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PROFINITE SEMIGROUPS

Let V be a pseudovariety of semigroups (class of finite
semigroups closed under taking homomorphic images,
subsemigroups, and finite direct products).
Finite semigroups are viewed as topological semigroups
under the discrete topology.
Pro-V semigroup: compact semigroup that is residually V
as a topological semigroup.
Profinite semigroup: compact semigroup that is residually
finite as a topological semigroup.
Equivalently: compact zero-dimensional (or totally
disconnected) semigroup.
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RELATIVELY FREE PROFINITE SEMIGROUPS

ΩAV: pro-V semigroup freely generated by the totally
disconnected space A. In general, we assume that ∣A∣ ≥ 2.
It is characterized by the following universal property :

A //

ϕ
  BBBBBBBBB ΩAV

ϕ̂

���
�
�

S

where ϕ ∶ A→ S denotes an arbitrary continuous mapping
into a pro-V semigroup.
It may be constructed as the projective limit of all
A-generated members of V.
Elements of ΩAV will be called pseudowords (over V).
For A finite, they may be viewed as (implicit) operations on
pro-V semigroups: for w ∈ ΩAV and S pro-V,

wS ∶ SA Ð→ S
ϕz→ ϕ̂(w)
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DUALITY

Denote by ιV the natural homomorphism A+ → ΩAV.

THEOREM (JA’1989)

A language L ⊆ A+ is V-recognizable if and only if the following
conditions hold:

1 the closure ιV(L) of ιV(L) in ΩAV is open;
2 L = ι−1

V (ιV(L)).

Note: the second condition is superfluous if ιV is injective
and the induced topology in A+ (i.e., the pro-V topology ) is
discrete.
This is the case for instance for any pseudovariety
containing all finite nilpotent semigroups.

5 / 30



In other words: the topological space ΩAV is the Stone dual
of the Boolean algebra of V-recognizable subsets of A+.
Gehrke-Grigorieff-Pin’2008: the multiplication operation on
ΩAV is the dual of the residuation operations.
Thus, to understand the algebraic/topological structure of
ΩAV is equivalent to understanding the
algebra/combinatorics of V-recognizable languages over
the alphabet A.

From hereon, we assume that A is a finite set with ∣A∣ ≥ 2.

index
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THE GROUP CASE

THEOREM (BINZ-NEUKIRCH-WENZEL’1971)
Every open subgroup of a free profinite group is also a free
profinite group.

THEOREM (RIBES’1970)
A profinite group is projective if and only if it is isomorphic to a
closed subgroup of a free profinite group.
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THEOREM (NOVIKOV-SEGAL’2003,2007)
Every subgroup of finite index of a finitely generated profinite
group is open.

In other words, every homomorphism from a finitely
generated profinite group into a finite group is continuous.

It follows that every homomorphism from a finitely
generated profinite semigroup into a finite group is
continuous.
This is not the case for all finite semigroups: for instance,
χA+ ∶ ΩAS→ {0,1} is a discontinuous homomorphism into
the two-element semilattice.
Problem. For which finite semigroups is it true that every
homomorphism from a finitely generated profinite
semigroup into it is continuous?

In particular, the topology of a finitely generated profinite
group is completely determined by its algebraic structure.
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Global STRUCTURAL ASPECTS

THEOREM (RHODES-STEINBERG’2008)

The closed subgroups of ΩAS are precisely the projective
profinite groups. In particular, every subgroup of ΩAS is
torsion-free.

Combining with Ribes’ Theorem, we deduce that ΩAS has
the same closed subgroups as ΩAG.
Zalesskiı̆ asked which profinite groups may appear as
maximal subgroups of ΩAS.
In particular, can a free pro-p group appear as a maximal
subgroup of ΩAS?
More generally, the theorem holds for every pseudovariety
V such that (V ∩Ab) ∗V = V.

9 / 30



THEOREM (RHODES-STEINBERG’2008)

Every finite subsemigroup of ΩAS is a band.

More generally, this holds for every pseudovariety V such
that A◯m V = V (that is for which the corresponding variety
of languages is closed under concatenation) provided we
replace “a band” by “completely regular ”.
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THEOREM (JA-STEINBERG’2008)

A clopen subsemigroup of ΩAS is a free profinite semigroup if
and only if it is the closure of a rational free subsemigroup
of A+.

Margolis-Sapir-Weil’1998: reverse direction for a finitely
generated free subsemigroup of A+.
Holds more generally for pseudovarieties of the form H (all
finite semigroups whose subgroups lie in H) for an arbitrary
pseudovariety H of groups which is extension-closed.
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Local STRUCTURAL ASPECTS

THEOREM (STEINBERG’2008)

The maximal subgroups of the minimum ideal of ΩAS are free
profinite groups of countable rank.

This holds more generally for pseudovarieties of the form H
for a pseudovariety H of groups which is extension-closed
and contains cyclic groups of infinitely many prime orders.
Steinberg asked whether the latter hypothesis may be
dropped.
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THEOREM (STEINBERG’2008)

Let G be a maximal subgroup of the minimum ideal of ΩAS and
let ϕ ∶ G → ΩAG be the restriction to G of the natural continuous
homomorphism ΩAS→ ΩAG. Then kerϕ is a free profinite
group of countable rank.

This holds more generally under the same more general
hypotheses as in the preceding theorem if we replace the
pair of pseudovarieties (S,G) by (H,H).
Steinberg also conjectured that the maximal subgroup of
the subsemigroup of ΩAS generated by the idempotents in
the minimum ideal is free profinite.

index
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CONNECTIONS WITH SYMBOLIC DYNAMICS

For a topological semigroup S, denote by End(S) its
endomorphism monoid.

THEOREM (JA’2003)

Let S be a finitely generated profinite semigroup. Then End(S)
is a profinite semigroup under the pointwise convergence
topology (i.e., with the subspace topology induced from the
direct power SS). Moreover, this topology coincides with the
compact-open topology, which entails the continuity of the
evaluation mapping

End(S) ×S Ð→ S
(ϕ,s) z→ ϕ(s).
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CONSTRUCTING ELEMENTS OF ΩAS

In a compact semigroup S, given s ∈ S, the minimum ideal
of ⟨s⟩ is a group, and therefore has a unique idempotent,
denoted sω. The inverse of sω+1 = ssω is denoted sω−1.
In case S is profinite, sω(−1) = limn→∞ sn!(−1).

Call the elements of End(ΩAS) substitutions.
Given a substitution ϕ, we may therefore consider its
“infinite iterate” ϕω, which is an idempotent substitution.
Examples for A = {a,b}:

Fibonacci substitution: ϕ(a) = ab, ϕ(b) = a;

ϕ7(a) = abaababaabaababaababaabaababaabaab

Prouhet-Thue-Morse substitution: τ(a) = ab, τ(b) = ba;

τ5(a) = abbabaabbaababbabaababbaabbabaab.
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UNIFORM RECURRENCE

From hereon, we let V be a pseudovariety containing LSl,
so that, in particular, ιV ∶ A+ → ΩAV is injective.
We identify each u ∈ A+ with its image under ιV and call the
elements of A+ the finite elements of ΩAV, while the
remaining elements are said to be infinite.
We say that w ∈ ΩAV is uniformly recurrent if, for every
finite factor u of w , there is some positive integer N such
that every finite factor v of w of length at least N admits u
as a factor.

THEOREM (JA’2005)

An element of ΩAV is uniformly recurrent if and only if it is
J -maximal.

Note: since every infinite pseudoword has some
idempotent factor, J -maximal infinite pseudowords are
regular.
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SUBSTITUTIONS AND UNIFORM RECURRENCE

A substitution ϕ ∈ End(ΩAV) is said to be primitive if there
exists a positive integer n such that, for every a,b ∈ A, a is
a factor of ϕn(b).
It is said to be group-invertible if it induces an
automorphism of ΩA(V ∩G).

THEOREM (JA’2005)

Let ϕ ∈ End(ΩAV) be a primitive substitution. Then all ϕω(a)
(a ∈ A) all lie in the same J -maximal regular J -class Jϕ.

For a primitive substitution, denote by Gϕ any of the
maximal subgroups of Jϕ.

THEOREM (JA’2005)

Let ϕ ∈ End(ΩAS) be a primitive, group invertible substitution.
Then Gϕ is a finitely generated free profinite group.
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EXAMPLES

The second theorem applies to the Fibonacci substitution,
ϕ(a) = ab, ϕ(b) = a.
For a generalization, given w ∈ ΩAS, let qw(n) be the
number of finite factors of w of length n.
Say that w ∈ Ω{a,b}S is Sturmian if qw(n) = n + 1 for all
n ≥ 1.
For the Fibonacci substitution ϕ, Jϕ consists of Sturmian
pseudowords.

THEOREM (JA’2004)

If w ∈ ΩAS is Sturmian then w is uniformly recurrent and the
maximal subgroups of its J -class are free profinite groups
freely generated by two pseudowords.
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THE PROUHET-THUE-MORSE SUBSTITUTION

For the Prouhet-Thue-Morse substitution, τ(a) = ab,
τ(b) = ba,

THEOREM (JA-A. COSTA’2008+)
The minimum number of generators of the group Gτ is 3 and
the group is not free profinite.

An easier example of non-free profinite (uniformly
recurrent) maximal subgroup of ΩAS is given by Gϕ where
ϕ(a) = ab, ϕ(b) = a3b (JA’2005); it is a 2-generated
non-pro-cyclic group.
Problem. Find profinite presentations for the above groups
Gτ and Gϕ.
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ENTROPY

Let w ∈ ΩAV.
Note that qw(n) is defined by counting certain finite factors
of w , which do not depend on V (for V ⊇ LSl).
It is easy to see that the complexity sequence qw(n)
satisfies the subadditive inequality

qw(r + s) ≤ qw(r) + qw(s)

It follows that the following limit exists

h(w) = lim
n→∞

1
n

log
∣A∣ qw(n)

It is called the entropy of w .
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ENTROPY VS CONSTRUCTION OF PSEUDOWORDS (JA-VOLKOV’2006)

PROPOSITION

The minimum ideal of ΩAV consists of the pseudowords of
entropy 1.

THEOREM

Let w ∈ ΩAV, v1, . . . ,vr ∈ ΩBS, where r = ∣A∣, and let
u = wΩBV(v1, . . . ,vr) and m = ∣B∣. Then

h(u) ≤ max{h(w) logm r ,h(v1), . . . ,h(vr)}.

THEOREM

Let ϕ ∈ End(ΩAV) be a substitution. Then,

max
a∈A

h(ϕω(a)) ≤ max
a∈A

h(ϕ(a)).
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COROLLARY

The complement of the minimum ideal of ΩAV is a
subsemigroup that is closed under composition and iteration.

A weaker form of this result was previously obtained by the
same authors in 2003 by a completely different approach:

THEOREM

Let H be a pseudovariety of finite groups such that H ⊇ Ab. The
smallest subset of ΩAH which contains A and is closed under
multiplication, composition of operations and arbitrary powers
has empty intersection with the minimum ideal.
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This was then obtained as a corollary of the following result,
whose proof in turn depends on the theory of Burnside
semigroups as developed by McCammond’1991, de Luca and
Varricchio’1992, Guba’1993, and do Lago’1996:

THEOREM

Let H be a pseudovariety of finite groups. Then the
pseudovariety H can be defined by a system of
pseudoidentities using only multiplication and arbitrary powers
if and only if membership of a finite group in H depends only on
its cyclic subgroups.

This also implies the following ($100) conjecture of
Rhodes’1986, which he had previously proved for n ≥ 665,
based on Adian’s solution of the Burnside problem for groups:

COROLLARY

For all n ≥ 3, the pseudovariety Ab ∩ Jx2n = xnK is not
equational.
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OTHER CONNECTIONS WITH SYMBOLIC DYNAMICS

View elements of AZ as biinfinite words in the alphabet A,
with a marked origin.
The shift mapping shifts the origin but otherwise retains the
the biinfinite word.
By a subshift we mean a nonempty subset X ⊆ AZ that is
stable under the shift (in either direction) and is closed for
the product topology.
It is well known that such sets X are completely
characterized by their languages L(X) of finite blocks,
which are precisely the languages that are both factorial
and prolongable.
Since, for any language L ⊆ A+, its closure L ⊆ ΩAS
satisfies L ∩A+ = L, it follows that a subshift X ⊆ AZ is also
completely determined by the set L(X).
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CONJUGACY AND INVARIANTS

Subshifts are viewed as topological dynamical systems,
consisting of a compact space and a continuous
transformation of this space.
As such, they are essentially unary topological algebras,
which immediately gives a natural notion of isomorphism of
subshifts, which is known as conjugacy.
The fundamental problem in the area consists in
classifying subshifts up to conjugacy.
The problem has an algorithmic nature if the subshifts can
be described by a finite amount of data.
This is the case, for instance, for the classes of subshifts of
finite type and, more generally, sofic subshifts.
The decidability of conjugacy for subshifts in such classes
remains an open problem.
Hence the interest in looking for invariants for subshifts.
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PROFINITE INVARIANTS (A. COSTA’2007)

Let X ⊆ AZ be an irreducible subshift, i.e.,

∀u,w ∈ L(X) ∃v ∶ uvw ∈ L(X).

THEOREM

There is a unique minimal J -class J of ΩAS among those that
contain elements of L(X).
The maximal subgroups of J are conjugation invariants G(X)
of X .
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THE SEMIGROUPOID APPROACH (JA-A. COSTA’2009?)

Associate with X a profinite graph Σ(X) as follows:
the vertices are the elements of X ;
edges:

⋯ a−2a−1 ⋅ a0a1a2 ⋯ Ð→ ⋯ a−2a−1a0 ⋅ a1a2 ⋯

tolopogy: induced from AZ ⊎AZ ×AZ.

Let Σ̂(X) denote the profinite semigroupoid freely
generated by the profinite graph Σ(X).

THEOREM

The semigroupoid Σ̂(X) is strongly connected if and only if X is
irreducible,
in which case the maximal subgroups of the minimal ideals of
the local subsemigroups are all isomorphic.
These groups are also isomorphic to G(X).

index
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Skeletons

We know that the finite words are at the top of ΩAS in the
sense that the complement is an ideal.
We have also seen that we cannot go very deep in ΩAS by
adding the ability to take arbitrary powers.

PROBLEM

Does the subalgebra of ΩAS with respect to the signature
consisting of multiplication and arbitrary powers generated by A
also lie at the top?

This problem becomes much more tractable if we reduce
significantly the range of powers to be considered by
identifying all infinite powers, that is in the aperiodic case.
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THE APERIODIC CASE (JA-J.C. COSTA-ZEITOUN’2009+)

In the aperiodic case, we can take advantage of
McCammond’s normal form for the elements in our
subalgebra of ΩAA, denoted Ωω

AA.
McCammond’2001 proved that it solves the word problem
for Ωω

AA by applying his earlier solution of the word problem
for free aperiodic Burnside semigroups.
We have obtained a direct proof which also leads to new
applications, among which the following

THEOREM

Ωω
AA sits at the top of ΩAA.
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THEOREM

An element w of ΩAA belongs to Ωω
AA if and only if it satisfies

the following two finiteness conditions:
1 there are no infinite anti-chains of factors of w;
2 the language of McCammond normal forms of elements

of Ωω
AA that are factors of w is rational.

We do not know whether the first condition is superfluous,
that is whether it follows from the second one.

index
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