Semigroup Graph Expansions and their Green's Relations

Rebecca Noonan Heale

Heriot-Watt University, Edinburgh and the Maxwell Institute for Mathematical Sciences Supervised by Nick Gilbert

North British Semigroups and Applications Network, York 28th January 2009

ヘロト ヘアト ヘビト ヘビト

æ

Outline

Graph Expansions

- History
- Definitions
- Graph Expansions
- 2 Green's Relations
 - *R* Relation
 - *L* Relation

(* E) * E)

< 🗇 🕨

ъ

History Definitions Graph Expansions

Outline

Graph Expansions

- History
- Definitions
- Graph Expansions
- 2 Green's Relations
 - R Relation
 - \mathcal{L} Relation

3 Closing Remarks

イロト イポト イヨト イヨト

ъ

History Definitions Graph Expansions

Who's Who Guide to Graph Expansions

- Birget and Rhodes: fathers of semigroup expansions
- Margolis and Meakin: groups
- Gould and Gomes: monoids (right cancellative, unipotent)
- Elston: generalized graph expansions (via derived categories)
- Lawson, Margolis, and Steinberg: inverse semigroups
- Gilbert and Miller: ordered groupoids

イロト イポト イヨト イヨト

Graph Expansions Hist Green's Relations Defi Closing Remarks Gra

History Definitions Graph Expansions

Digraphs

Labeled digraph Γ : vertex set $V(\Gamma)$; edge set $E(\Gamma)$; edge label set X; maps $\iota, \tau : E(\Gamma) \to V(\Gamma), \ell : E(\Gamma) \to X$.

Labeled graph Γ : labeled digraph + inverse edges, for all $e \in E(\Gamma)$, there exist $e^{-1} \in E(\Gamma)$ such that $e\iota = e^{-1}\tau$, $e\tau = e^{-1}\iota$, if $e, f \in E(\Gamma)$ with $e\ell = f\ell$, then $e^{-1}\ell = f^{-1}\ell$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

History Definitions Graph Expansions

Cayley Digraphs

	Groups	Semigroups	
Presentation	$\langle X_G angle = G$	$\langle X_{\mathcal{S}} angle = \mathcal{S}$	
	$f_G:X_G ightarrow G$	$f_{\mathcal{S}}: \mathcal{X}_{\mathcal{S}} ightarrow \mathcal{S}$	
Notation	$Cay(G, X_G)$	$Cay(S, X_S)$	
Vertices	G	S	
Edges	$\stackrel{\bullet}{a} \xrightarrow{\bullet} \stackrel{\bullet}{a(rf)}$	$a \longrightarrow a(rf)$	
	$r \in X_G \cup X_G^{-1}$	$r \in X_S$	
Properties	labeled graph	labeled digraph	
	contains 1		

<ロト <回 > < 注 > < 注 > 、

æ

Graph ExpansionsHistoryGreen's RelationsDefinitionsClosing RemarksGraph Expansions

Group Graph Expansions (Margolis-Meakin, '89)

Start:	$\operatorname{Cay}(G; X_G)$	1
Finish:	$\mathcal{M}_{gp}(G, X_G)$	
Elements:	"Pieces" of the Cayley graph	1000
	(P, c) = (subgraph, chosen vertex)	1
	<i>P</i> is - finite,	
	- connected,	
	- 1, $m{c}\inm{V}(m{P})$	
Operation:	$(P,a)(Q,b)=(P\cup aQ,ab)$	

・ロト ・ 理 ト ・ ヨ ト ・

Rebecca Noonan Heale Semigroup Graph Expansions: ъ

Graph Expansions His Green's Relations Def Closing Remarks Gra

History Definitions Graph Expansions

Semigroup Graph Expansions (RNH)

Start: $Cay(S; X_S)$

Finish: $\mathcal{M}(S, X_S)$

Elements: "Pieces" of the Cayley graph

- (r, P, c) = ("root", subgraph, chosen vertex) $r \in X_S$
- P is finite,
 - rf-rooted,

$$-rf_{\mathcal{S}}, c \in V(P)$$

Operation: $(r, P, c)(s, Q, d) = (r, P \cup cQ_s^1, cd)$

イロト 不得 とくほと くほとう

* For clarity, assume rf = r and sf = s.

э

* For clarity, assume rf = r and sf = s.

э

* For clarity, assume rf = r and sf = s.

э

• U > • 00 > • 2 > • 2 > •

 Graph Expansions
 History

 Green's Relations
 Definitions

 Closing Remarks
 Graph Expansions

Example: Semigroup presentation of free group on one generator

$$G = \langle x | \emptyset \rangle;$$

$$S = \langle x, x^{-1} | xx^{-1} = x^{-1}x, x = xx^{-1}x, x^{-1} = x^{-1}xx^{-1} \rangle$$

$$X_S = \{a, b\}, \text{ define } af_S = x, bf_S = x^{-1}$$

Rebecca Noonan Heale Semigroup Graph Expansions:

ヘロン ヘアン ヘビン ヘビン

 Graph Expansions
 History

 Green's Relations
 Definitions

 Closing Remarks
 Graph Expansions

Example: Semigroup presentation of free group on one generator

Sample elements: (a, P, x^2)

3

・ロト ・ 理 ト ・ ヨ ト ・

Graph Expansions History Green's Relations Definitions Closing Remarks Graph Expansions

Properties of Graph Expansions

 $\mathcal{M}_{gp}(G, X_G)$

- Inverse monoid
- E-unitary
- Maximal group image G
- Generated by $X_G \cup X_G^{-1}$
- Residually finite, finite *J*-above, all subgroups are finite . . .

$\mathcal{M}(S, X_S)$

- Semigroup
- E-dense iff S is E-dense
- If *S* is *E*-dense, has same maximal group image as *S*
- Finitely generated iff *S* is finite
- c ∈ S periodic iff (r, P, c) periodic
- Residually finite, finite *J*-above, all subgroups are finite . . .

ヘロン ヘアン ヘビン ヘビン

 \mathcal{R} Relation \mathcal{L} Relation

Outline

- History
- Definitions
- Graph Expansions
- 2 Green's Relations
 - *R* Relation
 - \mathcal{L} Relation

3 Closing Remarks

・ロット (雪) () () () ()

ъ

 $\begin{array}{c} \mathcal{R} \mbox{ Relation} \\ \mathcal{L} \mbox{ Relation} \end{array}$

${\mathcal R}$ Relation

Definition: For $a, b \in S$, $aRb \iff$ there exists $x, y \in S^1$ such that ax = b, by = a.

Prop. for
$$\mathcal{M}_{gp}(G, X_G)$$
: $(P, c)\mathcal{R}(Q, d) \iff P = Q$.
(M & M)

Prop. for $\mathcal{M}(S, X_S)$: **(RNH)**

 $(r, P, c)\mathcal{R}(s, Q, d) \iff r = s,$ P = Q, and there is a cycle in P containing c and d.

ヘロン 人間 とくほ とくほ とう

 \mathcal{R} Relation \mathcal{L} Relation

Picture for \mathcal{R} Relation

- Let $(r, P, c)\mathcal{R}(s, Q, d)$.
- There exist (a, A, x) and (b, B, y) such that:

$$\begin{array}{rcl} (r,P,c) &=& (s,Q,d)(a,A,x) \\ &=& (s,Q\cup dA_a^1,dx) \end{array} & \begin{array}{rcl} (s,Q,d) &=& (r,P,c)(b,B,y) \\ &=& (r,P\cup cB_b^1,cy) \end{array}$$

$$\Rightarrow$$
 $r = s;$

$$\Rightarrow Q \subseteq P \text{ and } P \subseteq Q \Rightarrow P = Q;$$

 \Rightarrow Clearly a cycle connecting *c* and *d*.

ヘロア 人間 アメヨア 人口 ア

ъ

 \mathcal{R} Relation \mathcal{L} Relation

$\mathcal L$ Relation

Definition:

For $a, b \in S$, $a\mathcal{L}b \iff$ there exists $x, y \in S^1$ such that xa = b, yb = a.

Prop. for $\mathcal{M}_{gp}(G, X_G)$: $(P, c)\mathcal{L}(Q, d) \iff c^{-1}P = d^{-1}Q$. (M & M)

Prop. for $\mathcal{M}(S, X_S)$: **(RNH)**

 $(r, P, c)\mathcal{L}(s, Q, d) \iff$ there exist $a, b \in S$ such that:

- (a) ac = c and bd = d;
- (b) $aP_r^1 \subseteq P$ and $bQ_s^1 \subseteq Q$;
- (c) aP_r^1 is isomorphic to bQ_s^1 (as labeled graphs) and this isomorphism sends *c* to *d*.

ヘロン 人間 とくほ とくほ とう

 $\begin{array}{c} \mathcal{R} \ \text{Relation} \\ \mathcal{L} \ \text{Relation} \end{array}$

Idea Behind \mathcal{L} Relation \Rightarrow

- Let $(r, P, c)\mathcal{L}(s, Q, d)$.
- There exist (r, A, x) and (s, B, y) such that:

$$(r, P, c) = (r, A, x)(s, Q, d)$$
 $(s, Q, d) = (s, B, y)(r, P, c)$
= $(r, A \cup xQ_s^1, xd)$ = $(s, B \cup yP_r^1, yc)$

 $\Rightarrow xQ_s^1 \subseteq P, yP_r^1 \subseteq Q.$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

 $\begin{array}{c} \mathcal{R} \mbox{ Relation} \\ \mathcal{L} \mbox{ Relation} \end{array}$

Idea Behind \mathcal{L} Relation \Rightarrow

 $xQ_s^{l} \subseteq P$

 $yP_r^{l} \subseteq Q$

 $\begin{array}{c} \mathcal{R} \mbox{ Relation} \\ \mathcal{L} \mbox{ Relation} \end{array}$

 $\begin{array}{c} \mathcal{R} \mbox{ Relation} \\ \mathcal{L} \mbox{ Relation} \end{array}$

 $\begin{array}{c} \mathcal{R} \mbox{ Relation} \\ \mathcal{L} \mbox{ Relation} \end{array}$

 $\begin{array}{c} \mathcal{R} \mbox{ Relation} \\ \mathcal{L} \mbox{ Relation} \end{array}$

 $\begin{array}{c} \mathcal{R} \mbox{ Relation} \\ \mathcal{L} \mbox{ Relation} \end{array}$

Idea Behind \mathcal{L} Relation \Rightarrow

Rebecca Noonan Heale Semigroup Graph Expansions:

э.

 $\begin{array}{c} \mathcal{R} \mbox{ Relation} \\ \mathcal{L} \mbox{ Relation} \end{array}$

 $\begin{array}{c} \mathcal{R} \mbox{ Relation} \\ \mathcal{L} \mbox{ Relation} \end{array}$

Idea Behind \mathcal{L} Relation \Rightarrow

- See that $(xy)^i \in V(P)$ for all $i \in \mathbb{N}$.
- Since *P* is a finite graph, (*xy*) is periodic
- There exists a smallest $k, m \in \mathbb{N}$ s.t. $(xy)^k = (xy)^{k+m}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

 $\begin{array}{c} \mathcal{R} \mbox{ Relation} \\ \mathcal{L} \mbox{ Relation} \end{array}$

Idea Behind \mathcal{L} Relation \Rightarrow

• Recall the **Proposition** for $\mathcal{M}(S, X_S)$:

$$(r, P, c)\mathcal{L}(s, Q, d) \iff$$
 there exist $a, b \in S$ s.t.:

(a)
$$ac = c$$
 and $bd = d$;

(b)
$$aP_r^1 \subseteq P$$
 and $bQ_s^1 \subseteq Q$;

(c) there exists a label-preserving isomorphism $\theta : aP_r^1 \to bQ_s^1$ such that $c\theta = d$.

• Use
$$a = (xy)^k$$
, $b = (yx)^{k+1}$.

Already have

(a)
$$(xy)^k P \subseteq P$$
,
(b) $(xy)c = c \implies (xy)^k c = c$

ヘロン 人間 とくほ とくほ とう

 \mathcal{R} Relation \mathcal{L} Relation

 $\begin{array}{c} \mathcal{R} \ \text{Relation} \\ \mathcal{L} \ \text{Relation} \end{array}$

Idea Behind \mathcal{L} Relation \Rightarrow

• Therefore *aP*¹_{*r*} is isomorphic to *bQ*¹_{*s*} (as labeled graphs) and this isomorphism sends *c* to *d*.

ヘロト ヘアト ヘビト ヘビト

 \mathcal{R} Relation \mathcal{L} Relation

Idea Behind \mathcal{L} Relation \Leftarrow

- Let $(r, P, c)\mathcal{L}(s, Q, d)$.
- There are elements a, b such that:

(a) ac = c and bd = d;

- (b) $aP_r^1 \subseteq P$ and $bQ_s^1 \subseteq Q$;
- (c) aP_r¹ is isomorphic to bQ_s¹ (as labeled graphs) and this isomorphism sends c to d.
- Let $\theta : aP_r^1 \to bQ_s^1$ be the isomorphism.

ヘロン 人間 とくほど くほとう

 \mathcal{R} Relation \mathcal{L} Relation

Idea Behind \mathcal{L} Relation \Leftarrow

- Notice $(aP_r^1)\theta = bQ_s^1$.
- Need two results (Obtained from "rootedness" of *P* and determinism of Cayley graph):

1.
$$a\theta(P_r^1) = (aP_r^1)\theta;$$

2. $(a\theta)c = (ac)\theta = c\theta = d$

- Therefore: $(s, Q, a\theta)(r, P, c) = (s, Q \cup (a\theta)P_r^1, (a\theta)c)$ (s, Q, d)
- A little more work $\dots (r, P, c)\mathcal{L}(s, Q, d)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

 $\begin{array}{c} \mathcal{R} \ \text{Relation} \\ \mathcal{L} \ \text{Relation} \end{array}$

Examples of \mathcal{L} Relation

- Suppose *S* is a group (generated as a semigroup).
- Use Prop: $(r, P, c)\mathcal{L}(s, Q, d) \Leftrightarrow$ there exist $a, b \in S$ s.t.:
 - (a) ac = c and bd = d;
 - (b) $aP_r^1 \subseteq P$ and $bQ_s^1 \subseteq Q$;
 - (c) aP_r^1 is isomorphic to bQ_s^1 (with *c* sent to *d*).
- This implies

$$\Rightarrow a = b = 1$$

$$\Rightarrow P_r^1 = P \text{ and } Q_s^1 = Q$$

$$\Rightarrow c^{-1}P = d^{-1}Q$$

ヘロン 人間 とくほ とくほ とう

 $\begin{array}{c} \mathcal{R} \ \text{Relation} \\ \mathcal{L} \ \text{Relation} \end{array}$

Examples of \mathcal{L} Relation

- Suppose *S* is a semilattice.
- Use Prop: $(r, P, c)\mathcal{L}(s, Q, d) \Leftrightarrow$ there exist $a, b \in S$ s.t.:
 - (a) ac = c and bd = d;
 - (b) $aP_r^1 \subseteq P$ and $bQ_s^1 \subseteq Q$;

(c) aP_r^1 is isomorphic to bQ_s^1 (with *c* sent to *d*).

- This implies
 - $\begin{array}{ll} \Rightarrow \ c = d & \Rightarrow & a = b \\ \Rightarrow \ c \le a & \Rightarrow & a P_r^1 = a Q_s^1 \end{array}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Outline

- History
- Definitions
- Graph Expansions
- 2 Green's Relations
 - *R* Relation
 - \mathcal{L} Relation

ヘロト 人間 ト ヘヨト ヘヨト

Understanding Generalizations of the Green's Relations - Using Graph Expansion Techniques

Switch to graph expansions of a MONOID T;

• *L*;

- Star Relation: aL*b ⇔ for all x, y ∈ T, ax = ay if and only if bx = by
- Tilde Relation: $a\tilde{\mathcal{L}}b$: if and only if *a* and *b* have the same idempotent right identities, i.e.

$$\{c|ac = a \text{ and } c^2 = c\} = \{d|bd = b \text{ and } d^2 = d\}.$$

イロト 不得 とくほと くほとう

Generalizations of Green's Relations

Left Cancellative Monoids

イロト イポト イヨト イヨト 一臣

Köszönöm!

Obrigada!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Thank you!

Muchas Gracias! Vielen Dank!

Rebecca Noonan Heale Semigroup Graph Expansions: