet can be encoded into 2× 2
matrices

Given a binary alphabet Σ = {a, b}, let γ : Σ∗ 7→ Z2×2 be
defined by:

γ(a) =

(
1 1
0 1

)
, γ(b) =

(
1 0
1 1

)
then γ is a monomorphism (injective homomorphism)

This gives us a way to embed problems on words into
problems for semigroups (for example with the direct sum)
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Word Encodings (2)

Let σ(a) = 1, σ(b) = 2 and σ(uv) = 3|v |σ(u) + σ(v) for every
u, v ∈ Σ∗. Then σ is a monomorphism Σ∗ → N.

We may then define a mapping τ : Σ∗ × Σ∗ 7→ Z3×3

τ(u, v) =

 1 σ(v) σ(u)− σ(v)

0 3|v | 3|u| − 3|v |

0 0 3|u|


We can prove that τ(u1, v1) · τ(u2, v2) = τ(u1u2, v1v2) for all
u1, u2, v1, v2 ∈ Σ∗, thus τ is a monomorphism.

Note that τ(u, v)1,3 = 0 if and only if u = v .

With some more work this technique can be used to show the
undecidability of the Mortality Problem via a reduction
of PCP, see [Cassaigne et al. 14] for example.
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An aside - Skolem’s Problem

Determining if a matrix in a finitely generated matrix
semigroup contains a zero in the top right element is referred
to as the ZRUC (zero-in-the-right-upper-corner problem).

Definition (Linear Recurrence Sequence)

Given a sequence of recurrence coefficients a0, a1, . . . , an−1 ∈ Z
and a sequence of initial values u0, u1, . . . , un−1 ∈ Z, a linear
recurrence sequence (of depth n) may be written in the form (for
k ≥ n):

uk = an−1uk−1 + an−2uk−2 + . . .+ a0uk−n.
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An aside - Skolem’s Problem

(Very difficult) Open Problem 1: - For a linear recurrence
sequence u = (uk)∞k=0 ⊆ Z, the zero set of u is given by
Z (u) = {i ∈ N|ui = 0}. Determine if Z (u) is an empty set.

It is known that Z (u) is a semilinear set [Skolem, 34],
[Mahler, 35], [Lech, 53], and that the problem is decidable
when the depth is 4 or below [Vereshchagin, 85].

It is not difficult to show that this problem is equivalent to the
following: given a matrix M ∈ Z(n+2)×(n+2), determine if
there exists k > 0, such that Mk

1,(n+2) = 0

i.e. the ZRUC problem for a semigroup generated by a single
matrix.
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Mortality over Bounded Languages

Theorem (B., Halava, Harju, Karhumäki, Potapov, 2008)

Given integral matrices X1,X2, . . . ,Xk ∈ Zn×n, it is algorithmically
undecidable to determine whether there exists a solution to the
equation:

X i1
1 X i2

2 · · ·X
ik
k = Z ,

where Z denotes the zero matrix and i1, i2, . . . , ik ∈ N are
unknowns.

To prove this theorem, an encoding of Hilbert’s tenth problem was
used (next slide).
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Mortality over Bounded Languages

Hilbert’s Tenth Problem - Given a Diophantine equation with
any number of unknown quantities and with rational integral
numerical coefficients: To devise a process according to which it
can be determined by a finite number of operations whether the
equation is solvable in rational integers.
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Semigroup Freeness

Definition (Code)

Let S be a semigroup and G a subset of S. We call G a code if the
property

u1u2 · · · um = v1v2 · · · vn
for ui , vi ∈ G, implies that m = n and ui = vi for each 1 ≤ i ≤ n.

Definition (Semigroup freeness)

A semigroup S is called free if there exists a code G ⊆ S such that
S = G+.

For example, consider the semigroup {0, 1}+ under
concatenation. Then the set {00, 01, 10, 11} is a code, but
{01, 10, 0} is not (since 0 · 10 = 01 · 0 for example)
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Matrix Freeness

Problem (Matrix semigroup freeness)

Semigroup freeness problem - Given a finite set of matrices
G ⊆ Zn×n generating a semigroup S, does every element M ∈ S
have a single, unique factorisation over G? Alternatively, is G a
code?

The semigroup freeness problem is undecidable over N3×3

[Klarner, Birget and Satterfield, 91]

In fact, the undecidability result holds even over N3×3
uptr

[Cassaigne, Harju and Karhumäki, 99]
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Matrix Freeness in Dimension 2

Let A =

(
2 0
0 3

)
and B =

(
3 5
0 5

)
, is {A,B} a code?

Two groups of authors independently showed that in fact the
following equation holds and thus the generated semigroup is
not free[Gawrychowskia et al. 2010], [Cassaigne et al. 2012]:

AB10A2BA2BA10 = B2A6B2A2BABABA2B2A2BAB2

and no shorter non-trivial equation exists.

Open Problem 2 - Determine the decidability of the
Freeness Problem over N2×2 (even for two matrices, or
when all matrices are upper triangular).
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The Identity Problem

Problem (The Identity Problem)

Given a matrix semigroup S generated by a finite set
G = {M1,M2, . . . ,Mk} ⊆ Zn×n, determine if In ∈ 〈G 〉, where In is
the n-dimensional multiplicative identity matrix.

The Identity Problem is undecidable over Z4×4

[B., Potapov, 2011].

To show the undecidability of the Identity Problem, we
introduced the Identity Correspondence Problem (next slide).
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The Identity Problem - undecidability

Problem (Identity Correspondence Problem (ICP))

Identity Correspondence Problem (ICP) - Let Γ = {a, b, a−1, b−1}
generate a free group on a binary alphabet and

Π = {(s1, t1), (s2, t2), . . . , (sm, tm)} ⊆ Γ∗ × Γ∗.

Determine if there exists a nonempty finite sequence of indices
i1, i2, . . . , ik where 1 ≤ ij ≤ m such that

si1si2 · · · sik = ti1ti2 · · · tik = ε,

where ε is the empty word (identity).

The Identity Correspondence can be shown to be undecidable
(next slides).
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The Identity Problem - encoding idea
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Figure : The structure of a product which forms the identity.
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Applications of the Identity Correspondence Problem

Problem (Group Problem)

Given a free binary group alphabet Γ = {a, b, a−1, b−1}, is the
semigroup generated by a finite set of pairs of words
P = {(u1, v1), (u2, v2), . . . , (um, vm)} ⊂ Γ∗ × Γ∗ a group?

Theorem (B., Potapov, 2010)

The Group Problem is undecidable for m = 8(n − 1) pairs of
words where n is the minimal number of pairs for which PCP is
known to be undecidable (n = 5).
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Applications of the Identity Correspondence Problem (2)

Theorem (B., Potapov, 2010)

The Identity Problem is undecidable for a semigroup
generated by 48 matrices from Z4×4

The proof uses the following injective homomorphism
ρ : Γ∗ → Z2×2:

ρ(a) =

(
1 2
0 1

)
, ρ(b) =

(
1 0
2 1

)
, ρ(a−1) =

(
1 −2
0 1

)
, ρ(b−1) =

(
1 0
−2 1

)
.

Given an instance of the ICP - W , for each pair of words
(w1,w2) ∈W , define matrix Aw1,w2 = ρ(w1)⊕ ρ(w2).

Let S be a semigroup generated by {Aw1,w2 |(w1,w2) ∈W }.
Then the ICP instance W has a solution iff I ∈ S .

Open Problem 3 - Determine the decidability of the
Identity Problem over Z3×3.
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The Identity Problem in Dimension 2

The Identity Problem is decidable over Z2×2 [Choffrut,
Karhumäki, 2005] but it is at least NP-hard
[B., Potapov, 2012]

We shall see some details of the NP-hardness proof.

A problem is said to be NP-hard if it is at least as difficult as
all other problems in the class NP (the class of problems
solvable in Non-deterministic Polynomial time).
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The Subset Sum Problem (SSP)

The Subset Sum Problem is NP-hard and is a very useful tool
to show other problems are also NP-hard.

Problem (Subset Sum Problem)

Given a positive integer x and a finite set of positive integer values
S = {s1, s2, . . . , sk}, does there exist a (nonempty) subset of S
which sums to x?

We shall now encode an instance of the subset sum problem into a
set of matrices
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The Structure of an Identity
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Figure : The structure of a product which forms the identity.
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The Subset Sum Problem

W =

{1 · as1 · 2, 1 · ε · 2,
2 · as2 · 3, 2 · ε · 3,
...

...

k · ask · (k + 1), k · ε · (k + 1),

(k + 1) · ax · (k + 2),

(k + 2) · bs1 · (k + 3), (k + 2) · ε · (k + 3),

(k + 3) · bs2 · (k + 4), (k + 3) · ε · (k + 4),
...

...

(2k + 1) · bsk · (2k + 2), (2k + 1) · ε · (2k + 2),

(2k + 2) · bx · 1} ⊆ Σ∗,

where Σ = {1, 2, . . . , 2k + 2, 1, 2, . . . , (2k + 2), a, b, a, b} is an
alphabet and z denotes z−1 for all alphabet characters.
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The Identity Problem in Dimension 2

We then encode the set W2 into a set of matrices over N2×2

and ensure that the representation size of the matrices is
polynomial in the size of the subset sum instance to complete
the proof.
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The Identity Problem in Dimension 2

As a corollary, the following problems are also therefore
NP-hard:

1 Determining if the intersection of two finitely generated 2× 2
integral matrix semigroups is empty.

2 Given a finite set of 2× 2 integer matrices, determining if they
form a group.

3 The ZRUC(k, 2) (zero-in-the-right-upper-corner) problem.
4 Determining whether a finitely generated 2× 2 integer matrix

semigroup contains any diagonal matrix.
5 The Scalar/Vector Reachability Problems over

2× 2 integer matrices.
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Conclusion

We have seen a variety of problems on low dimensional,
finitely generated matrix semigroups.

Connections between combinatorics on words, automata
theory and matrix semigroups.
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