A representation theory approach to the rook monoid

Rowena Paget

University of
Kent

Based on 'Representation theory of q-rook monoid algebras'
J. Algebr. Comb. (2006) 24:239-252

Outline

(1) The rook monoid and its quantization
(2) A basis for the rook monoid algebra
(3) Techniques from the theory of cellular algebras

§ 1 The rook monoid and its quantization

The rook monoid or symmetric inverse semigroup consists of the set of all $n \times n$ matrices containing at most one entry 1 in each row and each column, and all other entries 0 . The operation is matrix multiplication.

Observe that the symmetric group S_{n} is contained in the rook monoid ($n \times n$ permutation matrices).

For any field F, let R_{n} denote the rook monoid algebra. This is the F-vector space whose elements are linear combinations of elements of the rook monoid with coefficients in F. The multiplication on the monoid induces a multiplication on R_{n}, so R_{n} is a ring. Together these structures make R_{n} into an algebra and we can study it using representation theory.

What questions does a representation theorist ask?

Given an algebra A, we want to study A-modules (vector spaces with a compatible action of A).

- Can we classify the irreducible R_{n}-modules?
- Even better, could we give explicit descriptions of the irreducible R_{n}-modules, including giving their dimensions?
- When is R_{n} a semisimple algebra (every R_{n}-module decomposes as a direct sum of irreducibles)?
- If R_{n} is not semisimple, can we split it up into blocks?
- When does a block only possess finitely many indecomposable modules?

Diagram notation

To avoid writing down lots of matrices, we can use diagrams to denote the elements of the rook monoid.

A diagram consists of 2 rows of n dots and some edges that join top row dots to bottom row dots. Each dot is involved in at most one edge.

Given a rook matrix x, draw an edge from dot i in the top row to $\operatorname{dot} j$ in the bottom if entry $x_{i, j}=1$.
E.g. We write $x=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0\end{array}\right)$ as the diagram

Diagram notation cont.

The product of the matrices corresponds to the concatenation of the corresponding diagrams. E.g.

then

The q-rook monoid algebra

More generally, we can also study the q-rook monoid algebra, defined by Solomon in 2004.
$R_{n}(q)$ is the associative F-algebra generated by T_{1}, \ldots, T_{n-1} and P_{1}, \ldots, P_{n} subject to the relations:

$$
\begin{aligned}
T_{i}^{2} & =q \cdot 1+(q-1) T_{i}, & & 1 \leq i \leq n-1, \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}, & & 1 \leq i \leq n-2, \\
T_{i} T_{j} & =T_{j} T_{i}, & & |i-j|>1, \\
T_{i} P_{j} & =P_{j} T_{i}=q P_{j}, & & 1 \leq i<j \leq n, \\
T_{i} P_{j} & =P_{j} T_{i}, & & 1 \leq j<i \leq n-1, \\
P_{i}^{2} & =P_{i}, & & 1 \leq i \leq n, \\
P_{i+1} & =P_{i} T_{i} P_{i}-(q-1) P_{i}, & & 1 \leq i \leq n-1 .
\end{aligned}
$$

The generators T_{1}, \ldots, T_{n-1} generate the Hecke algebra $\mathcal{H}_{n}(q)$, a quantization of S_{n}.

Setting $q=1$ we recover R_{n}.

§2 A basis for the rook monoid algebra

For $k=0,1, \ldots, n, A, B \subseteq\{1,2, \ldots, n\}$ with $|A|=|B|=k$ and $w \in S_{n-k}$, let $T_{(A, B, w)}$ be the diagram with the isolated dots given by the dots of A in the top row and the dots of B in the bottom row, and the permutation w on non-isolated dots.
E.g. $x=\bullet \bullet$ has $A=\{1,2\}, B=\{2,4\}$ and $w=(2,3)$.

More generally for $R_{n}(q)$, we can also define $T_{(A, B, w)}$. Say $A=\left\{a_{1}, \ldots, a_{k}\right\}$ with $a_{1}<a_{2}<\cdots<a_{k}$, set

$$
T_{A}=\left(T_{a_{1}-1} \cdots T_{2} T_{1}\right)\left(T_{a_{2}-1} \cdots T_{3} T_{2}\right) \cdots\left(T_{a_{k}-1} \cdots T_{k}\right)
$$

We can define

$$
T_{(A, B, w)}=i\left(T_{A}^{-1}\right) P_{k} T_{w} T_{B}^{-1}
$$

(Here $w \in S_{\{k+1, \ldots, n\}}, T_{A}^{-1} T_{A}=1$ and i reverses the order of the T_{i} generators.)

Multiplying basis elements

Define $J_{k}=\operatorname{span}_{F}\left\{T_{(A, B, w)}:|A|=|B| \geq k\right\}$. This is a 2-sided ideal of $R_{n}(q)$. So we have a chain of 2-sided ideals:

$$
\{0\} \subseteq J_{n} \subseteq J_{n-1} \subseteq \cdots \subseteq J_{1} \subseteq J_{0}=R_{n}(q)
$$

Within a layer it is easy to multiply: say $|A|=|B|=|C|=|D|=k$ and $w, w^{\prime} \in S_{n-k}$ then in R_{n},

$$
T_{(A, B, w)} T_{\left(C, D, w^{\prime}\right)}= \begin{cases}T_{\left(A, D, w w^{\prime}\right)} & \text { if } B=C \\ 0(\mathrm{mod}) J_{k+1} & \text { otherwise }\end{cases}
$$

For $R_{n}(q)$, it is more complicated to calculate but we can still show that

$$
T_{(A, B, w)} T_{\left(C, D, w^{\prime}\right)}= \begin{cases}q^{\left(\frac{k(k+1)}{2}-\sum_{b \in B} b\right)} T_{\left(A, D, w w^{\prime}\right)} & \text { if } B=C \\ 0(\bmod) J_{k+1} & \text { otherwise }\end{cases}
$$

A little ring theory

Lemma
Let A be a ring and $J \subseteq A$ a 2-sided ideal. Then there exists a decomposition of rings $A=J \oplus J^{\prime}$ with $J^{\prime} \cong A / J \Longleftrightarrow J$ has a unit element.

Proof:" \Rightarrow " If $A=J \oplus J^{\prime}$, express $1=e+f$ with $e \in J, f \in J^{\prime}$. Then e is the required unit element of J.
" \Leftarrow " If J has unit element e then $e^{2}=e$ and $J=e J e \subseteq e A e \subseteq J$, so $J=e A e$. Also $e(1-e)=0$. Hence

$$
A=e A e \oplus(1-e) A(1-e)
$$

is the decomposition that we require.

A decomposition of the q-rook monoid algebra

Theorem

$$
R_{n}(q) \cong \bigoplus_{k=1}^{n} J_{k} / J_{k+1} .
$$

Proof: We simply need to find a unit element in each layer. We take

$$
e_{k}=\sum_{A:|A|=k} \frac{1}{q^{\left(k(k+1) / 2-\sum_{a \in A} a\right)}} T_{(A, A, 1)}+J_{k+1} .
$$

What does this mean for $R_{n}(q)$-modules?
A $R_{n}(q)$-module is just a direct sum of modules for each layer. We need to understand the layers!

$\S 3$ Techniques from the theory of cellular algebras

In 1996 Graham and Lehrer defined a class of algebras called cellular algebras that possessed many of the nice properties of group algebras of symmetric groups or their Hecke algebras. The definition is quite technical so we omit it.

König and Xi showed how to make a new cellular algebra from an existing one via inflation (or more generally iterated inflation): Let V be a vector space, S an algebra and $\langle\rangle:, V \times V \rightarrow S$ a bilinear form.
Define the inflation of S along V to be the vector space $V \otimes V \otimes S$ with multiplication

$$
\left(u_{1} \otimes v_{1} \otimes s_{1}\right)\left(u_{2} \otimes v_{2} \otimes s_{2}\right)=u_{1} \otimes v_{2} \otimes s_{1}\left\langle v_{1}, u_{2}\right\rangle s_{2}
$$

If the bilinear form is non-degenerate then the module categories of S and the inflation $V \otimes V \otimes S$ are equivalent. (The algebras are Morita equivalent.)

The layers of $R_{n}(q)$ as inflations

Recall that we had a chain of ideals $\{0\} \subseteq J_{n} \subseteq \cdots \subseteq J_{1} \subseteq J_{0}=R_{n}(q)$, and layer $k, J_{k} / J_{k+1}$ has basis elements $T_{(A, B, w)}$ with $|A|=|B|=k$.
For $k=0,1, \ldots, n$, let V_{k} be the F-vector space with basis given by all subsets $A \subseteq\{1,2, \ldots, n\}$ of size k.
Recall the product of basis elements in layer k :

$$
T_{(A, B, w)} T_{\left(C, D, w^{\prime}\right)}= \begin{cases}q^{\left(\frac{k(k+1)}{2}-\sum_{b \in B} b\right)} T_{\left(A, D, w w^{\prime}\right)} & \text { if } B=C \\ 0(\mathrm{mod}) J_{k+1} & \text { otherwise }\end{cases}
$$

So we define a bilinear form on V_{k} :

$$
\begin{gathered}
\langle B, C\rangle= \begin{cases}q^{\left(\frac{k(k+1)}{2}-\sum_{b \in B} b\right)} & \text { if } B=C, \\
0 & \text { if } B \neq C .\end{cases} \\
J_{k} / J_{k+1} \quad \cong \quad V_{k} \otimes V_{k} \otimes \mathcal{H}_{n-k}(q) \\
T_{(A, B, w)} \longleftrightarrow A \otimes B \otimes T_{w} .
\end{gathered}
$$

Understanding $R_{n}(q)$-modules

Theorem

$R_{n}(q)$ is a cellular algebra, and its module category is equivalent to the module category of

$$
\mathcal{H}_{n}(q) \oplus \mathcal{H}_{n-1}(q) \oplus \cdots \oplus \mathcal{H}_{1}(q) \oplus F .
$$

(Or for $R_{n}, F S_{n} \oplus F S_{n-1} \oplus \cdots \oplus F S_{1} \oplus F$.)
We therefore obtain the following corollaries for R_{n}, with similar results for $R_{n}(q)$:

- The irreducible R_{n}-modules are $V_{k} \otimes D^{\lambda}$, for $k \in 0,1, \ldots, n$ and D^{λ} an irreducible $F S_{n-k}$-module.
- R_{n} is semisimple if and only if F has characteristic 0 or characteristic $p>n$.
- All questions about the representation theory of R_{n} are reduced to questions about the representation theory of various group algebras of symmetric groups.

