Free idempotent generated semigroups and endomorphism monoids of free *G*-acts

Dandan Yang

University of York

Based on joint work with Igor Dolinka and Victoria Gould

Let E be a biordered set (equivalently, a set of idempotents E of a semigroup S).

The free idempotent generated semigroup IG(E) is a free object in the category of semigroups that are generated by E, defined by

$$\mathsf{IG}(E) = \langle \overline{E} : \overline{e}\overline{f} = \overline{ef}, e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset \rangle.$$

where $\overline{E} = \{\overline{e} : e \in E\}.$

Note It is more usual to identify elements of \overline{E} with those of \overline{E} , but it helps the clarity of our later arguments to make this distinction.

Facts

- $IG(E) = \langle \overline{E} \rangle.$
- ② The natural map ϕ : IG(E) → S, given by $\bar{e}\phi = e$, is a morphism onto S' = $\langle E(S) \rangle$.
- The restriction of \(\phi\) to the set of idempotents of IG(E) is a bijection.
- The morphism φ induces a bijection between the set of all *R*-classes (resp. *L*-classes) in the *D*-class of ē in IG(E) and the corresponding set in S' = ⟨E(S)⟩.
- The morphism ϕ is an onto morphism from $H_{\overline{e}}$ to H_{e} .

Maximal subgroups of IG(E)

Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980), McElwee (2002) led to a conjecture that all these groups must be free groups.

Brittenham, Margolis and Meakin (2009)

 $\mathbb{Z} \oplus \mathbb{Z}$ can be a maximal subgroup of IG(*E*), for some *E*.

Gray and Ruskuc (2012)

Any group occurs as a maximal subgroup of some IG(E), a general presentation and a special choice of E are needed.

Gould and Yang (2012)

Any group occurs as a maximal subgroup of a natural IG(E), a simple approach suffices.

Dolinka and Ruskuc (2013)

Any group occurs as IG(E) for some band.

- Given a special biordered set E, which kind of groups can be the maximal subgroups of IG(E)?
- Let S be a semigroup with E = E(S). Let $e \in E$. Our aim is to find the relationship between the maximal subgroup $H_{\overline{e}}$ of IG(E)with identity \overline{e} and the maximal subgroup H_e of S with identity e.

There is an onto morphism from $H_{\overline{e}}$ to H_{e} .

Is $H_{\overline{e}} \cong H_e$, for some *E* and some $e \in E$?

 \mathcal{T}_n (\mathcal{PT}_n) - full (partial) transformation monoid, E - its biordered set.

Gray and Ruskuc (2012); Dolinka (2013)

 $\operatorname{rank} e = r < n - 1, \ H_{\overline{e}} \cong H_e \cong \mathcal{S}_r.$

Brittenham, Margolis and Meakin (2010)

 $M_n(D)$ - full linear monoid, E - its biordered set.

rank e = 1 and $n \ge 3$, $H_{\overline{e}} \cong H_e \cong D^*$.

Dolinka and Gray (2012)

rank e = r < n/3 and $n \ge 4$, $H_{\overline{e}} \cong H_e \cong GL_r(D)$.

Note rank e = n - 1, $H_{\overline{e}}$ is free; rank e = n, $H_{\overline{e}}$ is trivial.

Sets and vector spaces over division rings are examples of **independence algebras**.

Fountain and Lewin (1992)

Let **A** be an independence algebra of rank *n*, where $n \in \mathbb{N}$ is finite. Let End **A** be the endomorphim monoid of **A**. Then

$$\mathcal{S}(\mathsf{End}\,\mathsf{A}) = \{lpha \in \mathsf{End}\,\mathsf{A} : \mathsf{rank}\,lpha < \mathsf{n}\} = \langle \mathsf{E} \setminus \{I\}
angle.$$

Gould (1995)

For any $\alpha, \beta \in \text{End } \mathbf{A}$, we have the following:

(i) im
$$\alpha = \operatorname{im} \beta$$
 if and only if $\alpha \mathcal{L} \beta$;

(ii) ker
$$\alpha = \ker \beta$$
 if and only if $\alpha \mathcal{R} \beta$;

(iii) rank α = rank β if and only if $\alpha \mathcal{D} \beta$ if and only if $\alpha \mathcal{J} \beta$.

The results on the biordered set of idempotents of \mathcal{T}_n and $M_n(D)$ suggest that it would be worth looking into the maximal subgroups of IG(*E*), where $E = E(\text{End } \mathbf{A})$.

The diverse method needed in the biordered sets of \mathcal{T}_n and $M_n(D)$ indicate that it would be very hard to find a unified approach to End **A**.

It was pointed out by Gould that **free** *G***-acts** provide us with another kind of independence algebras.

Let G be a group, $n \in \mathbb{N}$, $n \ge 3$. Let $F_n(G)$ be a rank n free left G-act.

Recall that, as a set,

$$F_n(G) = \{gx_i : g \in G, i \in [1, n]\};$$

identify x_i with $1x_i$, where 1 is the identity of G;

$$gx_i = hx_j$$
 if and only if $g = h$ and $i = j$;

the action of G is given by $g(hx_i) = (gh)x_i$.

Let End $F_n(G)$ be the endomorphism monoid of $F_n(G)$ with $E = E(\text{End } F_n(G))$.

The **rank** of an element of End $F_n(G)$ is the minimal number of (free) generators in its image.

An element $\alpha \in \text{End} F_n(G)$ depends only on its action on the free generators $\{x_i : i \in [1, n]\}$.

For convenience we denote α by

$$\alpha = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ w_1^{\alpha} x_{1\overline{\alpha}} & w_2^{\alpha} x_{2\overline{\alpha}} & \dots & w_n^{\alpha} x_{n\overline{\alpha}} \end{pmatrix},$$

where $\overline{\alpha} \in \mathcal{T}_n$, $w_1^{\alpha}, \cdots, w_n^{\alpha} \in \mathcal{G}$.

Note End $F_n(G) \cong G \wr S_n$ and $S(\text{End } F_n(G)) = \langle E \setminus \{I\} \rangle$.

For any rank r idempotent $\varepsilon \in E$, where $1 \le r \le n$, we have

 $H_{\varepsilon} \cong G \wr S_r.$

How about the maximal subgroup $H_{\overline{e}}$ of IG(*E*)?

To specialise Gray and Ruškuc's presentation of maximal subgroups of IG(E) to our particular circumstance.

Step 1

To obtain an explicit description of a Rees matrix semigroup isomorphic to the semigroup $D_r^0 = D_r \cup \{0\}$, where

$$D_r = \{ \alpha \in \operatorname{End} F_n(G) \mid \operatorname{rank} \alpha = r \}.$$

Let I and A denote the set of \mathcal{R} -classes and the set of \mathcal{L} -classes of D_r , respectively.

Here we may take *I* as the set of kernels of elements in D_r , and $\Lambda = \{(u_1, u_2, \dots, u_r) : 1 \le u_1 < u_2 < \dots < u_r \le n\} \subseteq [1, n]^r$. Let $H_{i\lambda} = R_i \cap L_{\lambda}$.

Assume $1 \in I \cap \Lambda$ with

$$1 = \langle (x_1, x_i) : r+1 \leq i \leq n \rangle \in I, 1 = (1, \cdots, r) \in \Lambda.$$

So $H = H_{11}$ is a group with identity $\varepsilon = \varepsilon_{11}$.

A typical element of H looks like

$$\alpha = \begin{pmatrix} x_1 & x_2 & \dots & x_r & x_{r+1} & \dots & x_n \\ w_1^{\alpha} x_{1\overline{\alpha}} & w_2^{\alpha} x_{2\overline{\alpha}} & \dots & w_r^{\alpha} x_{r\overline{\alpha}} & w_1^{\alpha} x_{1\overline{\alpha}} & \dots & w_1^{\alpha} x_{1\overline{\alpha}} \end{pmatrix}$$

where $\overline{\alpha} \in \mathcal{T}_n, w_1^{\alpha}, \dots, w_r^{\alpha} \in \mathcal{G}.$

Abbreviate α as

$$\alpha = \begin{pmatrix} x_1 & x_2 & \dots & x_r \\ w_1^{\alpha} x_{1\overline{\alpha}} & w_2^{\alpha} x_{2\overline{\alpha}} & \dots & w_r^{\alpha} x_{r\overline{\alpha}} \end{pmatrix}.$$

In particular,

$$\varepsilon = \varepsilon_{11} = \begin{pmatrix} x_1 & x_2 & \dots & x_r \\ x_1 & x_2 & \dots & x_r \end{pmatrix}.$$

For any $\alpha \in D_r$, ker $\overline{\alpha}$ induces a partition

 $\{B_1^{\alpha}, \cdots, B_r^{\alpha}\}$

on [1, n] with a set of minimum elements

 $I_1^{\alpha}, \cdots, I_r^{\alpha}$ such that $I_1^{\alpha} < \cdots < I_r^{\alpha}$.

Put

$$\Theta = \{ \alpha \in D_r : x_{l_j^{\alpha}} \alpha = x_j, j \in [1, r] \}.$$

Then it is a transversal of the \mathcal{H} -classes of L_1 .

For each $i \in I$, define \mathbf{r}_i as the unique element in $\Theta \cap H_{i1}$. We say that \mathbf{r}_i lies in **district** $(l_1^{\mathbf{r}_i}, l_2^{\mathbf{r}_i}, \cdots, l_r^{\mathbf{r}_i})$ (of course, $1 = l_1^{\mathbf{r}_i}$). For each $\lambda = (u_1, u_2, \dots, u_r) \in \Lambda$, define

$$\mathbf{q}_{\lambda} = \mathbf{q}_{(u_1, \cdots, u_r)} = \begin{pmatrix} x_1 & x_2 & \cdots & x_r & x_{r+1} & \cdots & x_n \\ x_{u_1} & x_{u_2} & \cdots & x_{u_r} & x_{u_1} & \cdots & x_{u_1} \end{pmatrix}$$

.

We have that $D_r^0 = D_r \cup \{0\}$ is completely 0-simple, and hence

$$D_r^0 \cong \mathcal{M}^0(H; I, \Lambda; P),$$

where $P = (\mathbf{p}_{\lambda i})$ and

$$\mathbf{p}_{\lambda i} = (\mathbf{q}_{\lambda}\mathbf{r}_{i})$$
 if rank $\mathbf{q}_{\lambda}\mathbf{r}_{i} = r$

and is 0 else.

Note

$$\begin{bmatrix} \varepsilon_{i\lambda} & \varepsilon_{i\mu} \\ \varepsilon_{k\lambda} & \varepsilon_{k\mu} \end{bmatrix} \text{ is a singular square } \Longleftrightarrow \mathbf{p}_{\lambda i}^{-1} \mathbf{p}_{\lambda k} = \mathbf{p}_{\mu i}^{-1} \mathbf{p}_{\mu k}.$$

Step 2

Define a schreier system of words $\{\mathbf{h}_{\lambda} : \lambda \in \Lambda\}$ inductively, using the restriction of the lexicographic order on $[1, n]^r$ to Λ .

Put
$$\mathbf{h}_{(1,2,\cdots,r)} = 1$$
;
For any $(u_1, u_2, \dots, u_r) > (1, 2, \cdots, r)$, take $u_0 = 0$ and i the
largest such that $u_i - u_{i-1} > 1$. Then

$$(u_1,\ldots,u_{i-1},u_i-1,u_{i+1},\ldots,u_r) < (u_1,u_2,\ldots,u_r).$$

Define

$$\mathbf{h}_{(u_1,\cdots,u_r)} = \mathbf{h}_{(u_1,\cdots,u_{i-1},u_i-1,u_{i+1},\cdots,u_r)} \alpha_{(u_1,\cdots,u_r)},$$

where

$$\alpha_{(u_1,\cdots,u_r)} = \begin{pmatrix} x_1 & \cdots & x_{u_1} & x_{u_1+1} & \cdots & x_{u_2} & \cdots & x_{u_{r-1}+1} & \cdots & x_{u_r} & x_{u_r+1} & \cdots & x_n \\ x_{u_1} & \cdots & x_{u_1} & x_{u_2} & \cdots & x_{u_2} & \cdots & x_{u_r} & \cdots & x_{u_r} & x_{u_r} & \cdots & x_{u_r} \end{pmatrix}$$

Facts

2 $\mathbf{h}_{(u_1,\dots,u_r)}$ induces a bijection from $L_{(1,\dots,r)}$ onto $L_{(u_1,\dots,u_r)}$ in both End $F_n(G)$ and IG(E).

Hence $\{\mathbf{h}_{\lambda} : \lambda \in \Lambda\}$ forms the required schreier system for the presentation for $\overline{H} = H_{\overline{e}}$.

Step 3

Define a function

$$\omega: I \longrightarrow \Lambda, i \mapsto \omega(i) = (l_1^{\mathbf{r}_i}, l_2^{\mathbf{r}_i}, \dots, l_r^{\mathbf{r}_i}).$$

Note $\mathbf{p}_{\omega(i),i} = \varepsilon$.

Put

$$K = \{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group}\}.$$

Proposition Let $E = E(\text{End } F_n(G))$. Then the maximal subgroup \overline{H} of $\overline{\varepsilon}$ in IG(E) is defined by the presentation

$$\mathcal{P} = \langle F : \Sigma \rangle$$

with generators:

$$F = \{f_{i,\lambda} : (i,\lambda) \in K\}$$

and defining relations Σ : (R1) $f_{i,\lambda} = f_{i,\mu}$ ($\mathbf{h}_{\lambda}\varepsilon_{i\mu} = \mathbf{h}_{\mu}$); (R2) $f_{i,\omega(i)} = 1$ ($i \in I$); (R3) $f_{i,\lambda}^{-1}f_{i,\mu} = f_{k,\lambda}^{-1}f_{k,\mu}$ ($\begin{bmatrix} \varepsilon_{i\lambda} & \varepsilon_{i\mu} \\ \varepsilon_{k\lambda} & \varepsilon_{k\mu} \end{bmatrix}$ is singular i.e. $\mathbf{p}_{\lambda i}^{-1}\mathbf{p}_{\lambda k} = \mathbf{p}_{\mu i}^{-1}\mathbf{p}_{\mu k}$). **Note** If rank $\varepsilon = n - 1$, then $H_{\overline{\varepsilon}}$ is free, as no non-trivial singular squares exist; if rank $\varepsilon = n$, then $H_{\overline{\varepsilon}}$ is trivial.

How about $H_{\overline{\varepsilon}}$, where $1 \leq \operatorname{rank} \varepsilon \leq n-2$?

Given a pair $(i, \lambda) \in K$, we have a generator $f_{i,\lambda}$ and an element $0 \neq \mathbf{p}_{\lambda i} \in P$.

To find the relationship between these generators $f_{i,\lambda}$ and non-zero elements $\mathbf{p}_{\lambda i} \in P$.

Lemma If $(i, \lambda) \in K$ and $\mathbf{p}_{\lambda i} = \varepsilon$, then $f_{i,\lambda} = 1_{\overline{H}}$.

Idea. The proof follows by induction on $\lambda \in \Lambda$, ordered lexicographically. Here we make use of our particular choice of schreier system and function ω .

Lemma If $\mathbf{p}_{\lambda i} = \mathbf{p}_{\mu i}$, then $f_{i,\lambda} = f_{i,\mu}$.

The proof is straightforward.

Lemma If $\mathbf{p}_{\lambda i} = \mathbf{p}_{\lambda j}$, then $f_{i,\lambda} = f_{j,\lambda}$.

Idea. For any $i, j \in I$, suppose that \mathbf{r}_i and \mathbf{r}_j lie in districts $(1, k_2, \dots, k_r)$ and $(1, l_2, \dots, l_r)$, respectively. We call $u \in [1, n]$ a mutually **bad** element of \mathbf{r}_i with respect to \mathbf{r}_j , if there exist $m, s \in [1, r]$ such that $u = k_m = l_s$, but $m \neq s$; all other elements are said to be mutually **good** with respect to \mathbf{r}_i and \mathbf{r}_i .

We proceed by induction on the number of bad elements.

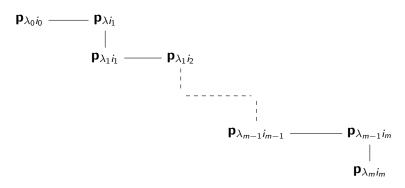
Definition Let $i, j \in I$ and $\lambda, \mu \in \Lambda$ such that $\mathbf{p}_{\lambda i} = \mathbf{p}_{\mu j}$. We say that $(i, \lambda), (j, \mu)$ are *connected* if there exist

$$i = i_0, i_1, \dots, i_m = j \in I$$
 and $\lambda = \lambda_0, \lambda_1, \dots, \lambda_m = \mu \in \Lambda$

such that for $0 \le k < m$ we have $\mathbf{p}_{\lambda_k i_k} = \mathbf{p}_{\lambda_k, i_{k+1}} = \mathbf{p}_{\lambda_{k+1} i_{k+1}}$.

Connectivity of elements in the sandwich matrix

The following picture illustrates that $(i, \lambda) = (i_0, \lambda_0)$ is connected to $(j, \mu) = (i_m, \lambda_m)$:



Lemma Let $i, j \in I$ and $\lambda, \mu \in \Lambda$ be such that $\mathbf{p}_{\lambda i} = \mathbf{p}_{\mu j}$ where $(i, \lambda), (j, \mu)$ are connected. Then $f_{i,\lambda} = f_{j,\mu}$.

The result for $n \ge 2r + 1$

Lemma Let $n \ge 2r + 1$. Let $\lambda = (u_1, \dots, u_r) \in \Lambda$, and $i \in I$ with $\mathbf{p}_{\lambda i} \in H$. Then (i, λ) is connected to (j, μ) for some $j \in I$ and $\mu = (n - r + 1, \dots, n)$.

Consequently, if $\mathbf{p}_{\lambda i} = \mathbf{p}_{\nu k}$ for any $i, k \in I$ and $\lambda, \nu \in \Lambda$, then $f_{i,\lambda} = f_{k,\nu}$.

We may define

$$f_{\phi} = f_{i,\lambda}$$
, if $\mathbf{p}_{\lambda i} = \phi \in H$.

Lemma Let $r \leq n/3$. Then for any $\phi, \theta \in H$,

$$f_{\phi\theta} = f_{\theta}f_{\phi}$$
 and $f_{\phi^{-1}} = f_{\phi}^{-1}$

Note Every element of *H* appears in *P*.

Theorem Let $r \leq n/3$. Then

$$\overline{H} \cong H, \ f_{\phi} \mapsto \phi^{-1}.$$

For larger r this strategy will fail... :-(

Two main problems:

for $r \ge n/2$, not every element of *H* lies in *P*;

we lose connectivity of elements in *P*, even if r = n/2.

However, for $r \le n-2$ all elements with simple form

$$\phi = \begin{pmatrix} x_1 & x_2 & \cdots & x_{k-1} & x_k & x_{k+1} & \cdots & x_{k+m-1} & x_{k+m} & x_{k+m+1} & \cdots & x_r \\ x_1 & x_2 & \cdots & x_{k-1} & x_{k+1} & x_{k+2} & \cdots & x_{k+m} & ax_k & x_{k+m+1} & \cdots & x_r \end{pmatrix},$$

where $k \ge 1, m \ge 0, a \in G$, lie in *P*.

Lemma Let $\varepsilon \neq \phi = \mathbf{p}_{\lambda i}$ where $\lambda = (u_1, \dots, u_r)$ and $i \in I$. Then (i, λ) is connected to (j, μ) where

$$\mu = (1, \cdots, k - 1, k + 1, \cdots, r + 1)$$
 and $j \in I$.

Lemma Let $\mathbf{p}_{\lambda i} = \mathbf{p}_{\nu k}$ have simple form. Then $f_{i,\lambda} = f_{k,\nu}$.

Our aim here is to prove that for any $\alpha \in H$, if $i, j \in I$ and $\lambda, \mu \in \Lambda$ with $\mathbf{p}_{\lambda i} = \mathbf{p}_{\mu j} = \alpha \in H$, then $f_{i,\lambda} = f_{j,\mu}$. This property of α is called **consistency**.

Note All elements with simple form are consistent.

How to split an arbitrary element α in H into a product of elements with simple form?

Moreover, how this splitting match the products of generators $f_{i,\lambda}$ in \overline{H} .

Definition Let $\alpha \in H$. We say that α has rising point r + 1 if $x_m \alpha = ax_r$ for some $m \in [1, r]$ and $a \neq 1_G$; otherwise, the rising point is $k \leq r$ if there exists a sequence

$$1 \leq i < j_1 < j_2 < \cdots < j_{r-k} \leq r$$

with

$$x_i\alpha = x_k, x_{j_1}\alpha = x_{k+1}, x_{j_2}\alpha = x_{k+2}, \cdots, x_{j_{r-k}}\alpha = x_r$$

and such that if $l \in [1, r]$ with $x_l \alpha = a x_{k-1}$, then if l < i we must have $a \neq 1_G$.

Fact The only element with rising point 1 is the identity of H, and elements with rising point 2 have either of the following two forms:

(i)
$$\alpha = \begin{pmatrix} x_1 & x_2 & \cdots & x_r \\ ax_1 & x_2 & \cdots & x_r \end{pmatrix}$$
, where $a \neq 1_G$;
(ii) $\alpha = \begin{pmatrix} x_1 & x_2 & \cdots & x_{k-1} & x_k & x_{k+1} & \cdots & x_r \\ x_2 & x_3 & \cdots & x_k & ax_1 & x_{k+1} & \cdots & x_r \end{pmatrix}$, where $k \geq 2$.

Note Both of the above two forms are the so called simple forms; however, elements with simple form can certainly have rising point greater than 2, indeed, it can be r + 1.

Lemma Let $\alpha \in H$ have rising point 1 or 2. Then α is consistent.

Lemma Every $\alpha \in P$ is consistent. Further, if $\alpha = \mathbf{p}_{\lambda i}$ then

$$f_{j,\lambda} = f_{i_1,\lambda_1} \cdots f_{i_k,\lambda_k},$$

where $\mathbf{p}_{\lambda_t, i_t}$ is an element with simple form, $t \in [1, k]$.

Idea. We proceed by induction on rising points. For any $\alpha \in H$ with rising point $k \geq 3$, we have

$$\alpha = \beta \gamma$$

for some $\beta \in H$ with rising point no more than k-1 and some $\gamma \in H$ with simple form. Further, this splitting matches the products of corresponding generators in \overline{H} .

We may denote all generators $f_{i,\lambda}$ with $\mathbf{p}_{\lambda i} = \alpha$ by f_{α} , where $(i,\lambda) \in K$.

Our eventual aim is to show

$$\overline{H}\cong H\cong G\wr \mathcal{S}_r.$$

Definition We say that for $\phi, \varphi, \psi, \sigma \in P$ the quadruple $(\phi, \varphi, \psi, \sigma)$ is **singular** if $\phi^{-1}\psi = \varphi^{-1}\sigma$ and we can find $i, j \in I, \lambda, \mu \in \Lambda$ with $\phi = \mathbf{p}_{\lambda i}, \varphi = \mathbf{p}_{\mu i}, \psi = \mathbf{p}_{\lambda j}$ and $\sigma = \mathbf{p}_{\mu j}$.

Proposition Let \overline{H} be the group given by the presentation $Q = \langle S : \Gamma \rangle$ with generators:

$$S = \{f_\phi: \phi \in P\}$$

and with the defining relations Γ : (P1) $f_{\phi}^{-1}f_{\varphi} = f_{\psi}^{-1}f_{\sigma}$ where $(\phi, \varphi, \psi, \sigma)$ is singular; (P2) $f_{\epsilon} = 1$. Then $\overline{\overline{H}}$ is isomorphic to \overline{H} . The result for $r \leq n-2$

Put

$$\iota_{a,i} = \begin{pmatrix} x_1 & \cdots & x_{i-1} & x_i & x_{i+1} & \cdots & x_r \\ x_1 & \cdots & x_{i-1} & ax_i & x_{i+1} & \cdots & x_r \end{pmatrix};$$

$$1 \le k \le r - 1.$$

Put

for

$$(k \ k+1 \cdots k+m) = \begin{pmatrix} x_1 \ \cdots \ x_{k-1} \ x_k \ \cdots \ x_{k+m-1} \ x_{k+m} \ x_{k+m+1} \ \cdots \ x_r \\ x_1 \ \cdots \ x_{k-1} \ x_{k+1} \ \cdots \ x_{k+m} \ x_k \ x_{k+m+1} \ \cdots \ x_r \end{pmatrix}$$

and we denote $(k \ k+1)$ by τ_k .

The group $H \cong G \wr S_r$ has a presentation $\mathcal{U} = \langle Y : \Upsilon \rangle$, with generators

$$Y = \{\tau_i, \iota_{a,j} : 1 \le i \le r - 1, 1 \le j \le r, a \in G\}$$

and defining relations
$$\Upsilon$$
:
(W1) $\tau_i \tau_i = 1, 1 \le i \le r - 1;$
(W2) $\tau_i \tau_j = \tau_j \tau_i, j \pm 1 \ne i \ne j;$
(W3) $\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}, 1 \le i \le r - 2;$
(W4) $\iota_{a,i} \iota_{b,j} = \iota_{b,j} \iota_{a,i}, a, b \in G \text{ and } 1 \le i \ne j \le r;$
(W5) $\iota_{a,i} \iota_{b,i} = \iota_{ab,i}, 1 \le i \le r \text{ and } a, b \in G;$
(W6) $\iota_{a,i} \tau_j = \tau_j \iota_{a,i}, 1 \le i \ne j, j + 1 \le r;$
(W7) $\iota_{a,i} \tau_i = \tau_i \iota_{a,i+1}, 1 \le i \le r - 1 \text{ and } a \in G.$

Recall that

$$\overline{\overline{H}} = \langle f_{\phi} : \phi \in P \rangle,$$

and further decomposition gives

$$\overline{H} = \langle f_{\tau_i}, f_{\iota_{\mathbf{a},j}}: \ 1 \leq i \leq r-1, 1 \leq j \leq r, \mathbf{a} \in \mathsf{G} \rangle.$$

Find a series of relations (T1) - (T6) satisfied by these generators:

$$\begin{array}{ll} (T1) \ f_{\tau_i}f_{\tau_i} = 1, \ 1 \leq i \leq r-1. \\ (T2) \ f_{\tau_i}f_{\tau_j} = f_{\tau_j}f_{\tau_i}, \ j \pm 1 \neq i \neq j. \\ (T3) \ f_{\tau_i}f_{\tau_{i+1}}f_{\tau_i} = f_{\tau_{i+1}}f_{\tau_i}f_{\tau_{i+1}}, \ 1 \leq i \leq r-2. \\ (T4) \ f_{\iota_{a,i}}f_{\iota_{b,j}} = f_{\iota_{b,j}}f_{\iota_{a,i}}, \ a, b \in G \ \text{and} \ 1 \leq i \neq j \leq r. \\ (T5) \ f_{\iota_{b,i}}f_{\iota_{a,i}} = f_{\iota_{ab,i}}, \ 1 \leq i \leq r \ \text{and} \ a, b \in G. \\ (T6) \ f_{\iota_{a,i}}f_{\tau_j} = f_{\tau_j}f_{\iota_{a,i+1}}, \ 1 \leq i \leq r-1 \ \text{and} \ a \in G. \\ (T7) \ f_{\iota_{a,i}}f_{\tau_i} = f_{\tau_i}f_{\iota_{a,i+1}}, \ 1 \leq i \leq r-1 \ \text{and} \ a \in G. \end{array}$$

Note A twist between (W5) and (T5).

Lemma The group $\overline{\overline{H}}$ with a presentation $\mathcal{Q} = \langle S : \Gamma \rangle$ is isomorphic to the presentation $\mathcal{U} = \langle Y : \Upsilon \rangle$ of H, so that $\overline{H} \cong H$.

Theorem Let End $F_n(G)$ be the endomorphism monoid of a free G-act $F_n(G)$ on n generators, where $n \in \mathbb{N}$ and $n \ge 3$, let E be the biordered set of idempotents of End $F_n(G)$, and let IG(E) be the free idempotent generated semigroup over E.

For any idempotent $\varepsilon \in E$ with rank r, where $1 \leq r \leq n-2$, the maximal subgroup \overline{H} of IG(E) containing $\overline{\varepsilon}$ is isomorphic to the maximal subgroup H of End $F_n(G)$ containing ε and hence to $G \wr S_r$.

Note If r = n, then \overline{H} is trivial; if r = n - 1, then \overline{H} is free.

If r = 1, then H = G and so that:

Corollary Every group can be a maximal subgroup of a naturally occurring IG(E).

If G is trivial, then End $F_n(G)$ is essentially \mathcal{T}_n , so we deduce the following result:

Corollary Let $n \in \mathbb{N}$ with $n \ge 3$ and let IG(E) be the free idempotent generated semigroup over the biordered set E of idempotents of \mathcal{T}_n .

For any idempotent $\varepsilon \in E$ with rank r, where $1 \leq r \leq n-2$, the maximal subgroup \overline{H} of IG(E) containing $\overline{\varepsilon}$ is isomorphic to the maximal subgroup H of \mathcal{T}_n containing ε , and hence to \mathcal{S}_r .