Khovanov's Presheaf on Some Ordered Groupoids

BAINSON BERNARD ODUOKU

Heriot Watt University, Edinburgh

14th January, 2015

BAINSON BERNARD ODUOKU (Heriot W:Khovanov's Presheaf on Some Ordered Group

14th January, 2015 1 / 13

Groupoid, Ordered Groupoid and Category

BAINSON BERNARD ODUOKU (Heriot W:Khovanov's Presheaf on Some Ordered Group

14th January, 2015 2 / 13

Space of operation

Definition

A groupoid G is a set equipped with the operation $G^2 \to G$; $(x, y) \mapsto xy$ where $G^2 \subset G \times G$ called composable pairs and an inverse map $G \to G$; $x \mapsto x^{-1}$ satisfying the following conditions

Notation

$$x\mathbf{d} = xx^{-1}$$
 and $x\mathbf{r} = x^{-1}x$ for $x \in G$. Denote by $G_0 = \{x : x\mathbf{d} = x\mathbf{r} = x\}$

A groupoid G together with a natural partial order \leq is called an *ordered* groupoid if it accounts for

$$> x \le y \implies x^{-1} \le y^{-1}$$

▶ for $x \le y$, $u \le v$ if $\exists xu$, $\exists yv \Rightarrow xu \le yv$

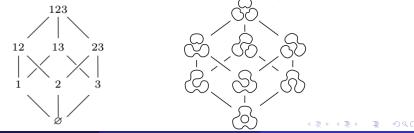
- if x ∈ G, e ∈ G₀ and e ≤ xd then ∃ a unique element (x|e) called the *restriction* of x to e such that (x|e)d = e and (x|e) ≤ x.
- if x ∈ G, e ∈ G₀ and e ≤ xr then ∃ a unique element (e|x) called the *corestriction* of x to e such that (e|x)r = e and (e|x) ≤ x

- Groups are ordered groupoids with equality as the natural partial order
- Posets
- For a group G and a poset E, then G × E is an ordered groupoid with (g, e)(g', e') = (gg', e) whenever e = e' and (g, e) ≤ (g', e') iff g = g' and e ≤ e'.

Further identification of ordered groupoids

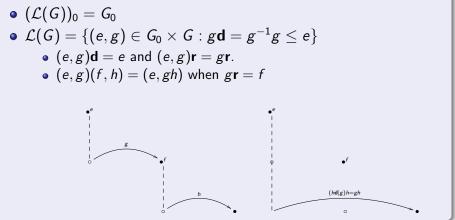
Consider a link diagram. Each crossing can be 0- or 1-resolved.

Complete resolution of subsets of the crossings identifies a Boolean lattice



BAINSON BERNARD ODUOKU (Heriot W:Khovanov's Presheaf on Some Ordered Group 14th Ja

The category $\mathcal{L}(G)$ consist of the following data;



Remark

- $\mathcal{L}(G)$ is left cancellative $(e,g)(f,h) = (e,g)(k,l) \Rightarrow (f,h) = (k,l)$
- each morphism (e, g) uniquely decomposable, $(e, gg^{-1})(gg^{-1}, g)$
- $\mathcal{L}(G)$ is a Zappa-Szép product of the categories G_0 and G

Modules for $\mathcal{L}(G)$

An $\mathcal{L}(G)$ -module is an functor $\mathcal{L}(G) \to \mathbf{Ab}$.

- $x \mapsto M_x$ for all $x \in G_0$
- a homomorphism $M_x o M_y$ whenever $y \le x$
- an isomorphism $M_{xx^{-1}} o M_{x^{-1}x}$

The trivial or constant $\mathcal{L}(G)$ -module $\Delta : \mathbf{Ab} \to \operatorname{Mod}(\mathcal{L}(G))$ is identified with

$$\blacktriangleright x \mapsto \Delta B_x = B$$

• $\mathbf{1}: \Delta B_x \to \Delta B_y$ whenever $y \leq x$

The category $Mod(\mathcal{L}(G))$

- has objects $\mathcal{L}(G)$ -modules and natural transformations as morphisms
- is an abelian category
- has enough injectives and projectives.

Let ordered groupoid, G be the boolean lattice associated to a link diagram.

The rank two free abelian group $V = \mathbb{Z}[1, u]$ becomes a frobenius algebra using the maps $m: V \otimes V \rightarrow V; 1 \otimes 1 \mapsto 1, 1 \otimes u \mapsto u, u \otimes u \mapsto 0$ $\epsilon: V \rightarrow \mathbb{Z}; 1 \mapsto 0, u \mapsto 1$ $\Delta: V \rightarrow V \otimes V; 1 \mapsto 1 \otimes u + u \otimes 1, u \mapsto u \otimes u$

Khovanov's presheaf functor on the cubes defines an $\mathcal{L}(G)$ -module $F_{KH}: G \to \mathbf{Ab}; x \mapsto V^{\otimes k}$

Cohomology of $\mathcal{L}(G)$

The inverse limit functor $\lim_{\leftarrow} : \operatorname{Mod}(\mathcal{L}(G)) \to \operatorname{Ab}$ is right adjoint to the exact Δ functor.

- ► $\operatorname{Hom}_{\operatorname{Mod}(\mathcal{L}(G))}(\Delta A, M) \cong \operatorname{Hom}_{\operatorname{Ab}}(A, \underset{\longleftarrow}{\operatorname{lim}}M) \text{ for } A \in \operatorname{Ab} \text{ and } M \in \operatorname{Mod}(\mathcal{L}(G)).$
- ▶ it is left exact for every $0 \to M \to M' \to M''$ the sequence $0 \to \lim_{\longleftarrow} M \to \lim_{\longleftarrow} M' \to \lim_{\longleftarrow} M''$ is exact.
- it has right derived functors

The *nth* cohomology of $\mathcal{L}(G)$ with coefficient in the module M is defined by $\operatorname{H}^{n}(\mathcal{L}(G), M) = \lim_{\leftarrow \mathcal{L}(G)}^{i} M \cong R^{i}(\operatorname{Hom}_{\mathcal{L}(G))}(P_{*}, M))$ where P_{*} is a projective resolution of $\Delta \mathbb{Z}$.

Theorem

Let D be the associated link diagram of the ordered groupoid G and Khovanov's $\mathcal{L}(G)$ -module $F_{KH} : G \to \mathbf{Ab}$. Then Khovanov's homological link invariant is given by

$$\mathrm{H}^{n}_{\mathcal{K}\mathcal{H}}(\mathcal{L}(\mathcal{G}), \mathcal{F}_{\mathcal{K}\mathcal{H}}) = \lim_{\leftarrow \mathcal{L}(\mathcal{G})}^{i} \mathcal{F}_{\mathcal{K}\mathcal{H}} \cong \mathcal{R}^{i}(\mathrm{Hom}_{\mathcal{L}(\mathcal{G})}(\mathcal{P}_{*}, \mathcal{F}_{\mathcal{K}\mathcal{H}}))$$

THANK YOU

∃ ► < ∃ ►</p>

æ