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1. Transformation Semigroups

Let
@ n be a positive integer
en={1,...,n}
e S, = {permutations n — n} — symmetric group
e 7, = {functions n — n} — transformation semigroup

e 7, \ Sp = {non-invertible functions n — n} — singular ideal
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1. Transformation Semigroups
Theorem (Howie, 1966)

e 7, \ Sy is idempotent generated.

° 77,\Sn:(e,-j,ej,-:1§i<j§n>.

1 i j n 1 i j n

o AT el 1T

Theorem (Howie, 1978)

o rank(7, \ S,) = idrank(T, \ S,) = (7) = 222,
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1. Transformation Semigroups

Theorem (Howie, 1978)

For X C {ejj,eji : 1 <i < j < n}, define a di-graph I'x by
e V(I'x)=n, and
o E(I'x) ={(i,j): e € X}.

Then T, \ Sp = (X) iff ['x is strongly connected and complete.

Y N
o T3\ S3 = (e12, &3, €31) o T3\ S3 # (e12, &3, €13)
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1. Transformation Semigroups

Theorem (Howie, 1978 and Wright, 1970)

The minimal idempotent generating sets of 7, \ S, are in one-one
correspondence with the strongly connected labelled tournaments
on n nodes.

n|[o 1 2 3 4 5 6 7
|1 1 1 24 544 22320 1677488 236522496
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1. Transformation Semigroups

The ideals of 7, are I, = {a € T, : |im(a)| < r} for 1 <r < n.

Theorem (Howie and McFadden, 1990)

If 2<r < n-—1, then I, is idempotent generated, and

rank(/,) = idrank(/;) = S(n, r),

a Stirling number of the second kind.

 Ih_1=Tp\Spand S(n,n—1) = (g)
@ rank(/1) = idrank(h) = |h| = n — right zero semigroup.
@ Similar results for matrix semigroups (and others).

@ Today: diagram monoids.
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2. Partition Monoids

o letn={1,...,n}and ' ={1',... '}
@ The partition monoid on n is
Pn = {set partitions of nUn’}

= {(equiv. classes of) graphs on vertex set nUn'}.

o Eg: o= {{1,3,4’},{2,4},{576,1’,6’},{2’.3/}, } € Pe
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2. Partition Monoids — Product in P,

Let o, 8 € P,. To calculate af:
(1) connect bottom of « to top of f,
(2) remove middle vertices and floating components,

(3) smooth out resulting graph to obtain «af.

e - -
NG *
’ { %\ ) '
The operation is associative, so P, is a semigroup (monoid, etc).

@ What can we say about idempotents and ideals of P,?
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2. Partition Monoids — Submonoids of P,

e B, ={«a € P, : blocks of a have size 2} — Brauer monoid

« o

e S, ={a € B, : blocks of « hit n and n'} — symmetric group

e J,={a € B,: «ais planar} — Jones monoid

A
\ cJs
o v 6

What can we say about idempotents and ideals of P,? B,? J,?
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2. Partition Monoids

Theorem (E, 2011)

@ P, \ S, is idempotent generated.
© Po\Sn=(tr,tj:1<r<n, 1<i<j<n).

1 r n 1 i Jj n

LD el THHL

o rank(P, \ Sp) = idrank(P, \ Sn) = (ngrl) = n(n2+1)'
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2. Partition Monoids

Any minimal idempotent generating set for P, \ S, is a subset of
{t,:1§r§n}U{t,~j,e,-j,ej,-,ﬁj,6-,-:1§i<j§n}.
1 i Jj n
i j

L ITEL T oo IR

o] 1L T -] IR

To see which subsets generate P, \ S,, we create a graph. ..
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2. Partition Monoids

Let ', be the di-graph with vertex set

V() ={ACn:|Al=1or|A =2}
and edge set

E(lr,)={(A,B): ACBor BCA}.

I's (with loops omitted)
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2. Partition Monoids

A subgraph H of a di-graph G is a permutation subgraph if
V(H) = V(G) and the edges of H induce a permutation of V(G).

A permutation subgraph of [, is determined by:

@ a permutation of a subset A of n with no fixed points or
2-cycles (A= {2,3,5}, 2+ 3+—5—2), and

@ a function n\ A — n with no 2-cycles (1 + 4, 4+ 4).
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2. Partition Monoids

Theorem (E+Gray, 2013)

The minimal idempotent generating sets of P, \ S, are in one-one
correspondence with the permutation subgraphs of I',,.

The number of minimal idempotent generating sets of P, \ S, is

equal to
n

Z <Z> akbn,n—ka

k=0

where ag =1, a1 = ap = 0, agy1 = kag + k(k = l)ak,g, and

lzl .

bok = 2(_1)' <2i>(2i — 1)ltpk=20,

n|0O 1 2 3 4 5 6 7
|1 1 3 20 201 2604 40915 754368
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2. Partition Monoids

The ideals of P,, are
Ir ={a € Pn: a has < r transverse blocks}

for0 <r<n.

Theorem (E+G, 2013)

If 0 <r < n—1, then I, is idempotent generated, and

n

rank(l,) = idrank(/,) = > <;’> S(j,r)Baj = zi;S(n,j) (ﬁ)

j=r

where By is the kth Bell number.
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3. Brauer Monoids

Let A, be the di-graph with vertex set
V(IAN,) ={ACn:|Al =2}

and edge set

E(N,) ={(A,B): AN B # 0} .
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3. Brauer Monoids

Theorem (E+G, 2013)

The minimal idempotent generating sets of B, \ S, are in one-one
correspondence with the permutation subgraphs of A,.

No formula is known for the number of minimal idempotent
generating sets of B, \ S, (yet). Very hard!

n|0 1 2 3 4 5 6 7
|1 1 1 6 265 126,140 855,966,441 7777

There are (way) more than (n —1)!-(n—2)!-.-31- 2111

@ Thanks to James Mitchell for n =5, 6.
@ Partition monoids are now on GAP!

@ Semigroups package: tinyurl.com/semigroups
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3. Brauer Monoids

The ideals of B, are
Ir ={a € B, : a has < r transverse blocks}

for0<r=n-2k<n.

Theorem (E+G, 2013)

If 0 <r=n—2k < n-—2, then /, is idempotent generated and

n!

rank(/,) = idrank(/,) = <2';<> (2k =l = .
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4. Jones Monoids

Let =, be the di-graph with vertex set

V(Z,) = {{1,2},{2,3},....{n—1,n}}

and edge set
E(=,)={(A,B): AnNB #(}.

=5
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4. Jones Monoids

Theorem (E+G, 2013)

The minimal idempotent generating sets of 7, \ {1} are in one-one
correspondence with the permutation subgraphs of =,.

The number of minimal idempotent generating sets of 7, \ {1} is
F,, the nth Fibonacci number.

7

5 6
5 8 13

n|0 1 2 3 4
1 11 2 3
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4. Jones Monoids

The ideals of 7, are
Iy ={a € Jp: a has < r transverse blocks}

for0<r=n-2k<n.

Theorem (E+G, 2013)

If 0 <r=n—2k < n-—2, then /, is idempotent generated and

1 1
rank(/;) = idrank(/;) = % <n—}(_ )
n
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4. Jones Monoids

Values of rank(/,) = idrank(/,):

n\r|]0 1 2 3 4 5 6 7 8 9 10
0 |1

1 1

2 |1 1

3 2 1

4 |2 3 1

5 5 4 1

6 |5 9 5 1

7 14 14 6 1

8 |14 28 20 7 1

9 42 48 27 8 1
10 | 42 90 75 35 9 1
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5. Regular *-semigroups

Definition

(S,-,*) is a regular x-semigroup if (S, ) is a semigroup and

s =s5, (st)*=t"s", ss's=s (and s*ss* =s").

Examples

@ groups and inverse semigroups, where s* = s~!

@ P,, where o* = « turned upside down
e B, Jn Sn

@ Not 7, — J-classes must be square
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5. Regular *-semigroups

Green'’s relations on a semigroup S are defined, for x,y € S, by
o xLy iff Slx = Sly, o xJy iff S1xSt = Slyst
o xRy iff xS! =yS!, o xHy iff xLy and xRy.

Within a J-class J(x) in a finite semigroup:

the R-class R(x)

the L-class L(x)

bs the H-class H(x)
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5. Regular *-semigroups

The J-classes of a semigroup S are partially ordered:

o J(x) < J(y) iff x € StySt.

/ A\

N

James East Idempotent generators in finite partition monoids




5. Regular *-semigroups

The J-classes of a semigroup S are partially ordered:

o J(x) < J(y) iff x € StySt.

If Sis Pp\ Spor B, \ Sy or Jn\ {1}, then:
@ S is a regular x-semigroup,
@ S is idempotent generated,
@ the J-classes form a chain J; < --- < J,

@ J, C (Jp41) for each r.
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Bs, Bs (thanks to GAP)
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5. Regular x-semigroups — ideals

Theorem (applies to P, \ S, and B, \ S and 7, \ {1})

Let S be a finite regular *-semigroup and suppose
@ S is idempotent generated,
@ the J-classes of S form a chain J; < --- < J,,
e J, C (Jy41) for each r.
Then
@ the ideals of S are the sets I, = (J,) = /L U--- U J,,
@ the ideals of S are idempotent generated,

e rank(/,) = idrank(/,) = the number of R-classes in J;.
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5. Regular #-semigroups — minimal generating sets

If Jis a J-class of a semigroup S, we may form the principle factor

st ifs t,steJ

J°=JuU{0} with product sot= _
0 otherwise.

Lemma (applies to P, \ S, and B, \ S, and J, \ {1})

If S = (J) where J is a J-class, then
rank(S) = rank(J°).
Further, S is idempotent generated iff J° is, and
idrank(S) = idrank(J°).

Any minimal (idempotent) generating set for S is contained in J.
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5. Regular #-semigroups — minimal generating sets

Let

@ S be a regular x-semigroup,

o E(S)={se€S:s*=s} — idempotents of S,

o P(S)={se€S:s>=s=s"} — projections of S.
Then

o E(S) = P(5)

° (E(5)) = (P(S)),

@ S is idempotent generated iff it is projection generated,

@ each R-class (and L-class) contains exactly one projection.
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5. Regular x-semigroups — minimal generating sets

Consider the projections of some finite regular s-semigroup J°:

. =pr=rp=qr=rq=qs=sq

We create a graph I'(J°).
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5. Regular #-semigroups — minimal generating sets

Definition

The graph '(J°) has:
e vertices P(J) = {non-zero projections},
@ edges p — q iff pg e J.

If S = (J) is a finite idempotent generated regular x-semigroup, we
define ['(S) =T(J°).

Theorem

A subset F C E(J) determines a subgraph I'z(S) with
V(TF(S)) = P(J) and E(TF(S)) = {p— q: pq e F}.

The set F is a minimal (idempotent) generating set for S iff ['£(S)
is a permutation subgraph.
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Thanks for listening
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