From knot groups to knot semigroups

Alexei Vernitski
 University of Essex

On the picture: the logo of a shopping centre in Colchester presents what in this talk we shall treat as the generators of the semigroup of the trefoil knot

Knot groups

- 3 ways of looking at knot groups:
- The fundamental group
- Wirtinger presenation (1905)
- Dehn presentation (1914?)
- Whichever way you generate a group corresponding to a knot, this is always the same infinite group

The fundamental group

- The knot is treated as a 3D labyrinth
- A fitting quotation:
'Walk around me. Go ahead, walk around me.
Clear around. Did you find anything?'
'No. No, Steve. There are no strings tied to you, not yet.'

Wirtinger presentation

- Arcs (treated as directed arcs with a consistent orientation throughout) are considered as generators
- Each relation is 'read around' a crossing: move anticlockwise and read out the letters on arcs coming from the right (or coming from the left, inverted)

Dehn presentation

- Faces are considered as generators
- Each relation is an equality of two 'ratios' found at a crossing: treat the continuous arc as a 'division sign'

My immediate goal

- Introduce interesting semigroups based on knots, using Wirtinger presenation and Dehn presenation as an inspiration

For comparison

- A three-generated free commutative semigroup
- Generators: a, b, c
- Relations:
- ab=ba
- ac=ca
- bc=cb

New relations

- Generators: a, b, c
- Relations:
- $a b=c a, b a=a c$
- ba=cb, ab=bc
- $c a=b c, a c=c b$
- (when one letter jumps over another letter, that other letter turns into the third letter)
- Example: abc=?
- Example: aabb=bbcc

Knot semigroup

- Arcs are considered as generators
- Each relation is an equality of two products found at a crossing: read the letters in the opposite angles, clockwise in one of them and anticlockwise in the other

The semigroup of the trefoil knot

- Relations:
- $a b=c a, b a=a c$
- ba=cb, ab=bc
- $c a=b c, a c=c b$

Studying the semigroup

- Only words of an equal length can be equal to each other
- There are three elements of length 1 : a, b, c
- There are 5 elements of length 2 : aa, bb, cc, ab, ac

Studying the semigroup

- For any length greater than 2 , there are exactly 6 elements:
a...a, b...b, c...c, a...ab, a...ac, a...abb
- For example, every word of length 6 is equal to one of the following:
aaaaaa
bbbbbb
cCCCCC
aaaaab
aaaaac
aaaabb

The 6 elements of a given length

- Question:

How do you prove that every word is equal to
a word of one of these forms?
a...a, b...b, c...c, a...ab, a...ac, a...abb

- Answer:

By induction on the length of the word

The 6 elements of a given length

- Question:

How do you prove that these words are not equal to one another?
a...a, b...b, c...c, a...ab, a...ac, a...abb

- Answer:

It is possible to find an invariant of a word which is not changed by the relations

The invariant

- Relations:
- $a b=c a, b a=a c$
- $b a=c b, a b=b c$
- ca=bc, ac=cb
- Replace letters by numbers e.g. $a=0, b=1, c=2$
- Consider them in arithmetic modulo 3
- Relations:
- 01=20, 10=02
- 10=21, 01=12
- 20=12, 02=21

The invariant

- Relations:
- 01=20, 10=02
- $10=21,01=12$
- 20=12, 02=21
- Each relation preserves the difference between the first and the second letter (modulo 3)

The invariant

- More generally, take a word, for example, abbc
- Convert to a sequence of digits modulo 3 0112
- Calculate the sum, with odd digits taken with the positive sign and even digits with the negative sign:
$+0-1+1-2=1$
- Using the relations will not change this value

The semigroup of the trefoil knot

- Done: Now we know everything there is to know about the semigroup of the trefoil knot (based on its standard diagram)
- To do:
the big problem of whether the semigroups changes if a knot is represented by some non-standard diagram

Knot invariants

- We want our semigroups to be invariants of knots.
- That is, the semigroup should depend on the knot, but not on the specific diagram of the knot used to build the semigroup.
- For comparison, knot groups are invariants of knots

Cancellation property

- In knot semigroups, my suggestion is
- not to have inverses
- but to have cancellation
- Examples with positive integers:
- The equation $x+y=z$ cannot be solved for x
- But the equation $x+y=z+y$ can be solved for x
- In knot semigroups,
- if $u v=w v$ then $u=w$
- if $v u=v w$ then $u=w$

The trivial knot:
 in the standard and in the trefoil-like position

For comparison: the trefoil knot (the standard diagram):

The trivial knot, also known as unknot (the standard diagram and a trefoil-like diagram):

- The semigroup of the trivial knot (the standard diagram) is the infinite cyclic semigroup
- The semigroup of the trivial knot (the trefoil-like diagram) is also the infinite cyclic semigroup
- For proving the latter result, we use the cancellation property

The trivial knot in the trefoil-like position

- The relations are
- $q p=p r$ and $p q=r p$
- $r p=p p$ and $p r=p p$
- $p p=p q$ and $p p=q p$
- Without cancellation, the semigroup is 'almost' cyclic $\cdot:$
- With cancellation, $\mathrm{p}=\mathrm{q}=\mathrm{r}$ ©

The trefoil knot

in an awkward position

- All knots on this diagram are equal.

- I calculated their semigroups, and they all are isomorphic to each other.

The trefoil knot

in an awkward position

- Here is one of the knot diagrams from the previous slide
- Relations are $a \mathrm{e}=\mathrm{eb}$, etc.
- The relations together with cancellation simplify the generators as follows:
- $a=c=f$
- $b=d=g$
- e

Further research

- My personal perception of knot semigroups:

Dehn-style knot semigroup

- Faces are considered as generators
- Each relation is an equality of two products 'read around' a crossing as you circle it clockwise or anticlockwise
- (I have not started studying this semigroup yet)

Why semigroups?

- In a knot group, there are 'too many' sets of generators
- Isomorphism between groups is difficult to establish
- In a knot semigroup, there is only one set of generators
- Isomorphism between semigroups is easy to establish?

The group of the trefoil knot

- Generated by a, b with a relation $a^{2}=b^{3}$
- Or: by x, y with a relation $x y x=y x y$
- Or (from my own non-related research): by p, q with a relation $p q p^{-1}=q p^{-1} q^{-1}$
- Establishing isomorphism between these seemingly different groups is difficult

The semigroup of the trefoil knot

- Generators:
- a, b, c
- Relations:
- $a b=c a, b a=a c$
- ba=cb, ab=bc
- $c a=b c, a c=c b$
- Generators:
- a, b, c, d, e, f
- Relations:
- $a e=b a, ~ e a=a b$
- be=ec, eb=ce
- ce=ed, ec=de
- da=ae, ad=ea
- $e d=d f, d e=f d$
- fe=eg, ef=ge
- ge=ea, eg=ae

How easy (algorithmically) is it to get rid of the redundant generators in the presentation on the right and arrive at the 'canonical' presentation on the left?

