Background Construction Applications

On the membership problem for pseudovarieties

K. Auinger

NBSAN, Edinburgh, July 2014

All semigroups/monoids/categories are finite!

A *pseudovariety* is a class of semigroups/monoids closed under $\mathrm{P}_{f},$ S and H.

The collection of all pseudovarieties forms a complete lattice. Join operation $\lor\colon$

$$\mathbf{V} \lor \mathbf{W} = \mathrm{HS}\{V \times W \mid V \in \mathbf{V}, W \in \mathbf{W}\}$$

Other operations: semidirect product *:

$$\mathbf{V} * \mathbf{W} = \mathrm{HS}\{ V \rtimes W \mid V \in \mathbf{V}, W \in \mathbf{W} \}$$

Similarly defined operations: (m), **, \Diamond_n , \Diamond , \mathfrak{P}

Notation

- G: pseudovariety of all groups
- A: pseudovariety of all aperiodic semigroups/monoids
- J: pseudovariety of all J-trivial semigroups/monoids

Open problems

- (Schützenberger) Decide membership in $\textbf{A} \lor \textbf{G}.$
- (Krohn–Rhodes) Decide membership in (A * G)ⁿ * A for n = 1, 2,
- (Pin–Straubing) Decide membership in $\mathfrak{P}J = \diamondsuit J$.

Result (Albert, Baldinger, Rhodes, 1992)

There exists a finite set E of semigroup identities such that the pseudovariety join $\llbracket E \rrbracket \lor \mathbf{Com}$ has undecidable membership.

 $\mathbf{Com} = \mathsf{commutative \ semigroups}$

 $\llbracket E \rrbracket =$ semigroups satisfying E

Result (Rhodes, 1999)

The operations *, ** and \widehat{m} do not preserve decidability of membership.

Different approach to such results:

decompose the set \mathbb{P} of all primes into two disjoint infinite recursive subsets A and B, for example

•
$$A = \{2, 5, 11, p_7, p_9, \dots\}$$

•
$$B = \{3, 7, 13, p_8, p_{10}, \dots\}$$

Choose an injective, recursive function $f : A \rightarrow B$ for which C := f(A) is not recursive. For $D := B \setminus C$ we have

$$\mathbb{P}=(A\cup C)\cup D,$$

where $A \cup C$ is r.e. but not recursive, D is not r.e. For $p \in \mathbb{P}$ let

- **G**_p = the pseudovariety of all *p*-groups
- Ab_p = the pseudovariety of all abelian p-groups

Background Construction Applications

For $p \in A$ let $\mathbf{U}_p := \mathbf{G}_p * \mathbf{Ab}_{f(p)}$ Our main object is the pseudovariety defined by:

$$\mathbf{U} := \bigvee_{p \in A} \mathbf{U}_p \lor \bigvee_{p \in D} \mathbf{Ab}_p.$$

Then

$$\mathbf{U} = P_f \big(\bigcup_{p \in A} \mathbf{U}_p \cup \bigcup_{p \in D} \mathbf{Ab}_p \big).$$

Decidability of membership of **U**: let *G* be a group and a_1, \ldots, a_k be those prime divisors of |G| which are in *A* and b_1, \ldots, b_n those which are in $B \setminus \{f(a_1), \ldots, f(a_k)\}$; then

$$G \in \mathbf{U} \Leftrightarrow G \in \mathrm{P}_f \big(\bigcup_{i=1}^k \mathbf{U}_{a_i} \cup \bigcup_{j=1}^n \mathbf{Ab}_{b_j} \big).$$

Intuitive idea of the construction of **U**:

Let $p \in \mathbb{P}$ and G be an abelian p-group; then:

- either: there exists a prime q such that every co-extension of G by any q-group belongs to U
- or: every co-extension of G in U is of the form H × K for a p'-group H and an abelian p-group K

The two cases are in sharp contrast to each other but are not recursively separable. In other words, if we are given an abelian p-group, we can't decide whether case (1) or case (2) applies.

The pseudovariety \mathbf{U} contains all abelian groups, is solvable and does not satisfy any non-trivial group identity. One can modify the construction to get a similar pseudovariety which is metabelian.

Background Construction Applications Join Semidirect product, etc Global

Definition

•
$$C_{2,1} := \langle a \mid a^2 = 0 \rangle = \{1, a, a^2 = 0\}$$

•
$$C_{2,1} = HSP_f(C_{2,1})$$

Theorem

No pseudovariety in the interval $[C_{2,1} \lor U, A \lor U]$ has decidable membership. In particular, the two joins $C_{2,1} \lor U$ and $A \lor U$ have undecidable membership.

For each prime p let $C_p := \langle x \mid x^p = 1 \rangle$ be the cyclic group of order p. We define the monoid M_p as follows:

$$M_{p} = C_{p} \cup (C_{p} \times C_{p}) \cup \{0\}$$

where $(C_p \times C_p) \cup \{0\}$ is a null semigroup and an ideal of M_p and C_p is the group of units of M_p acting on $(C_p \times C_p) \cup \{0\}$ by

$$x(y,z) = (xy,z), (y,z)x = (y,zx), x0 = 0x = 0.$$

The claim follows from the facts:

if $p \in A$ then M_p divides $C_{2,1} \times (\mathbb{F}_p^{C_p \times C_p} \rtimes C_p) \in \mathbf{C}_{2,1} \vee \mathbf{U}_p$ $\text{if } p \in C \text{ then } M_p \text{ divides } C_{2,1} \times (\mathbb{F}_{f^{-1}(p)}^{C_p \times C_p} \rtimes C_p) \in \mathbf{C}_{2,1} \vee \mathbf{U}_{f^{-1}(p)} \\$ let $p \in D$; suppose there exist $A \in \mathbf{A}$, $G \in \mathbf{U}$, $M \leq A \times G$ and $\varphi: M \twoheadrightarrow M_p;$ then $G = H \times K$ with H a p'-group and K an abelian p-group; let $a = (m, h, k) \in x\varphi^{-1}$ where x is a generating element of C_n then there exists a positive integer $n \equiv 1 \pmod{p}$ such that $a^n = c = (e, 1, k^n), e^2 = e$ and $c\varphi = x$; for each $b \in M$ then $c^2bc = cbc^2$ but for $b \in (1,1)\varphi^{-1}$, $(c^2bc)\varphi = (x^2, x) \neq (x, x^2) = (cbc^2)\varphi.$

Corollary

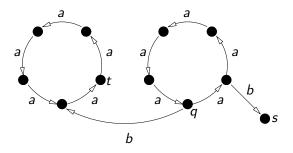
The join **Com** \lor **U** has undecidable membership.

because

 $\textbf{Com} \lor \textbf{U} = \textbf{A}\textbf{Com} \lor \textbf{Ab} \lor \textbf{U} = \textbf{A}\textbf{Com} \lor \textbf{U} \in [\textbf{C}_{2,1} \lor \textbf{U}, \textbf{A} \lor \textbf{U}].$

BackgroundJoinConstructionSemidirect product, etcApplicationsGlobal

For each prime *p* define an inverse automaton A_p as depicted for p = 5:



- if $p \in A$ then \mathcal{A}_p embeds in the Cayley graph of $C_p \wr C_p \in \mathbf{U}_p$
- if $p \in C$ then \mathcal{A}_p embeds in the Cayley graph of $C_{f^{-1}(p)} \wr C_p \in \mathbf{U}_{f^{-1}(p)}$
- if $p \in D$ then \mathcal{A}_p does not embed in any permutation automaton with transition group in **U**

BackgroundJoinConstructionSemidirect product, etcApplicationsGlobal

Definition

- For a prime p denote by I_p the inverse monoid defined by the automaton \mathcal{A}_p .
- For a group pseudovariety H denote by SI H the inverse monoid pseudovariety of all inverse monoids which have an *E*-unitary cover over a group in H.

Corollary

• if $p \in A$ then $I_p \in SI \circ U_p$

• if
$$p \in C$$
 then $I_p \in \mathsf{SI} \circ \mathsf{U}_{f^{-1}(p)}$

• if $p \in D$ then $I_p \notin \mathbf{SI} \circ \mathbf{U}$.

No inverse monoid pseudovariety in **V** for which $\bigvee_{p \in A} SI \circ U_p \subseteq V \subseteq SI \circ U$ has decidable membership.

For a group pseudovariety **H**, the inverse semigroups/monoids in J * H are exactly those of the semigroup/monoid pseudovariety SI * H which are exactly those of $SI \circ H$. Consequently,

- if $p \in A \cup C$ then $I_p \in \bigvee_{q \in A} \mathsf{SI} * \mathsf{U}_q$
- if $p \in D$ then $I_p \notin \mathbf{J} * \mathbf{U}$

Theorem

No semigroup/monoid pseudovariety in the interval

$$\left[\bigvee_{q\in A}\mathsf{SI}*\mathsf{U}_q,\mathsf{J}*\mathsf{U}\right]$$

has decidable membership. In particular, SI * U has undecidable membership.

Background Join Construction Semidirect product, etc Applications Global

Since SI * U = SI m U = SI ** U, we have

Corollary

None of the operations *, (m), ** preserves the decidability of membership.

Since

$$\mathsf{SI} \ast \ast \mathsf{U} = \diamondsuit_2 \mathsf{U} \subseteq \cdots \subseteq \diamondsuit_n \mathsf{U} \subseteq \cdots \bigcup \diamondsuit_n \mathsf{U} = \diamondsuit \mathsf{U} = \mathsf{J} \ast \mathsf{U}$$

and, for each $p \in A$,

$$\mathsf{J} * \mathsf{U}_{\rho} = \mathfrak{P} \mathsf{U}_{\rho} \subseteq \mathfrak{P} \mathsf{U} \subseteq \mathsf{J} * \mathsf{U}$$

each of $\Diamond_n \mathbf{U}$ (all $n \ge 2$), $\Diamond \mathbf{U}$ and $\mathfrak{P}\mathbf{U}$ have undecidable membership,

Corollary

None of the operators \Diamond_n (all $n \ge 2$), \Diamond and \mathfrak{P} preserves the decidability of membership.

BackgroundJoinConstructionSemidirect product, etcApplicationsGlobal

Tilson used categories to establish his decomposition result for monoid (pseudo)varieties:

Theorem

Let \mathbf{V}, \mathbf{W} be pseudovarieties of monoids; a monoid M belongs of $\mathbf{V} * \mathbf{W}$ iff there exists $N \in \mathbf{W}$ and a relational morphism $\varphi : M \to N$ for which the derived category D_{φ} belongs to $g\mathbf{V}$.

gV, the *global* of V, is the smallest pseudovariety of categories containing V, i.e. the class of all category divisors of members of V *membership* in gV is essential to Tilson's theory

Problem

Can decidability of membership in gV be reduced to decidability of membership in V?

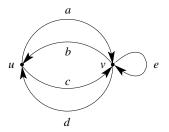
No! Let $D\mathbf{U}$ be the pseudovariety of monoids all of whose regular \mathcal{D} -classes are members of \mathbf{U} .

Semidirect product, etc
Global

Theorem

Membership in $D\mathbf{U}$ is decidable while membership in $gD\mathbf{U}$ is undecidable.

We start with the graph Γ :



and let Γ^* be the free category generated by Γ . For each prime p let $\Gamma_p = \Gamma / \equiv_p$ where \equiv_p is a congruence defined by a certain set of identities. It can be shown that Γ_p is finite and computable.

Some very deep results of Kad'ourek then imply

- if $p \in A$ then $\Gamma_p \in gD\mathbf{U}_p \subseteq gD\mathbf{U}$
- if $p \in C$ then $\Gamma_p \in gD\mathbf{U}_{f^{-1}(p)} \subseteq gD\mathbf{U}$

• if
$$p \in D$$
 then $\Gamma_p \notin gD(\mathbf{G}_{p'} \lor \mathbf{Ab}_p) \supseteq gD\mathbf{U}$

Papers:

- K. A., B. Steinberg, On the extension problem for partial permutations, PAMS 131, 2693-2703 (2003)
- K. A., On the decidability of membership in the global of a monoid pseudovariety, IJAC 20, 181-188 (2010).