The ordinary quiver of the algebra of the monoid of all partial functions on a set

Itamar Stein
Bar-Ilan University

January 14, 2015

Monoid representations

- A representation is a (left) module over a \mathbb{C}-algebra A.
- A representation of a finite monoid M is a module over the monoid algebra $\mathbb{C} M$:

$$
\mathbb{C} M=\left\{\sum_{i=1}^{|M|} \alpha_{i} m_{i} \mid \alpha_{i} \in \mathbb{C} \quad m_{i} \in M\right\}
$$

- $\mathbb{C} M$ is a unital associative algebra.

Monoid representations

Given a finite monoid M we want to understand some invariants of the algebra $\mathbb{C} M$:

- Jacobson Radical
- Quiver
- Global dimension

Quiver of an algebra

Definition

The ordinary quiver of a finite dimensional algebra A is a directed graph defined in the following way:

- Vertices: Are in 1-1 correspondence with the irreducible representations of A (up to isomorphism).
- Arrows: For irreducible representations N_{i} and N_{j} the number of arrows from N_{i} to N_{j} is

$$
\operatorname{dim} e_{j}\left(\operatorname{Rad} A / \operatorname{Rad}^{2} A\right) e_{i}
$$

where e_{i}, e_{j} are primitive idempotents corresponding to N_{i} and N_{j}.

- Equivalently: The number of arrows equals $\operatorname{dim} \operatorname{Ext}{ }^{1}\left(N_{i}, N_{j}\right)$.

Quiver of an algebra

Remark

The quiver of an algebra A has no arrows at all if and only if A is a semisimple algebra.

Quiver of monoid algebras

Theorem (Munn-Ponizovski)

Let M be a finite monoid with maximal group H-classes representatives H_{1}, \cdots, H_{n} (one for every regular \mathscr{J} class). Then there is a $1-1$ correspondence between the irreducible representations of $\mathbb{C M}$ and those of $\mathbb{C} H_{1}, \ldots, \mathbb{C} H_{n}$.

$$
\operatorname{Irr} \mathbb{C} M \leftrightarrow \bigsqcup_{k=1}^{n} \operatorname{Irr} \mathbb{C} H_{k}
$$

- In particular, we can associate to any irreducible representation of M a specific (regular) \mathscr{J} class (called its apex).
- The apex is the lowest \mathscr{J} class that the representation does not annihilate.

Quiver of monoid algebras

Hence, we can define a partial order on the irreducible representations $=$ the vertices of the quiver.
We say that $N_{i} \leq N_{j}$ if $J_{i} \leq \mathscr{g} J_{j}$ where J_{i}, J_{j} are the corresponding \mathscr{J} classes.

Classical Transformation Monoids

- S_{n} - Symmetric group. (Permutations on n elements).
- IS_{n} - Inverse symmetric monoid. (Partial 1-1 maps on n elements).
- T_{n} - Full Transformations monoid (Functions on n elements)
- PT_{n} - Partial Transformations monoid (Partial functions on n elements).

Classical Transformation Monoids

Recall that if $t, s \in M$ (where $M=\mathrm{IS}_{n}, \mathrm{~T}_{n}, \mathrm{P}_{n}$) then:

- $t \mathscr{J} s \Leftrightarrow \operatorname{rank}(t)=\operatorname{rank}(s)(|\operatorname{im}(s)|=|i m(t)|)$.
- $t \mathscr{R} s \Leftrightarrow \operatorname{im}(t)=\operatorname{im}(s)$
- $t \mathscr{L} s \Leftrightarrow \operatorname{dom}(t)=\operatorname{dom}(s) \quad \operatorname{ker}(s)=\operatorname{ker}(t)$.
(Multiplication is from right to left)

Known results

- Putcha (1995): All the arrows in the quiver of $\mathbb{C} P T_{n}$ are going downwards.
- Putcha (1996): Computed the quiver of $\mathbb{C} T_{n}$ up to $n=4$ (and made some observations for $n>4$).
- Margolis, Steinberg (2012): Description of the quiver of DO monoids (every regular \mathscr{D} class is an orthodox semigroup).

Goal

Goal of this talk

Finding the quiver of $\mathbb{C} P T_{n}$

Vertices of the quiver of $\mathbb{C} P T_{n}$

The group \mathscr{H} classes of PT_{n} are $S_{0}, \ldots, S_{n}\left(\right.$ where $\left.S_{0} \cong S_{1}\right)$ so there is a correspondence between $\operatorname{Irr} \mathrm{PT}_{n}$ and $\bigsqcup_{k=0} \operatorname{Irr} S_{k}$.
Since the irreducible representations of S_{k} correspond to Young diagrams with k boxes (or partitions of k) we know the the vertices of the quiver are corresponding to the Young diagrams of with k boxes $0 \leq k \leq n$.

Vertices of the quiver of $\mathbb{C} P T_{n}$

The vertices of the quiver of $\mathbb{C P T}$:

\square
\emptyset

Isomorphism between $\mathbb{C} \mid S_{n}$ and groupoid algebra

Definition

Let G_{n} be the category whose objects are subsets of $\{1 \ldots n\}$, and whose morphisms are in one-to-one correspondence with elements of $I S_{n}$. For every $t \in \mathrm{IS}_{n}$ there is a morphism $G_{n}(t)$ from dom t to im t, multiplication $G_{n}(s) G_{n}(t)$ is defined if and only if $\operatorname{im}(t)=\operatorname{dom}(s)$ and the result is $G_{n}(s t)$.
G_{n} is a groupoid (any morphism is an isomorphism)

Isomorphism between $\mathbb{C} \mid S_{n}$ and groupoid algebra

Theorem (Steinberg 2006)

$\mathbb{C} \mathrm{IS}_{n} \cong \mathbb{C} G_{n}$. Explicit isomorphisms $\varphi: \mathbb{C} \mathrm{IS}_{n} \rightarrow \mathbb{C} G_{n}$ and $\psi: \mathbb{C} G_{n} \rightarrow \mathbb{C} I S_{n}$ are defined (on basis elements) by:

$$
\begin{gathered}
\varphi(s)=\sum_{t \leq s} G_{n}(t) \\
\psi\left(G_{n}(s)\right)=\sum_{t \leq s} \mu(t, s) t
\end{gathered}
$$

Isomorphism between $\mathbb{C} \mid S_{n}$ and groupoid algebra

$\mathbb{C} \mathrm{IS}_{2}$ is isomorphic to the algebra of the category:

Isomorphism between $\mathbb{C P} T_{n}$ and El-category algebra

Definition

Let E_{n} be the category whose objects are the subsets of $\{1 \ldots n\}$, and whose morphisms are in one-to-one correspondence with elements of PT_{n}. For every $t \in \mathrm{PT}_{n}$ there is a morphism $E_{n}(t)$ from dom t to im t, multiplication $E_{n}(s) E_{n}(t)$ is defined if and only if $\operatorname{im}(t)=\operatorname{dom}(s)$ and the result is $E_{n}(s t)$.
G_{n} is an $E I$ - category (any endomorphism is an isomorphism)

Isomorphism between $\mathbb{C P T}$ and El-category algebra

Proposition

$\mathbb{C P T}{ }_{n} \cong \mathbb{C} E_{n}$. Explicit isomorphisms $\varphi: \mathbb{C P T} \rightarrow \mathbb{C} E_{n}$ and $\psi: \mathbb{C} E_{n} \rightarrow \mathbb{C} P T_{n}$ are defined (on basis elements) by:

$$
\begin{gathered}
\varphi(s)=\sum_{t \leq s} E_{n}(t) \\
\psi\left(E_{n}(s)\right)=\sum_{t \leq s} \mu(t, s) t
\end{gathered}
$$

Isomorphism between $\mathbb{C P T}$ and El-category algebra

$\mathbb{C P T}{ }_{2}$ is isomorphic to the algebra of the category:

Isomorphism between $\mathbb{C P T}$ and El-category algebra

We can regard the morphisms of E_{n} as being all the total onto functions with dom $\subseteq\{1, \ldots, n\}$.

$\operatorname{RadCPT}_{n}$

Remark

Rad $\mathbb{C P T} T_{n}$ is spanned by all the red arrows. In other words:

$$
\operatorname{Rad} \mathbb{C P} T_{n}=\operatorname{span}\left\{E_{n}(t)| | \operatorname{dom} t|-|\operatorname{im} t| \geq 1\}\right.
$$

and more generally

$$
\operatorname{Rad}^{k} \mathbb{C P T}=\operatorname{span}\left\{E_{n}(t)| | \operatorname{dom} t|-|\operatorname{im} t| \geq k\}\right.
$$

Skeletal El-category algebra

Fact

If C_{1} and C_{2} are equivalent categories then their algebras are Morita equivalent and thus have the same ordinary quiver.

- In the category E_{n}, two objects (=sets) are isomorphic if and only if they are of the same size.
- It follows that the algebra of the full subcategory with objects $\{[k] \mid 0 \leq k \leq n\}$ is Morita equivalent to the algebra of E_{n}. $([k]=\{1, \ldots, k\}$ for $k>0$ and $[0]=\emptyset)$
- Denote this category by $S E_{n}$. This is a skeletal El category.

Isomorphism between $\mathbb{C P T}$ and an EI-category algebra

$S E_{2}$:

$$
\begin{array}{r}
(1,2),(2,1) \subset \\
(1,1) \mid \\
(1) \subset\{1\} \\
\emptyset \\
\emptyset \subset \emptyset
\end{array}
$$

Isomorphism between $\mathbb{C P T}$ and an EI-category algebra

$S E_{2}$:

$$
S_{0} \subset \emptyset
$$

Quiver of $E I$-categories

Definition

A morphism f of an El-category is called irreducible if it is not an isomorphism but whenever $f=g h$, either g is an isomorphism or h is an isomorphism.

- In $S E_{n}$ the irreducible morphisms are precisely those from $[k+1]$ to [k]. That is:

$$
\operatorname{IRR} S E_{n}([k],[r])= \begin{cases}S E_{n}([k],[r]) & k=r+1 \\ \emptyset & \text { otherwise }\end{cases}
$$

- Note that

$$
S E_{n}([k],[k]) \cong S_{k}
$$

Quiver of $E I$-categories

Theorem (Margolis, Steinberg (2012))

Let A be a finite skeletal El-category and denote by Q the quiver of $\mathbb{C} A$. Then:
(1) the vertex set of Q is $\bigsqcup \operatorname{Irr} A(c, c)$ (where $\operatorname{Irr}(G)$ is the set of irreducible modules of G).
(2) If $V \in \operatorname{Irr}(A(c, c))$ and $U \in \operatorname{Irr} A\left(c^{\prime}, c^{\prime}\right)$, then the number of arrows from V to U is the multiplicity of $U \otimes V^{*}$ as an irreducible constituent in the $A\left(c^{\prime}, c^{\prime}\right) \times A(c, c)$ module $\mathbb{C} \operatorname{IRR} A\left(c, c^{\prime}\right)$.

Quiver of $\mathbb{C P T} T_{n}$

- If $V \in \operatorname{Irr}\left(S_{r}\right)$ and $U \in \operatorname{Irr}\left(S_{k}\right)$ are such that $r \neq k+1$ then there are no arrows from V to U since there are no irreducible morphisms between the corresponding objects in $S E_{n}$.
- The number of arrows from V to U does not depend on n.
- If $V \in \operatorname{Irr}\left(S_{k+1}\right)$ and $U \in \operatorname{Irr}\left(S_{k}\right)$ then the number of arrows from V to U is the multiplicity of $U \otimes V^{*}$ as an irreducible constituent in the $S_{k} \times S_{k+1}$ module M, where M is spanned by all the onto function $f:[k+1] \rightarrow[k]$ and the operation is $(h, g) * f=h f g^{-1}$.

Quiver of $\mathbb{C} \mathrm{PT}_{n}$

- By the well known theory of representations of symmetric groups, it can be shown that this multiplicity equals

$$
\left\langle V, \operatorname{Ind}_{S_{k-1} \times S_{2}}^{S_{k+1}}\left(\operatorname{Res}_{S_{k-1}}^{S_{k}}(U) \otimes \operatorname{tr}_{2}\right)\right\rangle
$$

- if α is the Young diagram corresponding to $W \in \operatorname{Irr} S_{k}$ then by the classical Branching Rule

$$
\operatorname{Res}_{S_{k-1}}(W)
$$

is the sum of simple modules corresponding to the diagrams that are obtained from α by removing one box.

- If α is the Young diagram corresponding to $W \in S_{k-1}$ then

$$
\operatorname{Ind}_{S_{k-1} \times S_{2}}^{S_{k+1}}\left(W \otimes \operatorname{tr}_{2}\right)
$$

is the sum of simple modules corresponding to the diagrams that are obtained from α by adding two boxes, but not in the same column.

Example

Assume $U=\square \square$ and $V=\square . \square$. Then:

- $\operatorname{Res}_{S_{2}}^{S_{3}}(U)=$

- $\operatorname{Ind}_{S_{2} \times S_{2}}^{S_{4}}\left(\operatorname{Res}_{S_{2}}^{S_{3}}(U) \otimes \operatorname{tr}_{2}\right)=$

So there are two arrows from V to U.

Quiver of $\mathbb{C} P T_{4}$

\varnothing

Quiver of $\mathbb{C} P T_{n}$

Theorem (IS)

The vertices in the quiver of $\mathbb{C P} T_{n}$ are in one to one correspondence with Young diagrams with k boxes where $0 \leq k \leq n$. If $\alpha \vdash k, \beta \vdash r$ are two Young diagrams such that $r \neq k+1$ then there are no arrows from β to α. If $r=k+1$ then there are arrows from β to α if we can construct β from α by removing one box and then adding two boxes but not in the same column. The number of arrows is the number of different ways that this construction can be carried out.

Thank you!

