The mathematical work of Douglas Munn and its influence

John Fountain

28 January 2009

1. Representations of semigroups

 ${\bf 2.}\ \, {\bf Inverse\ semigroups}$

3. Semigroup rings

Representations

A representation of a semigroup S (group G) over a field k is a homomorphism $\varphi: S \to \operatorname{End}(V)$ ($\varphi: G \to \operatorname{GL}(V)$) for some vector space of dimension n. n is the degree of φ . Write φ_s for $\varphi(s)$.

 φ is **null** if $\varphi_s = 0$ for all $s \in S$.

Representations $\varphi: S \to \operatorname{End}(V)$, $\psi: S \to \operatorname{End}(W)$ are equivalent if there is an isomorphism $T: V \to W$ such that $\psi_s T = T\varphi_s$ for all $s \in S$. Write $\varphi \sim \psi$.

A subspace W of V invariant under φ if $\varphi_s(w) \in W$ for all $w \in W$ and $s \in S$.

 φ is irreducible if it is not null and $\{0\}$ and V are the only subspaces of V invariant under φ .

Representations

Given representations $\varphi: S \to \operatorname{End}(V), \ \psi: S \to \operatorname{End}(W)$, their direct sum is $\varphi \oplus \psi: S \to \operatorname{End}(V \oplus W)$ given by

$$(\varphi \oplus \psi)_s(v,w) = (\varphi_s(v), \psi_s(w))$$

A representation of S is proper if it is not a direct sum with one summand being null.

 $\varphi: S \to \operatorname{End}(V)$ is completely reducible if

$$\varphi \sim \varphi^{(1)} \oplus \cdots \oplus \varphi^{(k)}$$

for some irreducible representations $\varphi^{(1)}, \dots, \varphi^{(k)}$ of S.

Representations

The semigroup algebra k[S] has as its elements finite formal sums $\sum_{s \in S} \alpha_s s$ and multiplication given by

$$(\sum_{s \in S} \alpha_s s)(\sum_{t \in S} \beta_t t) = \sum_{s,t \in S} \alpha_s \beta_t (st).$$

If k[S] is semisimple Artinian, then every proper representation of S is completely reducible .

Theorem

The semigroup algebra k[S] of a finite inverse semigroup S over a field k is semisimple if and only if k has characteristic 0 or a prime not dividing the order of any subgroup of S.

Principal factors

Let $a \in S$:

- ▶ J_a denotes the \mathscr{J} -class of a;
- $J(a) = S^1 a S^1;$
- ▶ $J_a \leq J_b$ iff $J(a) \subseteq J(b)$;
- $I(a) = \{ b \in J(a) : J_b < J_a \}.$

The principal factors of S are the Rees quotients J(a)/I(a). They are 0-simple, simple or null (all products zero).

Theorem

Let S be a semigroup satisfying the descending chain condition for principal ideals. Suppose also that every principal factor of S is 0-simple or simple. If every representation of every principal factor of S over a field k is completely reducible, then so is every representation of S over k.

Finite semigroups

Let S be a finite semigroup. S has a principal series, i.e., a series

$$S = S_0 \supset S_1 \supset \cdots \supset S_n \supset S_{n+1} = \emptyset$$

where each S_i is an ideal of S and the Rees factors S_i/S_{i+1} are isomorphic to principal factors.

In fact, every principal factor of S is isomorphic to one of the S_i/S_{i+1} .

Theorem

The semigroup algebra k[S] of a finite semigroup S over a field k is semisimple if and only if $k[S_i/S_{i+1}]$ is semisimple for each i.

Characters

Let φ be a representation of a semigroup S. The character of φ is the mapping $\chi: S \to k$ given by $\chi(s) = \operatorname{trace} \varphi_s$ for all $s \in S$.

 χ is irreducible if φ is irreducible.

The irreducible characters of S generate a ring $\mathfrak{X}(S)$.

Theorem

Every proper representation over \mathbb{C} of a finite inverse semigroup is completely determined up to equivalence by its character.

Douglas described all irreducible characters of the symmetric inverse monoid \mathcal{I}_n in a 1957 paper.

What happened next?

1. McAlister extends Douglas's results. Notable is:

Theorem

Let S be a finite semigroup, J_1, \ldots, J_n the regular \mathscr{J} -classes of S and H_i a maximal subgroup of J_i $(i = 1, \ldots, n)$. Then

$$\mathfrak{X}(S) \cong \mathfrak{X}(H_1) \times \cdots \times \mathfrak{X}(H_n).$$

- 2. Rhodes/Zalcstein re-work and extend Douglas's work on finite semigroups, and apply to group complexity of finite semigroups.
- 3. Steinberg uses the inductive groupoid associated with an inverse semigroup.
 - Recently, also new approach to representations of general finite semigroups avoiding use of principal factors.
- 4. Application of representation theory of finite symmetric inverse monoids. (Malandro and Rockmore).

An inverse semigroup S is:

- **bisimple** if any two elements are \mathcal{D} -related;
- ▶ 0-bisimple if it has a zero, and any two non-zero elements are *D*-related;
- ightharpoonup simple if it any two elements are \mathscr{J} -related;
- ▶ 0-simple if it has a zero, and any two non-zero elements are \mathcal{J} -related.

An ω -chain is a chain $C_{\omega} = \{e_0, e_1, \dots, e_n, \dots\}$ with $e_i \leq e_j$ if and only if $j \leq i$.

Let A be a monoid, and $\alpha: A \to H_1$ be a homomorphism. Put $BR(A, \alpha) = \mathbb{N} \times A \times \mathbb{N}$. Define multiplication by

$$(m, a, n)(p, b, q) = (m - n + t, a\alpha^{t-n}b\alpha^{t-p}, q - p + t)$$

where $t = \max\{n, p\}$.

Theorem

Let $S = BR(A, \alpha)$. Then

- 1. S is a simple monoid with identity (0,1,0);
- 2. $(m, a, n)\mathcal{D}(p, b, q)$ if and only if $a\mathcal{D}b$;
- 3. (m, a, n) is idempotent if and only if m = n and $a^2 = a$;
- 4. S is inverse if and only if A is inverse;
- 5. If S is inverse, then $E(S) \cong C_{\omega} \circ E(A)$.

Let S be a regular ω -semigroup, that is, an inverse semigroup with $E(S) \cong C_{\omega}$.

Theorem (Reilly, 1966)

S is bisimple iff $S \cong BR(G, \alpha)$ for a group G and $\alpha \in End(G)$.

Theorem (1968)

S is simple iff $S \cong BR(A, \alpha)$ where A is a finite chain of groups.

This result was also found by Kochin.

An extension of the theorem gives the structure of a regular ω -semigroup S with minimum ideal $K \neq S$.

Theorem (1968)

The following are equivalent:

- 1. S does not have a minimum ideal;
- 2. the idempotents of S are central;
- 3. S is a ω -chain of groups.

A semilattice E is:

- ▶ uniform (0-uniform) if $Ee \cong Ef$ for all (non-zero) $e, f \in E$;
- ▶ subuniform (0-subuniform) if for all (non-zero) $e, f \in E$ there exists $g \in E$ such that $g \leq f$ and $Ee \cong Eg$.

Theorem

- 1. If S is a bisimple (0-bisimple, simple, 0-simple) inverse semigroup, then E(S) is uniform (0-uniform, subuniform, 0-subuniform).
- 2. If E is a uniform (0-uniform, subuniform, 0-subuniform) semilattice, then there is a bisimple (0-bisimple, simple, 0-simple) inverse semigroup S with $E(S) \cong E$.

Let S be an inverse semigroup. There is a maximum idempotent-separating congruence μ on S; $\mu \subseteq \mathcal{H}$ and (Howie)

$$a\mu b$$
 if and only if $a^{-1}ea = b^{-1}eb$ for all $e \in E(S)$.

S is fundamental if $\mu = \iota$.

The fundamental (or Munn) representation of S is the homomorphism $\alpha: S \to \mathscr{I}_{E(S)}$ given by $a\alpha = \alpha_a$ where $e\alpha_a = a^{-1}ea$.

The Munn semigroup T_E of a semilattice E is the subset of \mathscr{I}_E consisting of all isomorphisms between principal ideals of E.

Theorem

- 1. T_E is an inverse subsemigroup of \mathscr{I}_E ;
- 2. if $\alpha: S \to \mathscr{I}_{E(S)}$ is the fundamental representation, then $\operatorname{im} \alpha$ is a full subsemigroup of $T_{E(S)}$, $\operatorname{im} \alpha \cong S/\mu$ and $\operatorname{im} \alpha$ is fundamental;
- 3. S is fundamental iff it is isomorphic to a full inverse subsemigroup of $T_{E(S)}$.

Strategy: describe inverse semigroups by regarding them as extensions of fundamental inverse semigroups. Used by Douglas to describe 0-bisimple inverse semigroups, and applied to get a structure theorem for 0-bisimple (ω,I) inverse semigroups in terms of a maximal subgroup and a semilattice. Reilly's structure theorem is a corollary.

Lallement and Petrich had previously determined the structure of these semigroups using Reilly's theorem.

Inverse semigroups: What happened next

- 1. McAlister extended the general results for 0-bisimple semigroups of Douglas and Reilly to give a structure theorem for arbitrary 0-bisimple semigroups in terms of groups and 0-uniform semilattices.
- 2. Hall extends results on the fundamental representation to orthodox semigroups by constructing the *Hall semigroup*, a generalisation of the Munn semigroup.
- 3. Hall and Nambooripad (independently) extend further to arbitrary regular semigroups.
- 4. JBF uses Munn semigroup to get fundamental representation of ample semigroups.
- Gould, Gomes, JBF and El Qallali explore analogues for various classes of weakly ample semigroups and generalisations.

Inverse semigroups: P-semigroups

Let G be group acting by order automorphisms on a partially ordered set X and $Y \subseteq X$. Suppose that

- 1. Y is an order ideal of X, and a meet semilattice under the induced ordering;
- 2. $G \cdot Y = X$;
- 3. $g \cdot Y \cap Y \neq \emptyset$ for all $g \in G$.

Put
$$P=P(G,X,Y)=\{(A,g)\in Y\times G:g^{-1}$$
 , $A\in Y\}$ and $(A,g)(B,h)=(A\wedge g$, $B,gh)$

is an *E*-unitary inverse semigroup; $Y \cong E(P)$ and $P/\sigma \cong G$. (σ is the minimum group congruence. Inverse S is *E*-unitary if $e, ea \in E(S) \Rightarrow a \in E(S)$.)

Theorem (McAlister)

- 1. Any inverse semigroup is an idempotent-separating homomorphic image of an E-unitary inverse semigroup.
- 2. If S is E-unitary inverse, then $S \cong P(G, X, Y)$ for some G, X, Y.

Inverse semigroups: P-semigroups

Proving 2.

Given E-unitary S, the crucial question is: what is X?

Douglas: Let E = E(S), $G = S/\sigma$. Define \leq on $G \times E$ by:

$$(a\sigma,e) \preceq (b\sigma,f)$$
 if and only if $\exists c \in R_e \cap Sf$ such that $b\sigma = (a\sigma)(c\sigma)$.

 \preccurlyeq is a pre-order. Define ρ on $G \times E$ by:

$$(a\sigma,e)\rho(b\sigma,f)$$
 if and only if $(a\sigma,e) \preccurlyeq (b\sigma,f)$ and $(b\sigma,f) \preccurlyeq (a\sigma,e)$.

 ρ is an equivalence on $G \times E$. Put $X = (G \times E)/\rho$ and let \leq be the partial order on X induced by \leq .

The rule: $(a\sigma) \cdot (b\sigma, e) = ((ab)\sigma, e)$ defines an action of G on X by order automorphisms. Put $Y = \{(E, e) : e \in E\} \cong E$. Then Y is an order ideal of X and a lower semilattice under \leq .

Finally, $S \cong P(G, X, Y)$.

Inverse semigroups: Free inverse semigroups

The free inverse semigroup FIS(X) on a non-empty set X is an inverse semigroup together with a map $\iota: X \to FIS(X)$ such that for every inverse semigroup S and every map $\alpha: X \to S$, there is a unique homomorphism $\alpha^*: FIS(X) \to S$ such that $\iota \alpha^* = \alpha$.

Universal algebra considerations show that free inverse semigroups exist; also the map ι is injective, and FIS(X) is uniquely determined by X.

The question is: how do we describe its elements? Several answers, but a striking one due to Douglas realises them as certain graphs, now known as Munn trees.

Inverse semigroups: Free inverse semigroups

A ring R is prime if IJ = 0 implies I = 0 or J = 0 where I, J are ideals of R.

A ring R is primitive if it has a faithful simple R-module.

A primitive ring is prime.

Inverse semigroups: Free inverse semigroups

Theorem (Formanek)

Let k be a field. If G is a free group of rank at least 2, then the group algebra k[G] is primitive.

A similar result holds for free monoids/semigroups.

Theorem

For a free inverse semigroup S of finite rank, k[S] is not prime.

Theorem (Pedro Silva)

For a free inverse semigroup S of infinite rank, k[S] is prime.

Theorem (WDM and M.J.Crabb)

For a nontrivial free monoid M and an ideal S of M, that:

- 1. k[S] is primitive;
- 2. k[S] is prime;
- 3. M has infinite rank.