Idempotent generators in finite partition monoids

James East (University of Western Sydney) with Robert Gray (University of East Anglia)

NBSAN - July 2014 - Edinburgh

Joint work with Bob Gray

0. Outline

0. Outline

- 1. Transformation semigroups
 - Singular part
 - Ideals
- 2. Partition monoids
- 3. Brauer monoids
- 4. Jones monoids
- 5? Regular *-semigroups

Don't mention the cri%\$et

Let

- *n* be a positive integer
- $\mathbf{n} = \{1, \dots, n\}$
- $\mathcal{S}_n = \{\text{permutations } \mathbf{n} \to \mathbf{n}\}$ symmetric group
- $\mathcal{T}_n = \{ \text{functions } \mathbf{n} \to \mathbf{n} \}$ transformation semigroup
- $\mathcal{T}_n \setminus \mathcal{S}_n = \{\text{non-invertible functions } n \to n\}$ singular ideal

Theorem (Howie, 1966)

• $\mathcal{T}_n \setminus \mathcal{S}_n$ is idempotent generated.

•
$$\mathcal{T}_n \setminus \mathcal{S}_n = \langle e_{ij}, e_{ji} : 1 \le i < j \le n \rangle.$$

Theorem (Howie, 1978)

•
$$\operatorname{rank}(\mathcal{T}_n \setminus \mathcal{S}_n) = \operatorname{idrank}(\mathcal{T}_n \setminus \mathcal{S}_n) = {n \choose 2} = \frac{n(n-1)}{2}.$$

1. Transformation Semigroups

Theorem (Howie, 1978)

For
$$X \subseteq \{e_{ij}, e_{ji} : 1 \le i < j \le n\}$$
, define a di-graph Γ_X by

•
$$V(\Gamma_X) = \mathbf{n}$$
, and

•
$$E(\Gamma_X) = \{(i,j) : e_{ij} \in X\}.$$

Then $\mathcal{T}_n \setminus \mathcal{S}_n = \langle X \rangle$ iff Γ_X is strongly connected and complete.

Theorem (Howie, 1978 and Wright, 1970)

The minimal idempotent generating sets of $\mathcal{T}_n \setminus \mathcal{S}_n$ are in one-one correspondence with the strongly connected labelled tournaments on *n* nodes.

1. Transformation Semigroups

The ideals of \mathcal{T}_n are $I_r = \{ \alpha \in \mathcal{T}_n : |\operatorname{im}(\alpha)| \le r \}$ for $1 \le r \le n$.

Theorem (Howie and McFadden, 1990)

If $2 \le r \le n-1$, then I_r is idempotent generated, and

 $\operatorname{rank}(I_r) = \operatorname{idrank}(I_r) = S(n, r),$

a Stirling number of the second kind.

•
$$I_{n-1} = \mathcal{T}_n \setminus \mathcal{S}_n$$
 and $S(n, n-1) = {n \choose 2}$.

- $rank(I_1) = idrank(I_1) = |I_1| = n$ right zero semigroup.
- Similar results for matrix semigroups (and others).
- Today: diagram monoids.

- Let $\mathbf{n} = \{1, \dots, n\}$ and $\mathbf{n}' = \{1', \dots, n'\}.$
- The partition monoid on ${\bf n}$ is

$$\mathcal{P}_n = \{ \text{set partitions of } \mathbf{n} \cup \mathbf{n}' \}$$
$$\equiv \{ (\text{equiv. classes of}) \text{ graphs on vertex set } \mathbf{n} \cup \mathbf{n}' \}.$$
$$\bullet \text{ Eg: } \alpha = \{ \{1, 3, 4'\}, \{2, 4\}, \{5, 6, 1', 6'\}, \{2', 3'\}, \{5'\} \} \in \mathcal{P}_6 \}$$

2. Partition Monoids — Product in \mathcal{P}_n

Let $\alpha, \beta \in \mathcal{P}_n$. To calculate $\alpha\beta$:

- (1) connect bottom of α to top of β ,
- (2) remove middle vertices and floating components,
- (3) smooth out resulting graph to obtain $\alpha\beta$.

The operation is associative, so \mathcal{P}_n is a semigroup (monoid, etc).

• What can we say about idempotents and ideals of \mathcal{P}_n ?

2. Partition Monoids — Submonoids of \mathcal{P}_n

• $\mathcal{B}_n = \{ \alpha \in \mathcal{P}_n : \text{blocks of } \alpha \text{ have size } 2 \}$ — Brauer monoid

• $S_n = \{ \alpha \in B_n : \text{blocks of } \alpha \text{ hit } \mathbf{n} \text{ and } \mathbf{n}' \}$ — symmetric group

• $\mathcal{J}_n = \{ \alpha \in \mathcal{B}_n : \alpha \text{ is planar} \}$ — Jones monoid

What can we say about idempotents and ideals of \mathcal{P}_n ? \mathcal{B}_n ? \mathcal{J}_n ?

Theorem (E, 2011)

• $\mathcal{P}_n \setminus \mathcal{S}_n$ is idempotent generated.

•
$$\mathcal{P}_n \setminus \mathcal{S}_n = \langle t_r, t_{ij} : 1 \le r \le n, \ 1 \le i < j \le n \rangle.$$

• $\operatorname{rank}(\mathcal{P}_n \setminus \mathcal{S}_n) = \operatorname{idrank}(\mathcal{P}_n \setminus \mathcal{S}_n) = \binom{n+1}{2} = \frac{n(n+1)}{2}.$

Any minimal idempotent generating set for $\mathcal{P}_n \setminus \mathcal{S}_n$ is a subset of

 $\{t_r : 1 \le r \le n\} \cup \{t_{ij}, e_{ij}, f_{ij}, f_{ji} : 1 \le i < j \le n\}.$

To see *which* subsets generate $\mathcal{P}_n \setminus \mathcal{S}_n$, we create a graph...

Let Γ_n be the di-graph with vertex set

$$V(\Gamma_n) = \{A \subseteq \mathbf{n} : |A| = 1 \text{ or } |A| = 2\}$$

and edge set

$$E(\Gamma_n) = \{(A, B) : A \subseteq B \text{ or } B \subseteq A\}.$$

A subgraph H of a di-graph G is a permutation subgraph if V(H) = V(G) and the edges of H induce a permutation of V(G).

A permutation subgraph of Γ_n is determined by:

• a permutation of a subset A of **n** with no fixed points or 2-cycles ($A = \{2, 3, 5\}, 2 \mapsto 3 \mapsto 5 \mapsto 2$), and

• a function $\mathbf{n} \setminus A \rightarrow \mathbf{n}$ with no 2-cycles $(1 \mapsto 4, 4 \mapsto 4)$.

Theorem (E+Gray, 2013)

The minimal idempotent generating sets of $\mathcal{P}_n \setminus \mathcal{S}_n$ are in one-one correspondence with the permutation subgraphs of Γ_n .

The number of minimal idempotent generating sets of $\mathcal{P}_n \setminus \mathcal{S}_n$ is equal to

$$\sum_{k=0}^{n} \binom{n}{k} a_k b_{n,n-k},$$

where $a_0 = 1$, $a_1 = a_2 = 0$, $a_{k+1} = ka_k + k(k-1)a_{k-2}$, and

$$b_{n,k} = \sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} (-1)^i \binom{k}{2i} (2i-1)!! n^{k-2i}.$$

James East Idempotent generators in finite partition monoids

The ideals of \mathcal{P}_n are

 $I_r = \{ \alpha \in \mathcal{P}_n : \alpha \text{ has } \leq r \text{ transverse blocks} \}$

for $0 \leq r \leq n$.

Theorem (E+G, 2013)

If $0 \le r \le n-1$, then I_r is idempotent generated, and

$$\operatorname{rank}(I_r) = \operatorname{idrank}(I_r) = \sum_{j=r}^n \binom{n}{j} S(j,r) B_{n-j} = \sum_{j=r}^n S(n,j) \binom{j}{r},$$

where B_k is the *k*th Bell number.

3. Brauer Monoids

Let Λ_n be the di-graph with vertex set

$$V(\Lambda_n) = \{A \subseteq \mathbf{n} : |A| = 2\}$$

and edge set

$$E(\Lambda_n) = \{(A, B) : A \cap B \neq \emptyset\}.$$

Theorem (E+G, 2013)

The minimal idempotent generating sets of $\mathcal{B}_n \setminus \mathcal{S}_n$ are in one-one correspondence with the permutation subgraphs of Λ_n .

No formula is known for the number of minimal idempotent generating sets of $\mathcal{B}_n \setminus \mathcal{S}_n$ (yet). Very hard!

There are (way) more than $(n-1)! \cdot (n-2)! \cdots 3! \cdot 2! \cdot 1!$.

- Thanks to James Mitchell for n = 5, 6.
- Partition monoids are now on GAP!
- Semigroups package: tinyurl.com/semigroups

The ideals of \mathcal{B}_n are

 $I_r = \{ \alpha \in \mathcal{B}_n : \alpha \text{ has } \leq r \text{ transverse blocks} \}$

for $0 \leq r = n - 2k \leq n$.

Theorem (E+G, 2013)

If $0 \le r = n - 2k \le n - 2$, then I_r is idempotent generated and

$$\operatorname{rank}(I_r) = \operatorname{idrank}(I_r) = \binom{n}{2k}(2k-1)!! = \frac{n!}{2^k k! r!}$$

4. Jones Monoids

Let Ξ_n be the di-graph with vertex set

$$V(\Xi_n) = \{\{1,2\},\{2,3\},\ldots,\{n-1,n\}\}$$

and edge set

$$E(\Xi_n) = \{(A,B) : A \cap B \neq \emptyset\}.$$

Theorem (E+G, 2013)

The minimal idempotent generating sets of $\mathcal{J}_n \setminus \{1\}$ are in one-one correspondence with the permutation subgraphs of Ξ_n .

The number of minimal idempotent generating sets of $\mathcal{J}_n \setminus \{1\}$ is F_n , the *n*th Fibonacci number.

4. Jones Monoids

The ideals of \mathcal{J}_n are

 $I_r = \{ \alpha \in \mathcal{J}_n : \alpha \text{ has } \leq r \text{ transverse blocks} \}$

for $0 \leq r = n - 2k \leq n$.

Theorem (E+G, 2013)

If $0 \le r = n - 2k \le n - 2$, then I_r is idempotent generated and

$$\mathsf{rank}(I_r) = \mathsf{idrank}(I_r) = rac{r+1}{n+1} \binom{n+1}{k}.$$

4. Jones Monoids

Values of rank (I_r) = idrank (I_r) :

$n \setminus r$	0	1	2	3	4	5	6	7	8	9	10
0	1										
1		1									
2	1		1								
3		2		1							
4	2		3		1						
5		5		4		1					
6	5		9		5		1				
7		14		14		6		1			
8	14		28		20		7		1		
9		42		48		27		8		1	
10	42		90		75		35		9		1

Definition

$$(S,\cdot,^*)$$
 is a *regular* *-*semigroup* if (S,\cdot) is a semigroup and

$$s^{**} = s$$
, $(st)^* = t^*s^*$, $ss^*s = s$ (and $s^*ss^* = s^*$).

Examples

- groups and inverse semigroups, where $s^* = s^{-1}$
- \mathcal{P}_n , where $\alpha^* = \alpha$ turned upside down
- \mathcal{B}_n , \mathcal{J}_n , \mathcal{S}_n
- Not $\mathcal{T}_n \mathcal{J}$ -classes must be square

5. Regular *-semigroups

Green's relations on a semigroup *S* are defined, for $x, y \in S$, by

- $x\mathcal{L}y$ iff $S^1x = S^1y$, $x\mathcal{J}y$ iff $S^1xS^1 = S^1yS^1$,
- $x\mathcal{R}y$ iff $xS^1 = yS^1$, $x\mathcal{H}y$ iff $x\mathcal{L}y$ and $x\mathcal{R}y$.

Within a \mathcal{J} -class J(x) in a finite semigroup:

the \mathcal{R} -class R(x)the \mathcal{L} -class L(x)the \mathcal{H} -class H(x)

5. Regular *-semigroups

The \mathcal{J} -classes of a semigroup S are partially ordered:

•
$$J(x) \leq J(y)$$
 iff $x \in S^1 y S^1$.

5. Regular *-semigroups

The \mathcal{J} -classes of a semigroup S are partially ordered:

•
$$J(x) \leq J(y)$$
 iff $x \in S^1 y S^1$.

If S is $\mathcal{P}_n \setminus \mathcal{S}_n$ or $\mathcal{B}_n \setminus \mathcal{S}_n$ or $\mathcal{J}_n \setminus \{1\}$, then:

- S is a regular *-semigroup,
- S is idempotent generated,
- the \mathcal{J} -classes form a chain $J_1 < \cdots < J_k$,
- $J_r \subseteq \langle J_{r+1} \rangle$ for each r.

5. Regular *-semigroups — $\mathcal{B}_4, \mathcal{B}_5, \mathcal{B}_6$ (thanks to GAP)

Theorem (applies to $\mathcal{P}_n \setminus \mathcal{S}_n$ and $\mathcal{B}_n \setminus \mathcal{S}_n$ and $\mathcal{J}_n \setminus \{1\}$)

Let S be a finite regular *-semigroup and suppose

- S is idempotent generated,
- the \mathcal{J} -classes of S form a chain $J_1 < \cdots < J_k$,
- $J_r \subseteq \langle J_{r+1} \rangle$ for each r.

Then

- the ideals of S are the sets $I_r = \langle J_r \rangle = J_1 \cup \cdots \cup J_r$,
- the ideals of S are idempotent generated,
- rank (I_r) = idrank (I_r) = the number of \mathcal{R} -classes in J_r .

If J is a \mathcal{J} -class of a semigroup S, we may form the *principle factor*

$$J^{\circ} = J \cup \{0\}$$
 with product $s \circ t = \begin{cases} st & \text{if } s, t, st \in J \\ 0 & \text{otherwise.} \end{cases}$

Lemma (applies to $\mathcal{P}_n \setminus \mathcal{S}_n$ and $\mathcal{B}_n \setminus \mathcal{S}_n$ and $\mathcal{J}_n \setminus \{1\}$)

If $S = \langle J
angle$ where J is a ${\mathcal J}$ -class, then

 $\operatorname{rank}(S) = \operatorname{rank}(J^{\circ}).$

Further, S is idempotent generated iff J° is, and

 $\operatorname{idrank}(S) = \operatorname{idrank}(J^{\circ}).$

Any minimal (idempotent) generating set for S is contained in J.

Proposition

Let

• S be a regular *-semigroup,

- $E(S) = \{s \in S : s^2 = s\}$ idempotents of S,
- $P(S) = \{s \in S : s^2 = s = s^*\}$ projections of S.

Then

- $E(S) = P(S)^2$,
- $\langle E(S) \rangle = \langle P(S) \rangle$,
- S is idempotent generated iff it is projection generated,
- each \mathcal{R} -class (and \mathcal{L} -class) contains exactly one projection.

Consider the projections of some finite regular *-semigroup J° :

$$0 = pr = rp = qr = rq = qs = sq$$

We create a graph $\Gamma(J^{\circ})$.

Definition

The graph $\Gamma(J^{\circ})$ has:

• vertices $P(J) = \{ \text{non-zero projections} \}$,

• edges
$$p \rightarrow q$$
 iff $pq \in J$.

If $S = \langle J \rangle$ is a finite idempotent generated regular *-semigroup, we define $\Gamma(S) = \Gamma(J^{\circ})$.

Theorem

A subset $F \subseteq E(J)$ determines a subgraph $\Gamma_F(S)$ with

$$V(\Gamma_F(S)) = P(J)$$
 and $E(\Gamma_F(S)) = \{p \to q : pq \in F\}.$

The set F is a minimal (idempotent) generating set for S iff $\Gamma_F(S)$ is a permutation subgraph.

Thanks for listening

