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Compare the �ve languages:

L1 = aA∗∪A∗a, L2 = A∗a, L3 = aA∗

L4 = aA∗b∪bA∗a, L5 = (A2)∗.

L1 has the Factor Property (FP):

∀u ∈ A∗∃u1,u2,u′1,u′2 ∈ A∗ : u1uu2 ∈ L&u′1uu
′
2 ∈ L′

L2 (resp. L3) has the Pre�x Property (PP) (resp. Su�x Property

(SP)):

∀x ∈A∗∃v ,v ′ ∈A∗ : xv ∈ L, xv ′ ∈ L′ (resp. ∃u,u′ ∈ A∗ : ux ∈ L, u′x ∈ L′).

L4 has both the Pre�x and Su�x properties (Weak Scan property

(WS)).
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A stronger condtion still is the Full Scan Property (FS):

∀u,v ∈ A∗∃x ,x ′ ∈ A∗ : uxv ∈ &ux ′v ∈ L′.

L5 has the full scan property.

For regular languages, in terms of the minimal automaton

A (Q, i ,T ) = A (L) we have:

L ∈ FP ⇔6 ∃a sink state q ∈ Q : Q · z = q∀z ∈ A∗

L ∈ PP ⇔ |q ·A∗|> 1∀q ∈ Q; L ∈ SP ⇔ LR ∈ PP

L ∈WS ⇔ L ∈ PP&L ∈ SP

L ∈ FS ⇔ Lv−1 ∈ PP ∀v ∈ A∗.
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Scanning Conditions in terms of the syntactic monoid

Let (·) : A∗→ A∗/η =M(L) denote the natural morphism of A∗

onto the syntactic monoid M(L) of language L⊆ A∗, so that

u = v ⇔ (puq ∈ L⇔ pvq ∈ L, ∀p,q ∈ A∗)−η saturates L.

We say a set X ⊆M(L) is a bridge if

Xη
−1∩L 6= /0&Xη

−1∩L′ 6= /0.

Theorem

Let L be regular and let I be the minimum ideal of M =M(L) Then

(i) L ∈ FP if and only if the D-class I of M is a bridge;

(ii) L ∈ PP (resp. SP) if and only if each R-class (resp. L -class)

of I is bridge;
(iii) L ∈WS if and only if each R-class and each L -class of I is
bridge;

(iv) L ∈ FS if and only if each H -class of I is bridge.
Conversely, if I is a non-trivial group, then L ∈ FS .
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Observations & Examples

Examples

(A) L(f ,m,K ) = {w ∈ A∗ : |w |f (mod m) ∈ K} where f ∈ A∗, m≥ 2

and K a proper subset of {0,1, · · · ,m−1} is a full scan language.

(B) L ∈ FS then so is L′, LR , u−1L, Lu−1 for any u ∈ A∗;
(C) L is full scan if and only if u−1Lv−1 is proper for all u,v ∈ A∗.
The following languages are not regular:

(i) {w ∈ A∗ : |w |a = |w |b}; (ii) Primitive words; (iii) Words with

borders.

Argument for (ii): L ∈ FS (easy to check) so suppose L were

regular and let u ∈ H, a maximal subgroup of I .
Take k ≥ 1 such that u = uk+1: uk+1 ∈ L′⇒ u ∈ L′∀u ∈ H,

whence H is not a bridge, contradiction!
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Chameleon sets

De�nition

A set C ⊆ A∗ is called a chameleon set if ∀u,v ∈ A∗∃u′,v ′ ∈ A∗

such that uu′A∗v ′v ∩C = /0. Equivalently, each two-sided quotient

u−1Cv−1 has an empty two-sided quotient u′−1(u−1Cv−1)v ′−1.

Examples

�nite sets, complements of ideals.

CP closed under sublanguages, �nite unions, reversals, left

quotients and right quotients, and so forms a topology on A∗.
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Why chameleon?

Theorem

Let L be full scan and C chameleon. Then L∪C and L\C are full

scan.

Proof Let u,v ∈ A∗. Since C ∈ CP ∃u′v ′ ∈ A∗ such that

uu′A∗v ′v ∩C = /0. Since L ∈ FS ∃ x ,x ′ ∈ A∗ such that

(uu′)x(v ′v) ∈ L and (uu′)x ′(v ′v) ∈ L′. But then:

u(u′xv ′)v ∈ L∪C and u(u′x ′v ′)v ∈ L′∩C ′ = (L∪C )′, thus L∪C ∈ FS .

L ∈ FS ⇒ L′∪C ∈ FS ⇒ (L′∪C )′ ∈ FS ⇒ L∩C ′ = L\C ∈ FS .
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L ∈ FS ⇒ L′∪C ∈ FS ⇒ (L′∪C )′ ∈ FS ⇒ L∩C ′ = L\C ∈ FS .
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Why chameleon?
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Theorem

A regular chameleon set has none of the �ve scanning properties.

In consequence, none of the following languages are regular.

Examples

(A) Language of all palindromes is weak scan and chameleon;

(B) The language of all Lyndon words is chameleon and has the

factor property;

(C) The Dyck language (of all meaningful parantheses) is

chameleon and has the factor property.
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Letter scan languages

Take the de�nition of full scan language and strengthen the

condition uxv ∈ L, ux ′v ∈ L′ by insisting that x ∈ A. If we take

A= {a,b} the FSL languages are as follows.

De�nitions

Let E = {w ∈ A∗ : |w |a ≡ 0(mod 2)} and O = A∗ \E . Let
En = E ∩An, On = O ∩An. For any L⊆ A∗ let Ln = L∩An.

Theorem

L is FSL if and only if Ln ∈ {En,On}∀n ≥ 0}.

There is then a one-to-one correspondence between FSL languages

L and real numbers sL in the interval [0,2]: the initial digit

determines the presence or absence of ε , the nth digit is 0 if and

only if Ln = En.

Theorem

Let L ∈FSL. Then L is regular if and only if sL ∈Q.
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Universal FSL Automaton
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Minimal automaton in rational case

The universal automaton U will recognize a given FSL language L
by putting n or n′ ∈ T according as Ln = En or Ln = On. In e�ect

we just read sL into U .

Let sL = e0 · e1e2 · · · . If sL ∈Q with ek = ek+n for some minimum

k and n, then we may identify the pairs of states (k,k+n) and
(k ′,(k+n)′). The resulting �nite automaton A (L) has the form of

a cylinder with a trailing tape that leads to a point (0):
and A (L) is the minimal automaton of L EXCEPT if sL has the

form:

sL =
1

2k
(
n+

t

1+2r
)
, 0≤ k, 0≤ n ≤ 2k −1, 1≤ r , 1≤ t ≤ 2r .
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Cylinder versus Mobius strip

This special case is where the recurring part of sL has the form zz
where z is de�ned by z+ z = 11 · · ·1 (with 2r 1's), so that z is the

obtained from z by interchanging the symbols 0 and 1 throughout.

In this case the cylinder of circumference 2r may be replaced by a

Mobius strip of edge length 2r :
We may identify the pairs of states (k+ r ,k ′) and ((k+ r)′,k), the
resulting half-twist giving the form of a Mobius strip.
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