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Space of operation

Definition
A groupoid G is a set equipped with the operation
G 2 → G ; (x , y) 7→ xy where G 2 ⊂ G × G called composable pairs
and an inverse map G → G ; x 7→ x−1 satisfying the following
conditions

(x−1)−1 = x

(x , y), (y , z) ∈ G 2 if there exist (xy , z), (x , yz) ∈ G 2 implies
(xy)z = x(yz)

(x−1, x), (x , y) ∈ G 2 then x−1(xy) = y

(x , x−1), (z , x) ∈ G 2 then (zx−1)x = z

Notation
xd = xx−1 and xr = x−1x for x ∈ G . Denote by
G0 = {x : xd = xr = x}
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Platform for the work

A groupoid G together with a natural partial order ≤ is called an
ordered groupoid if it accounts for

I x ≤ y ⇒ x−1 ≤ y−1

I for x ≤ y , u ≤ v if ∃ xu, ∃ yv ⇒ xu ≤ yv

I if x ∈ G , e ∈ G0 and e ≤ xd then ∃ a unique element (x |e)
called the restriction of x to e such that (x |e)d = e and
(x |e) ≤ x .

I if x ∈ G , e ∈ G0 and e ≤ xr then ∃ a unique element (e|x)
called the corestriction of x to e such that (e|x)r = e and
(e|x) ≤ x
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Examples of Ordered Groupoids

I Groups are ordered groupoids with equality as the natural partial
order

I Posets

I For a group G and a poset E , then G × E is an ordered
groupoid with (g , e)(g ′, e ′) = (gg ′, e) whenever e = e ′ and
(g , e) ≤ (g ′, e ′) iff g = g ′ and e ≤ e ′.
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Further identification of ordered groupoids

Consider a link diagram. Each crossing can be 0- or 1-resolved.

Complete resolution of subsets of the crossings identifies a Boolean
lattice
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Loganathan’s category

The category L(G ) consist of the following data;

(L(G ))0 = G0

L(G ) = {(e, g) ∈ G0 × G : gd = g−1g ≤ e}
(e, g)d = e and (e, g)r = gr.
(e, g)(f , h) = (e, gh) when gr = f

•e

◦

g

%%
•f

◦

h

%% •

•e

◦ •f

(hd|g)h=gh

**◦ •
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Remark
I L(G ) is left cancellative

(e, g)(f , h) = (e, g)(k , l)⇒ (f , h) = (k , l)

I each morphism (e, g) uniquely decomposable, (e, gg−1)(gg−1, g)

I L(G ) is a Zappa-Szép product of the categories G0 and G
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Modules for L(G )

An L(G )-module is an functor L(G )→ Ab.

• x 7→ Mx for all x ∈ G0

• a homomorphism Mx → My whenever y ≤ x

• an isomorphism Mxx−1 → Mx−1x

The trivial or constant L(G )-module ∆ : Ab→ Mod(L(G )) is
identified with

I x 7→ ∆Bx = B

I 1 : ∆Bx → ∆By whenever y ≤ x

The category Mod(L(G ))

• has objects L(G )-modules and natural transformations as
morphisms

• is an abelian category

• has enough injectives and projectives.
BAINSON BERNARD ODUOKU (Heriot Watt University, Edinburgh )Khovanov’s Presheaf on Some Ordered Groupoids 14th January, 2015 9 / 13



Khovanov’s L(G )-module

Let ordered groupoid, G be the boolean lattice associated to a link
diagram.

The rank two free abelian group V = Z[1, u] becomes a frobenius
algebra using the maps
m : V ⊗ V → V ; 1⊗ 1 7→ 1, 1⊗ u 7→ u, u ⊗ u 7→ 0
ε : V → Z; 1 7→ 0, u 7→ 1
∆ : V → V ⊗ V ; 1 7→ 1⊗ u + u ⊗ 1, u 7→ u ⊗ u

Khovanov’s presheaf functor on the cubes defines an L(G )-module
FKH : G → Ab; x 7→ V⊗k
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Cohomology of L(G )

The inverse limit functor lim
←−

: Mod(L(G ))→ Ab is right adjoint to

the exact ∆ functor.

I HomMod(L(G))(∆A,M) ∼= HomAb(A, lim
←−

M) for A ∈ Ab and

M ∈ Mod(L(G )).

I it is left exact
for every 0→ M → M ′ → M ′′ the sequence
0→ lim

←−
M → lim

←−
M ′ → lim

←−
M ′′ is exact.

I it has right derived functors

The nth cohomology of L(G ) with coefficient in the module M is
defined by
Hn(L(G ),M) = lim

←−
i

L(G)
M ∼= R i(HomL(G))(P∗,M)) where P∗ is a

projective resolution of ∆Z.

BAINSON BERNARD ODUOKU (Heriot Watt University, Edinburgh )Khovanov’s Presheaf on Some Ordered Groupoids 14th January, 2015 11 / 13



Theorem
Let D be the associated link diagram of the ordered groupoid G and
Khovanov’s L(G )-module FKH : G → Ab. Then Khovanov’s
homological link invariant is given by

Hn
KH(L(G ),FKH) = lim

←−
i

L(G)
FKH
∼= R i(HomL(G))(P∗,FKH))

.
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