Introduction

Conjugacy

The strategy

Topology and dynamics

The generalized conjugacy problem for virtually free groups

Pedro V. Silva

University of Porto (Centre of Mathematics, Faculty of Sciences)

York, 28th January 2009

Pedro V. Silva The generalized conjugacy problem for virtually free groups

Joint work with Manuel Ladra González (University of Santiago de Compostela).

イロン イヨン イヨン イヨン

- A finite alphabet
- π congruence on $(A \cup A^{-1})^*$ generated by

 $\{(aa^{-1},1) \mid a \in A \cup A^{-1}\}$

- $F_A = (A \cup A^{-1})^* / \pi$
- R_A reduced words on $A \cup A^{-1}$
- w reduced word corresponding to w

Introduction o●oooooooo	Conjugacy 000000	The strategy	Topology and dynamics
Automata			

 $\mathcal{A} = (Q, i, T, E)$ is an A-automaton if

 $i \in Q, \ T \subseteq Q, \ E \subseteq Q \times A \times Q$

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction

Conjugacy

The strategy

Topology and dynamics

Rational languages

Theorem (Kleene 1956)

 $L \subseteq A^*$ is rational if and only if L = L(A) for some finite A-automaton A

- RatA set of all rational A-languages
- Underlying idea: *finitely generated sets*

・ロト ・回ト ・ヨト ・ヨト

 Introduction
 Conjugacy
 The strategy
 Topology and dynamics

 0000
 000000
 000000
 000000
 000000
 000000

Rational subsets of a group G

- Let $\varphi : (A \cup A^{-1})^* \to G$ be a surjective morphism such that $\varphi(a^{-1}) = (\varphi(a))^{-1}$ for every $a \in A \cup A^{-1}$
- $K \subseteq G$ is rational if $K = \varphi(L)$ for some $L \in \operatorname{Rat}(A \cup A^{-1})$

Theorem (Benois 1969)

If $L \in \operatorname{Rat}(A \cup A^{-1})$, then $\overline{L} \in \operatorname{Rat}(A \cup A^{-1})$

Corollary (Benois 1969)

 $L \subseteq R_A$ is rational in $(A \cup A^{-1})^*$ if and only if it is rational in F_A

Theorem (Anissimov and Seifert 1975) $H \leq G$ is rational if and only if it is finitely generated

Pedro V. Silva The generalized conjugacy problem for virtually free groups

inverse automaton $\mathcal{A}(H)$

(日) (同) (日) (日) (日)

 $\begin{array}{c|c} & & & Conjugacy & & The strategy \\ \hline occorrectored occorrectore$

Flower automaton

イロン イヨン イヨン イヨン

Folding 1

イロン イヨン イヨン イヨン

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Conjugacy} & \mbox{The strategy} & \mbox{Topology and dynamics} \\ \hline \mbox{Example:} & \mbox{H} = \langle a^2, ab^{-1}c, c \rangle \end{array}$

Folding 2

イロン イヨン イヨン イヨン

Introduction ooooooooo●	Conjugacy 000000	The strategy	Topology and dynamics
Properties			

- Confluence: the folding order is irrelevant
- Generalized word problem: given u ∈ R_A, we have u ∈ H if and only if u ∈ L(A)
- Computation of bases through a maximal subtree:

Base: $\{a^2, ba, c\}$

o ...

・ 同 ト ・ ヨ ト ・ ヨ ト

Variants of the conjugacy problem

- AutG automorphism group of G
- Conjugacy problem: given g, h ∈ G, decide if g = xhx⁻¹ for some x ∈ G
- Twisted conjugacy: given $g, h \in G$ and $\varphi \in Aut G$, decide if $g = xh\varphi(x^{-1})$ for some $x \in G$.
 - Free group: solution by Bogopolski, Martino, Maslakova and Ventura (2006)
- Generalized conjugacy: given $g \in G$ and $K \in \operatorname{Rat} G$, decide if $xgx^{-1} \in K$ for some $x \in G$.
- Generalized twisted conjugacy: given $g \in G$, $K \in \operatorname{Rat} G$ and $\varphi \in \operatorname{Aut} G$, decide if $xg\varphi(x^{-1}) \in K$ for some $x \in G$.

Introduction 0000000000	Conjugacy o●oooo	The strategy	Topology and dynamics
The main res	sult		

$\varphi \in \operatorname{Aut} G$ is

- inner if there exists $z \in G$ such that $\varphi(g) = zgz^{-1}$ for every $g \in G$
- virtually inner if φ^n is inner for some $n \ge 1$

Theorem 1

Let $g \in F_A$, $K \in \operatorname{Rat} F_A$ and $\varphi \in \operatorname{Aut} F_A$ virtually inner. Then Sol $(g, \varphi, K) = \{x \in F_A \mid xg\varphi(x^{-1}) \in K\}$ is rational and effectively constructible.

Since it is decidable whether or not $L \in \operatorname{Rat} F_A$ is empty, we can decide if there exists some solution.

(日) (同) (日) (日) (日)

 Introduction
 Conjugacy
 The strategy
 Topology and dynamics

 Virtually free groups
 Virtually free groups
 Virtually free groups

- G is virtually free if G has a finite index subgroup F which is free
- We may assume that $F \leq G$ and $G = Fb_0 \cup \ldots \cup Fb_m$
- For i = 1,..., m, we define φ_i ∈ AutF by φ_i(u) = b_iub_i⁻¹. Since |G/F| = m + 1, we have b_i^{m+1} ∈ F and so φ_i is virtually inner.
- The automorphisms φ_i determine to a large extent the structure of G

 Introduction
 Conjugacy
 The strategy

 000000000
 0000000
 0000000

Topology and dynamics

Structure of rational subsets

Proposition (Silva 2002)

Let $G = Fb_0 \cup \ldots \cup Fb_m$ be a f.g. virtually free group with $F_A = F \trianglelefteq G$. Then Rat G consists of all the subsets of the form

$$\bigcup_{i=0}^m L_i b_i \qquad (L_i \in \mathsf{Rat} F_A).$$

Moreover, the components L_i may be effectively computed from a rational expression of L and a standard presentation of G.

From Theorem 1, and using the preceding decomposition, we obtain:

Theorem 2

Let G be a virtually free group, $g \in G$ and $K \in \text{Rat}G$. Then Sol $(g, K) = \{x \in G \mid xgx^{-1} \in K\}$ is rational and effectively constructible.

 Introduction
 Conjugacy
 The strategy
 Topology and dynamics

 OCOCOCO
 OCOCOCO
 OCOCOCO
 OCOCOCO

 Generalization of Moldavanskii's Theorem
 OCOCOCO
 OCOCOCO

Theorem 3

Let G be a virtually free group and $H_1, \ldots, H_n, K_1, \ldots, K_n \leq_{f.g.} G$. Then $S = \{x \in G \mid \forall i = 1, \ldots, n \quad xH_ix^{-1} = K_i\}$ is rational and effectively constructible.

It follows from Theorems 1, 2 and 3 that we can decide the existence of solutions belonging to any subset C for which it is decidable whether it intersects an arbitrary rational subset

In particular, we can decide the existence of solutions with context-free restrictions

Introduction	Conjugacy	The strategy	Topology and dynamics
0000000000	000000	●oooooo	
Simplification			

Theorem 1 is a consequence of

Theorem 1A

Let $K \in \operatorname{Rat} F_A$ and $\varphi \in \operatorname{Aut} F_A$ be virtually inner. Then $\{x \in F_A \mid x^{-1}\varphi(x) \in K\}$ is rational and effectively constructible.

The following well-known result turns out to be very useful:

Bounded Reduction Lemma

Let $\varphi \in \operatorname{Aut} F_A$. Then there exists $M_{\varphi} > 0$ such that, whenever $uv \in R_A$, the reduction of $\varphi(u)\varphi(v)$ involves at most M_{φ} letters of $\varphi(u)$ (and of $\varphi(v)$).

The key to the proof of Theorem 1A lies within

Theorem 1B Let $\varphi \in \operatorname{Aut} F_A$ be virtually inner. Then $U_{\varphi} = \{ u \in R_A \mid \varphi(x) = xu \text{ for some } x \in R_A \}$ is finite.

・ロト ・回ト ・ヨト ・ヨト

Introduction Conjugacy Conjugacy October Conjugacy Conju

If there were no reduction between x^{-1} and $\varphi(x)$, it would be easy to compute the solutions of $x^{-1}\varphi(x) \in K$:

- Let $\mathcal{A} = (Q, q_0, T, E)$ be an automaton with language \overline{K}
- For each *q* ∈ *Q*, we want to determine all the *x* ∈ *R*_A such that there exist paths

$$q_0 \xrightarrow{x^{-1}} q \xrightarrow{\varphi(x)} t \in T$$

in \mathcal{A}

• The solution is given by

 $x \in \bigcup_{q \in Q} (L(Q,q_0,q,E))^{-1} \cap \varphi^{-1}(L(Q,q,T,E)) \cap R_A,$

which is rational by the closure properties of $Rat(A \cup A^{-1})$

• • = • • = •

- $\overline{x^{-1}\varphi(x)} = (\tau(x))^{-1}\rho(x)$
- However, if $\tau(x) \neq 1$ and $|\rho(x)| > M_{\varphi}$, there is no further reduction when we extend x: the situation becomes analogous to the non-reduction case

- The crucial step takes place when au(x) = 1 or $|
 ho(x)| \leq M_{arphi}$
- The fact of U_{φ} and its dual V_{φ} being finite (a certain $V'_{\varphi} \supset V_{\varphi}$, in fact) allows us to consider only finitely many configurations $(\tau(x), \rho(x))$ before reaching the post-reduction situation.
- By the Bounded Reduction Lemma, the evolution of the configuration (τ(x), ρ(x)) when we extend x depends only of a suffix σ'(x) of σ(x) of length ≤ M_φ.

イロン イヨン イヨン イヨン

- The algorithm combines thus classification by the configurations (σ'(x), τ(x), ρ(x)) with post-reduction analysis, both components involving finite automata
- But there remains a problem: the proof of Theorem 1B is non-constructive, following from topological compactness arguments
- Therefore the algorithm must be conceived in order to overcome that difficulty. The price to pay is the high technical complexity of this part of the proof.
- We give now a brief sketch of the proof of Theorem 1B $(U_{\varphi} = \{u \in R_A \mid \varphi(x) = xu \text{ for some } x \in R_A\} \text{ is finite})$

・ロト ・回ト ・ヨト ・ヨト

Introduction	Conjugacy	The strategy	Topology and dynamics
0000000000	000000		●೦೦೦೦೦
The prefix met	ric		

• Given $u = u_1 \dots u_n, v = v_1 \dots v_m \in F_A$ reduced, let

$$r(u,v) = \begin{cases} \min\{i \in \mathbb{N} \mid u_i \neq v_i\} & \text{if } u \neq v \\ \infty & \text{if } u = v \end{cases}$$

and $d(u, v) = 2^{-r(u,v)}$

- d is an ultrametric on F_A
- Let $(\widehat{F_A}, \widehat{d})$ be the completion of (F_A, d)
- $\partial F_A = \widehat{F_A} \setminus F_A$ is said to be the boundary of F_A .

- $\widehat{F_A}$ is compact
- ∂F_A may be viewed as the set of infinite reduced words on $A \cup A^{-1}$
- \hat{d} may be defined analogously to d
- every $\varphi \in \operatorname{Aut} F_A$ admits a unique continuous extension $\widehat{\varphi}$ to $\widehat{F_A}$: the union of φ with a permutation of ∂F_A

Introduction Conjugacy The strategy Cooperation Conjugacy Cooperation Cooperat

The fixed point subgroup

Given $\varphi \in \operatorname{Aut} F_A$, let

 $Fix \varphi = \{g \in F_A \mid \varphi(g) = g\} \leq F_A.$

- Fix φ is finitely generated (Cooper 1987, Gersten 1984)
- Fix φ is effectively constructible (Maslakova 2003)

 $\alpha \in \mathsf{Fix}\widehat{\varphi}$ is

- singular if it is a limit point of $Fix\varphi$
- an attractor if

$$\exists \varepsilon > 0 \ \forall \beta \in \widehat{F_A} \ (d(\alpha, \beta) < \varepsilon \ \Rightarrow \ \lim_{n \to \infty} \widehat{\varphi}^n(\beta) = \alpha)$$

Theorem (Gaboriau, Jaeger, Levitt and Lustig 1998)

Every $\alpha \in Fix\widehat{\varphi}$ is among the following types:

- singular
- ullet attractor for \widehat{arphi}
- ullet attractor for $\widehat{arphi^{-1}}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Decomposition of the solution space

- Let $H = \operatorname{Fix} \varphi$ and $\mathcal{A}(H) = (Q, \bullet, \bullet, E)$
- For each $q \in Q$, we fix a geodesic $\bullet \xrightarrow{g_q} q$ in $\mathcal{A}(H)$

Let

$$J = \{(q, a) \in Q \times (A \cup A^{-1}) \mid qa = \emptyset\}$$

• Then

$$R_{A} = (\bigcup_{q \in Q} \overline{Hg_{q}}) \bigcup (\bigcup_{(q,a) \in J} \overline{Hg_{q}} a R_{A} \cap R_{A})$$

(日) (同) (日) (日) (日)

• We can now fix $(q, a) \in J$ and restrict to the domain

$$Y = \{ v \in R_A \mid g_q a \leq v \leq \varphi(v) \}.$$

- Since $\overline{F_A}$ is compact, every infinite subset of Y has a limit point α
- We can prove that α must be a non-singular fixed point which is eventually periodic (as an infinite word)
- Further topological arguments lead to the existence of a bound on $|\varphi(v)| |v|$

イロト 不得下 イヨト イヨト

Open problems

Problem 1

Is it decidable, given $g \in F_A$, $K \in \operatorname{Rat} F_A$ and $\varphi \in \operatorname{Aut} F_A$, whether or not $\operatorname{Sol}(g, \varphi, K) \neq \emptyset$?

Problem 2

Is the generalized conjugacy problem decidable for cyclic extensions of f.g. free groups?

<ロ> (四) (四) (三) (三) (三)