Languages that require full scanning of words to determine membership

Peter M. Higgins \& Suhear Alwan

Department of Mathematical Sciences, University of Essex
NBSAN Norwich April 15th 2014

Compare the five languages:

$$
\begin{gathered}
L_{1}=a A^{*} \cup A^{*} a, \quad L_{2}=A^{*} a, \quad L_{3}=a A^{*} \\
L_{4}=a A^{*} b \cup b A^{*} a, \quad L_{5}=\left(A^{2}\right)^{*} .
\end{gathered}
$$

L_{1} has the Factor Property (FP):
L_{2} (resp. L_{3}) has the Prefix Property (PP) (resp. Suffix Property (SP)):
$\forall x \in A^{*} \exists v, v^{\prime} \in A^{*}: x v \in L, x v^{\prime} \in L^{\prime}\left(r e s p . \exists u, u^{\prime} \in A^{*}: u x \in L, u^{\prime} x \in L^{\prime}\right)$.
L_{4} has both the Prefix and Suffix properties (Weak Scan property (WS)).

Compare the five languages:

$$
\begin{gathered}
L_{1}=a A^{*} \cup A^{*} a, \quad L_{2}=A^{*} a, \quad L_{3}=a A^{*} \\
L_{4}=a A^{*} b \cup b A^{*} a, \quad L_{5}=\left(A^{2}\right)^{*} .
\end{gathered}
$$

L_{1} has the Factor Property (FP):

$$
\forall u \in A^{*} \exists u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime} \in A^{*}: u_{1} u u_{2} \in L \& u_{1}^{\prime} u u_{2}^{\prime} \in L^{\prime}
$$

L_{2} (resp. L_{3}) has the Prefix Property (PP) (resp. Suffix Property
(SP)):
$\forall x \in A^{*} \exists v, v^{\prime} \in A^{*}: x v \in L, x v^{\prime} \in L^{\prime}$ (resp. $\exists u, u^{\prime} \in A^{*}: u x \in L, u^{\prime} x \in L^{\prime}$). 1_{4} has both the Prefix and Suffix properties (Wlaak Scan property (WS)).

Compare the five languages:

$$
\begin{gathered}
L_{1}=a A^{*} \cup A^{*} a, \quad L_{2}=A^{*} a, \quad L_{3}=a A^{*} \\
L_{4}=a A^{*} b \cup b A^{*} a, \quad L_{5}=\left(A^{2}\right)^{*} .
\end{gathered}
$$

L_{1} has the Factor Property (FP):

$$
\forall u \in A^{*} \exists u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime} \in A^{*}: u_{1} u u_{2} \in L \& u_{1}^{\prime} u u_{2}^{\prime} \in L^{\prime}
$$

L_{2} (resp. L_{3}) has the Prefix Property ($P P$) (resp. Suffix Property (SP)):
$\forall x \in A^{*} \exists v, v^{\prime} \in A^{*}: x v \in L, x v^{\prime} \in L^{\prime}\left(\right.$ resp. $\left.\exists u, u^{\prime} \in A^{*}: u x \in L, u^{\prime} x \in L^{\prime}\right)$.

Compare the five languages:

$$
\begin{gathered}
L_{1}=a A^{*} \cup A^{*} a, \quad L_{2}=A^{*} a, \quad L_{3}=a A^{*} \\
L_{4}=a A^{*} b \cup b A^{*} a, \quad L_{5}=\left(A^{2}\right)^{*} .
\end{gathered}
$$

L_{1} has the Factor Property (FP):

$$
\forall u \in A^{*} \exists u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime} \in A^{*}: u_{1} u u_{2} \in L \& u_{1}^{\prime} u u_{2}^{\prime} \in L^{\prime}
$$

L_{2} (resp. L_{3}) has the Prefix Property (PP) (resp. Suffix Property (SP)):
$\forall x \in A^{*} \exists v, v^{\prime} \in A^{*}: x v \in L, x v^{\prime} \in L^{\prime}$ (resp. $\left.\exists u, u^{\prime} \in A^{*}: u x \in L, u^{\prime} x \in L^{\prime}\right)$.
L_{4} has both the Prefix and Suffix properties (Weak Scan property (WS)).

A stronger condtion still is the Full Scan Property (FS):

$$
\forall u, v \in A^{*} \exists x, x^{\prime} \in A^{*}: u x v \in \& u x^{\prime} v \in L^{\prime}
$$

L_{5} has the full scan property.
For regular languages, in terms of the minimal automaton $\mathscr{A}(Q, i, T)=\mathscr{A}(L)$ we have:

A stronger condtion still is the Full Scan Property (FS):

$$
\forall u, v \in A^{*} \exists x, x^{\prime} \in A^{*}: u x v \in \& u x^{\prime} v \in L^{\prime} .
$$

L_{5} has the full scan property.
For regular languages, in terms of the minimal automaton $\mathscr{A}(Q, i, T)=\mathscr{A}(L)$ we have:

$$
L \in F P \Leftrightarrow \nexists \text { a sink state } q \in Q: Q \cdot z=q \forall z \in A^{*}
$$

A stronger condtion still is the Full Scan Property (FS):

$$
\forall u, v \in A^{*} \exists x, x^{\prime} \in A^{*}: u x v \in \& u x^{\prime} v \in L^{\prime} .
$$

L_{5} has the full scan property.
For regular languages, in terms of the minimal automaton $\mathscr{A}(Q, i, T)=\mathscr{A}(L)$ we have:

$$
\begin{aligned}
& L \in F P \Leftrightarrow \nexists \text { a sink state } q \in Q: Q \cdot z=q \forall z \in A^{*} \\
& L \in P P \Leftrightarrow\left|q \cdot A^{*}\right|>1 \forall q \in Q ; L \in S P \Leftrightarrow L^{R} \in P P
\end{aligned}
$$

A stronger condtion still is the Full Scan Property (FS):

$$
\forall u, v \in A^{*} \exists x, x^{\prime} \in A^{*}: u x v \in \& u x^{\prime} v \in L^{\prime} .
$$

L_{5} has the full scan property.
For regular languages, in terms of the minimal automaton $\mathscr{A}(Q, i, T)=\mathscr{A}(L)$ we have:

$$
\begin{gathered}
L \in F P \Leftrightarrow \nexists \text { a sink state } q \in Q: Q \cdot z=q \forall z \in A^{*} \\
L \in P P \Leftrightarrow\left|q \cdot A^{*}\right|>1 \forall q \in Q ; L \in S P \Leftrightarrow L^{R} \in P P \\
L \in W S \Leftrightarrow L \in P P \& L \in S P
\end{gathered}
$$

A stronger condtion still is the Full Scan Property (FS):

$$
\forall u, v \in A^{*} \exists x, x^{\prime} \in A^{*}: u x v \in \& u x^{\prime} v \in L^{\prime} .
$$

L_{5} has the full scan property.
For regular languages, in terms of the minimal automaton $\mathscr{A}(Q, i, T)=\mathscr{A}(L)$ we have:

$$
\begin{gathered}
L \in F P \Leftrightarrow \nexists \text { a sink state } q \in Q: Q \cdot z=q \forall z \in A^{*} \\
L \in P P \Leftrightarrow\left|q \cdot A^{*}\right|>1 \forall q \in Q ; L \in S P \Leftrightarrow L^{R} \in P P \\
L \in W S \Leftrightarrow L \in P P \& L \in S P \\
L \in F S \Leftrightarrow L v^{-1} \in P P \forall v \in A^{*} .
\end{gathered}
$$

Scanning Conditions in terms of the syntactic monoid

Let $\overline{(\cdot)}: A^{*} \rightarrow A^{*} / \eta=M(L)$ denote the natural morphism of A^{*} onto the syntactic monoid $M(L)$ of language $L \subseteq A^{*}$, so that

$$
\bar{u}=\bar{v} \Leftrightarrow\left(p u q \in L \Leftrightarrow p v q \in L, \forall p, q \in A^{*}\right)-\eta \text { saturates } L .
$$

We say a set $X \subseteq M(L)$ is a bridge if

$$
X \eta^{-1} \cap L \neq \emptyset \& X \eta^{-1} \cap L^{\prime} \neq \emptyset .
$$

Theorem

Let L be regular and let I be the minimum ideal of $M=M(L)$ Then

Scanning Conditions in terms of the syntactic monoid

Let $\overline{(\cdot)}: A^{*} \rightarrow A^{*} / \eta=M(L)$ denote the natural morphism of A^{*} onto the syntactic monoid $M(L)$ of language $L \subseteq A^{*}$, so that

$$
\bar{u}=\bar{v} \Leftrightarrow\left(p u q \in L \Leftrightarrow p v q \in L, \forall p, q \in A^{*}\right)-\eta \text { saturates } L .
$$

We say a set $X \subseteq M(L)$ is a bridge if

$$
X \eta^{-1} \cap L \neq \emptyset \& X \eta^{-1} \cap L^{\prime} \neq \emptyset .
$$

Theorem

Let L be regular and let I be the minimum ideal of $M=M(L)$ Then
(i) $L \in F P$ if and only if the \mathscr{D}-class $/$ of M is a bridge;

Scanning Conditions in terms of the syntactic monoid

Let $\overline{(\cdot)}: A^{*} \rightarrow A^{*} / \eta=M(L)$ denote the natural morphism of A^{*} onto the syntactic monoid $M(L)$ of language $L \subseteq A^{*}$, so that

$$
\bar{u}=\bar{v} \Leftrightarrow\left(p u q \in L \Leftrightarrow p v q \in L, \forall p, q \in A^{*}\right)-\eta \text { saturates } L .
$$

We say a set $X \subseteq M(L)$ is a bridge if

$$
X \eta^{-1} \cap L \neq \emptyset \& X \eta^{-1} \cap L^{\prime} \neq \emptyset .
$$

Theorem

Let L be regular and let I be the minimum ideal of $M=M(L)$ Then
(i) $L \in F P$ if and only if the \mathscr{D}-class I of M is a bridge;
(ii) $L \in P P$ (resp. $S P$) if and only if each \mathscr{R}-class (resp. \mathscr{L}-class) of I is bridge;
(iii) $L \in W S$ if and only if each \mathscr{R}-class and each \mathscr{L}-class of I is bridge;
(iv) $L \in F S$ if and only if each \mathscr{H}-class of $/$ is bridge.

Scanning Conditions in terms of the syntactic monoid

Let $\overline{(\cdot)}: A^{*} \rightarrow A^{*} / \eta=M(L)$ denote the natural morphism of A^{*} onto the syntactic monoid $M(L)$ of language $L \subseteq A^{*}$, so that

$$
\bar{u}=\bar{v} \Leftrightarrow\left(p u q \in L \Leftrightarrow p v q \in L, \forall p, q \in A^{*}\right)-\eta \text { saturates } L .
$$

We say a set $X \subseteq M(L)$ is a bridge if

$$
X \eta^{-1} \cap L \neq \emptyset \& X \eta^{-1} \cap L^{\prime} \neq \emptyset .
$$

Theorem

Let L be regular and let I be the minimum ideal of $M=M(L)$ Then
(i) $L \in F P$ if and only if the \mathscr{D}-class I of M is a bridge;
(ii) $L \in P P$ (resp. $S P$) if and only if each \mathscr{R}-class (resp. \mathscr{L}-class) of I is bridge;
(iii) $L \in W S$ if and only if each \mathscr{R}-class and each \mathscr{L}-class of I is bridge;
(iv) $L \in F S$ if and only if each \mathscr{H}-class of $/$ is bridge.

Conversely, if $/$ is a non-trivial group, then $L \in F_{\square} S_{\text {a }}$. $\bar{\equiv}$. $\bar{\equiv}$, $\bar{\equiv}$

Scanning Conditions in terms of the syntactic monoid

Let $\overline{(\cdot)}: A^{*} \rightarrow A^{*} / \eta=M(L)$ denote the natural morphism of A^{*} onto the syntactic monoid $M(L)$ of language $L \subseteq A^{*}$, so that

$$
\bar{u}=\bar{v} \Leftrightarrow\left(p u q \in L \Leftrightarrow p v q \in L, \forall p, q \in A^{*}\right)-\eta \text { saturates } L .
$$

We say a set $X \subseteq M(L)$ is a bridge if

$$
X \eta^{-1} \cap L \neq \emptyset \& X \eta^{-1} \cap L^{\prime} \neq \emptyset .
$$

Theorem

Let L be regular and let I be the minimum ideal of $M=M(L)$ Then
(i) $L \in F P$ if and only if the \mathscr{D}-class I of M is a bridge;
(ii) $L \in P P$ (resp. $S P$) if and only if each \mathscr{R}-class (resp. \mathscr{L}-class) of I is bridge;
(iii) $L \in W S$ if and only if each \mathscr{R}-class and each \mathscr{L}-class of I is bridge;
(iv) $L \in F S$ if and only if each \mathscr{H}-class of I is bridge.

Scanning Conditions in terms of the syntactic monoid

Let $\overline{(\cdot)}: A^{*} \rightarrow A^{*} / \eta=M(L)$ denote the natural morphism of A^{*} onto the syntactic monoid $M(L)$ of language $L \subseteq A^{*}$, so that

$$
\bar{u}=\bar{v} \Leftrightarrow\left(p u q \in L \Leftrightarrow p v q \in L, \forall p, q \in A^{*}\right)-\eta \text { saturates } L .
$$

We say a set $X \subseteq M(L)$ is a bridge if

$$
X \eta^{-1} \cap L \neq \emptyset \& X \eta^{-1} \cap L^{\prime} \neq \emptyset .
$$

Theorem

Let L be regular and let I be the minimum ideal of $M=M(L)$ Then
(i) $L \in F P$ if and only if the \mathscr{D}-class I of M is a bridge;
(ii) $L \in P P$ (resp. $S P$) if and only if each \mathscr{R}-class (resp. \mathscr{L}-class) of I is bridge;
(iii) $L \in W S$ if and only if each \mathscr{R}-class and each \mathscr{L}-class of I is bridge;
(iv) $L \in F S$ if and only if each \mathscr{H}-class of I is bridge.

Conversely, if I is a non-trivial group, then $L \in F S$.

Observations \& Examples

Examples

(A) $L(f, m, K)=\left\{w \in A^{*}:|w|_{f}(\bmod m) \in K\right\}$ where $f \in A^{*}, m \geq 2$ and K a proper subset of $\{0,1, \cdots, m-1\}$ is a full scan language.
(B) $L \in F S$ then so is $L^{\prime}, L^{R}, u^{-1} L, L u^{-1}$ for any $u \in A^{*}$
(C) L is full scan if and only if $u^{-1} L v^{-1}$ is proper for all $u, v \in A^{*}$

The following languages are not regular:
(i) $\left\{w \in A^{*}:|w|_{a}=|w|_{b}\right\}$; (ii) Primitive words; (iii) Words with
borders.
Argument for (ii): $L \in F S$ (easy to check) so suppose L were
regular and let $\bar{u} \in H$, a maximal subgroup of I.
Take $k \geq 1$ such that $\bar{u}=\bar{u}^{k+1}: u^{k+1} \in L^{\prime} \Rightarrow u \in L^{\prime} \forall \bar{u} \in H$,
whence H is not a bridge, contradiction!

Observations \& Examples

Examples

(A) $L(f, m, K)=\left\{w \in A^{*}:|w|_{f}(\bmod m) \in K\right\}$ where $f \in A^{*}, m \geq 2$ and K a proper subset of $\{0,1, \cdots, m-1\}$ is a full scan language.
(B) $L \in F S$ then so is $L^{\prime}, L^{R}, u^{-1} L, L u^{-1}$ for any $u \in A^{*}$;

The following languages are not regular:
(i) $\left\{w \in A^{*}:|w|_{a}=|w|_{b}\right\}$; (ii) Primitive words; (iii) Words with
borders.
Argument for (ii): $L \in F S$ (easy to check) so suppose L were
regular and let $\bar{u} \in H$, a maximal subgroup of I.
Take $k \geq 1$ such that $\bar{u}=\bar{u}^{k+1}: u^{k+1} \in L^{\prime} \Rightarrow u \in L^{\prime} \forall \bar{u} \in H$,
whence H is not a bridge, contradiction!

Observations \& Examples

Examples

(A) $L(f, m, K)=\left\{w \in A^{*}:|w|_{f}(\bmod m) \in K\right\}$ where $f \in A^{*}, m \geq 2$ and K a proper subset of $\{0,1, \cdots, m-1\}$ is a full scan language.
(B) $L \in F S$ then so is $L^{\prime}, L^{R}, u^{-1} L, L u^{-1}$ for any $u \in A^{*}$; (C) L is full scan if and only if $u^{-1} L v^{-1}$ is proper for all $u, v \in A^{*}$. The following languages are not regular:
(i) $\left\{w \in A^{*}:|w|_{a}=|w|_{b}\right\}$; (ii) Primitive words; (iii) Words with
borders.
Argument for (ii): $L \in F S$ (easy to check) so suppose L were
regular and let $\bar{u} \in H$, a maximal subgroup of I.
Take $k \geq 1$ such that $\bar{u}=\bar{u}^{k+1}: u^{k+1} \in L^{\prime} \Rightarrow u \in L^{\prime} \forall \bar{u} \in H$,
whence H is not a bridge, contradiction!

Observations \& Examples

Examples

(A) $L(f, m, K)=\left\{w \in A^{*}:|w|_{f}(\bmod m) \in K\right\}$ where $f \in A^{*}, m \geq 2$ and K a proper subset of $\{0,1, \cdots, m-1\}$ is a full scan language.
(B) $L \in F S$ then so is $L^{\prime}, L^{R}, u^{-1} L, L u^{-1}$ for any $u \in A^{*}$; (C) L is full scan if and only if $u^{-1} L v^{-1}$ is proper for all $u, v \in A^{*}$. The following languages are not regular:
(i) $\left\{w \in A^{*}:|w|_{a}=|w|_{b}\right\}$; (ii) Primitive words; (iii) Words with
borders.
Argument for (ii): $L \in F S$ (easy to check) so suppose L were
regular and let $\bar{u} \in H$, a maximal subgroup of I.
Take $k \geq 1$ such that $\bar{u}=\bar{u}^{k+1}: u^{k+1} \in L^{\prime} \Rightarrow u \in L^{\prime} \forall \bar{u} \in H$,
whence H is not a bridge, contradiction!

Observations \& Examples

Examples

(A) $L(f, m, K)=\left\{w \in A^{*}:|w|_{f}(\bmod m) \in K\right\}$ where $f \in A^{*}, m \geq 2$ and K a proper subset of $\{0,1, \cdots, m-1\}$ is a full scan language.
(B) $L \in F S$ then so is $L^{\prime}, L^{R}, u^{-1} L, L u^{-1}$ for any $u \in A^{*}$;
(C) L is full scan if and only if $u^{-1} L v^{-1}$ is proper for all $u, v \in A^{*}$.

The following languages are not regular:
(i) $\left\{w \in A^{*}:|w|_{a}=|w|_{b}\right\}$; (ii) Primitive words; (iii) Words with borders.
Argument for (ii): $L \in F S$ (easy to check) so suppose L were
regular and let $\bar{u} \in H$, a maximal subgroup of I.
Take $k \geq 1$ such that $\bar{u}=\bar{u}^{k+1}: u^{k+1} \in$
whence H is not a bridge, contradiction!

Observations \& Examples

Examples

(A) $L(f, m, K)=\left\{w \in A^{*}:|w|_{f}(\bmod m) \in K\right\}$ where $f \in A^{*}, m \geq 2$ and K a proper subset of $\{0,1, \cdots, m-1\}$ is a full scan language.
(B) $L \in F S$ then so is $L^{\prime}, L^{R}, u^{-1} L, L u^{-1}$ for any $u \in A^{*}$;
(C) L is full scan if and only if $u^{-1} L v^{-1}$ is proper for all $u, v \in A^{*}$.

The following languages are not regular:
(i) $\left\{w \in A^{*}:|w|_{a}=|w|_{b}\right\}$; (ii) Primitive words; (iii) Words with borders.
Argument for (ii): $L \in F S$ (easy to check) so suppose L were regular and let $\bar{u} \in H$, a maximal subgroup of I.
whence H is not a bridge, contradiction!

Observations \& Examples

Examples

(A) $L(f, m, K)=\left\{w \in A^{*}:|w|_{f}(\bmod m) \in K\right\}$ where $f \in A^{*}, m \geq 2$ and K a proper subset of $\{0,1, \cdots, m-1\}$ is a full scan language.
(B) $L \in F S$ then so is $L^{\prime}, L^{R}, u^{-1} L, L u^{-1}$ for any $u \in A^{*}$;
(C) L is full scan if and only if $u^{-1} L v^{-1}$ is proper for all $u, v \in A^{*}$.

The following languages are not regular:
(i) $\left\{w \in A^{*}:|w|_{a}=|w|_{b}\right\}$; (ii) Primitive words; (iii) Words with borders.
Argument for (ii): $L \in F S$ (easy to check) so suppose L were regular and let $\bar{u} \in H$, a maximal subgroup of I.
Take $k \geq 1$ such that $\bar{u}=\bar{u}^{k+1}: u^{k+1} \in L^{\prime} \Rightarrow u \in L^{\prime} \forall \bar{u} \in H$, whence H is not a bridge, contradiction!

Observations \& Examples

Examples

(A) $L(f, m, K)=\left\{w \in A^{*}:|w|_{f}(\bmod m) \in K\right\}$ where $f \in A^{*}, m \geq 2$ and K a proper subset of $\{0,1, \cdots, m-1\}$ is a full scan language.
(B) $L \in F S$ then so is $L^{\prime}, L^{R}, u^{-1} L, L u^{-1}$ for any $u \in A^{*}$;
(C) L is full scan if and only if $u^{-1} L v^{-1}$ is proper for all $u, v \in A^{*}$.

The following languages are not regular:
(i) $\left\{w \in A^{*}:|w|_{a}=|w|_{b}\right\}$; (ii) Primitive words; (iii) Words with borders.
Argument for (ii): $L \in F S$ (easy to check) so suppose L were regular and let $\bar{u} \in H$, a maximal subgroup of I.
Take $k \geq 1$ such that $\bar{u}=\bar{u}^{k+1}: u^{k+1} \in L^{\prime} \Rightarrow u \in L^{\prime} \forall \bar{u} \in H$, whence H is not a bridge, contradiction!

Chameleon sets

Definition

A set $C \subseteq A^{*}$ is called a chameleon set if $\forall u, v \in A^{*} \exists u^{\prime}, v^{\prime} \in A^{*}$ such that $u u^{\prime} A^{*} v^{\prime} v \cap C=\emptyset$. Equivalently, each two-sided quotient $u^{-1} \mathrm{Cv}^{-1}$ has an empty two-sided quotient $u^{\prime-1}\left(u^{-1} \mathrm{Cv}^{-1}\right) v^{\prime-1}$.

Examples

finite sets, complements of ideals.
CP closed under sublanguages, finite unions, reversals, left
quotients and right quotients, and so forms a topology on A^{*}

Chameleon sets

Definition

A set $C \subseteq A^{*}$ is called a chameleon set if $\forall u, v \in A^{*} \exists u^{\prime}, v^{\prime} \in A^{*}$ such that $u u^{\prime} A^{*} v^{\prime} v \cap C=\emptyset$. Equivalently, each two-sided quotient $u^{-1} \mathrm{Cv}^{-1}$ has an empty two-sided quotient $u^{\prime-1}\left(u^{-1} \mathrm{Cv}^{-1}\right) v^{\prime-1}$.

Examples

finite sets, complements of ideals.
CP closed under sublanguages, finite unions, reversals, left quotients and right quotients, and so forms a topology on A^{*}

Chameleon sets

Definition

A set $C \subseteq A^{*}$ is called a chameleon set if $\forall u, v \in A^{*} \exists u^{\prime}, v^{\prime} \in A^{*}$ such that $u u^{\prime} A^{*} v^{\prime} v \cap C=\emptyset$. Equivalently, each two-sided quotient $u^{-1} \mathrm{Cv}^{-1}$ has an empty two-sided quotient $u^{\prime-1}\left(u^{-1} \mathrm{Cv}^{-1}\right) v^{\prime-1}$.

Examples

finite sets, complements of ideals.
CP closed under sublanguages, finite unions, reversals, left quotients and right quotients, and so forms a topology on A^{*}.

Chameleon sets

Definition

A set $C \subseteq A^{*}$ is called a chameleon set if $\forall u, v \in A^{*} \exists u^{\prime}, v^{\prime} \in A^{*}$ such that $u u^{\prime} A^{*} v^{\prime} v \cap C=\emptyset$. Equivalently, each two-sided quotient $u^{-1} \mathrm{Cv}^{-1}$ has an empty two-sided quotient $u^{\prime-1}\left(u^{-1} \mathrm{Cv}^{-1}\right) v^{\prime-1}$.

Examples

finite sets, complements of ideals.
CP closed under sublanguages, finite unions, reversals, left quotients and right quotients, and so forms a topology on A^{*}.

Why chameleon?

Theorem
Let L be full scan and C chameleon. Then $L \cup C$ and $L \backslash C$ are full scan.

Proof Let $u, v \in A^{*}$. Since $C \in C P \exists u^{\prime} v^{\prime} \in A^{*}$ such that $u u^{\prime} A^{*} v^{\prime} v \cap C=\emptyset$. Since $L \in F S \exists x, x^{\prime} \in A^{*}$ such that $\left(u u^{\prime}\right) x\left(v^{\prime} v\right) \in L$ and $\left(u u^{\prime}\right) x^{\prime}\left(v^{\prime} v\right) \in L^{\prime}$. But then:

Why chameleon?

Theorem

Let L be full scan and C chameleon. Then $L \cup C$ and $L \backslash C$ are full scan.

Proof Let $u, v \in A^{*}$. Since $C \in C P \exists u^{\prime} v^{\prime} \in A^{*}$ such that $u u^{\prime} A^{*} v^{\prime} v \cap C=\emptyset$. Since $L \in F S \exists x, x^{\prime} \in A^{*}$ such that $\left(u u^{\prime}\right) x\left(v^{\prime} v\right) \in L$ and $\left(u u^{\prime}\right) x^{\prime}\left(v^{\prime} v\right) \in L^{\prime}$. But then:

Why chameleon?

Theorem

Let L be full scan and C chameleon. Then $L \cup C$ and $L \backslash C$ are full scan.

Proof Let $u, v \in A^{*}$. Since $C \in C P \exists u^{\prime} v^{\prime} \in A^{*}$ such that $u u^{\prime} A^{*} v^{\prime} v \cap C=\emptyset$. Since $L \in F S \exists x, x^{\prime} \in A^{*}$ such that $\left(u u^{\prime}\right) x\left(v^{\prime} v\right) \in L$ and $\left(u u^{\prime}\right) x^{\prime}\left(v^{\prime} v\right) \in L^{\prime}$. But then:
$u\left(u^{\prime} x v^{\prime}\right) v \in L \cup C$ and $u\left(u^{\prime} x^{\prime} v^{\prime}\right) v \in L^{\prime} \cap C^{\prime}=(L \cup C)^{\prime}$, thus $L \cup C \in F S$.

Why chameleon?

Theorem

Let L be full scan and C chameleon. Then $L \cup C$ and $L \backslash C$ are full scan.

Proof Let $u, v \in A^{*}$. Since $C \in C P \exists u^{\prime} v^{\prime} \in A^{*}$ such that $u u^{\prime} A^{*} v^{\prime} v \cap C=\emptyset$. Since $L \in F S \exists x, x^{\prime} \in A^{*}$ such that $\left(u u^{\prime}\right) x\left(v^{\prime} v\right) \in L$ and $\left(u u^{\prime}\right) x^{\prime}\left(v^{\prime} v\right) \in L^{\prime}$. But then:
$u\left(u^{\prime} x v^{\prime}\right) v \in L \cup C$ and $u\left(u^{\prime} x^{\prime} v^{\prime}\right) v \in L^{\prime} \cap C^{\prime}=(L \cup C)^{\prime}$, thus $L \cup C \in F S$.
$L \in F S \Rightarrow L^{\prime} \cup C \in F S \Rightarrow\left(L^{\prime} \cup C\right)^{\prime} \in F S \Rightarrow L \cap C^{\prime}=L \backslash C \in F S$.

Theorem

A regular chameleon set has none of the five scanning properties.
In consequence, none of the following languages are regular.

Examples

(A) Language of all palindromes is weak scan and chameleon;
(B) The language of all Lyndon words is chameleon and has the factor property;
(C) The Dyck language (of all meaningful parantheses) is chameleon and has the factor property.

Theorem

A regular chameleon set has none of the five scanning properties.
In consequence, none of the following languages are regular.

```
Examples
(A) Language of all palindromes is weak scan and chameleon;
(B) The language of all Lyndon words is chameleon and has the
factor property;
(C) The Dyck language (of all meaningful parantheses) is
chameleon and has the factor property.
```


Theorem

A regular chameleon set has none of the five scanning properties.
In consequence, none of the following languages are regular.

Examples

(A) Language of all palindromes is weak scan and chameleon;
(B) The language of all Lyndon words is chameleon and has the factor property;
(C) The Dyck language (of all meaningful parantheses) is chameleon and has the factor property.

Theorem

A regular chameleon set has none of the five scanning properties.
In consequence, none of the following languages are regular.

Examples

(A) Language of all palindromes is weak scan and chameleon;
(B) The language of all Lyndon words is chameleon and has the factor property;
(C) The Dyck language (of all meaningful parantheses) is chameleon and has the factor property.

Theorem

A regular chameleon set has none of the five scanning properties.
In consequence, none of the following languages are regular.

Examples

(A) Language of all palindromes is weak scan and chameleon;
(B) The language of all Lyndon words is chameleon and has the factor property;
(C) The Dyck language (of all meaningful parantheses) is chameleon and has the factor property.

Letter scan languages

Take the definition of full scan language and strengthen the condition $u x v \in L, u x^{\prime} v \in L^{\prime}$ by insisting that $x \in A$. If we take $A=\{a, b\}$ the FSL languages are as follows.

Definitions

Theorem

There is then a one-to-one correspondence between FSL languages L and real numbers s_{L} in the interval $[0,2]$: the initial digit determines the presence or absence of ε, the nth digit is 0 if and only if $L_{n}=E_{n}$.

Theorem

Letter scan languages

Take the definition of full scan language and strengthen the condition $u x v \in L, u x^{\prime} v \in L^{\prime}$ by insisting that $x \in A$. If we take $A=\{a, b\}$ the FSL languages are as follows.

Definitions

Let $E=\left\{w \in A^{*}:|w|_{a} \equiv 0(\bmod 2)\right\}$ and $O=A^{*} \backslash E$. Let $E_{n}=E \cap A^{n}, O_{n}=O \cap A^{n}$. For any $L \subseteq A^{*}$ let $L_{n}=L \cap A^{n}$.

Theorem

L is FSL if and only if $\left.L_{n} \in\left\{E_{n}, O_{n}\right\} \forall n \geq 0\right\}$.
There is then a one-to-one correspondence between FSL languages
L and real numbers s_{L} in the interval $[0,2]$: the initial digit
determines the presence or absence of ε, the nth digit is 0 if and
only if $L_{n}=E_{n}$.
\square

Letter scan languages

Take the definition of full scan language and strengthen the condition $u x v \in L, u x^{\prime} v \in L^{\prime}$ by insisting that $x \in A$. If we take $A=\{a, b\}$ the FSL languages are as follows.

Definitions

Let $E=\left\{w \in A^{*}:|w|_{a} \equiv 0(\bmod 2)\right\}$ and $O=A^{*} \backslash E$. Let $E_{n}=E \cap A^{n}, O_{n}=O \cap A^{n}$. For any $L \subseteq A^{*}$ let $L_{n}=L \cap A^{n}$.

Theorem

L is FSL if and only if $\left.L_{n} \in\left\{E_{n}, O_{n}\right\} \forall n \geq 0\right\}$.
There is then a one-to-one correspondence between FSL languages L and real numbers s_{L} in the interval $[0,2]$: the initial digit determines the presence or absence of ε, the nth digit is 0 if and only if $L_{n}=E_{n}$.

Theorem

Let $L \in F S L$. Then L is regular if and only if $S_{L} \in \mathbb{Q}$.

Letter scan languages

Take the definition of full scan language and strengthen the condition $u x v \in L, u x^{\prime} v \in L^{\prime}$ by insisting that $x \in A$. If we take $A=\{a, b\}$ the FSL languages are as follows.

Definitions

Let $E=\left\{w \in A^{*}:|w|_{a} \equiv 0(\bmod 2)\right\}$ and $O=A^{*} \backslash E$. Let
$E_{n}=E \cap A^{n}, O_{n}=O \cap A^{n}$. For any $L \subseteq A^{*}$ let $L_{n}=L \cap A^{n}$.

Theorem

L is FSL if and only if $\left.L_{n} \in\left\{E_{n}, O_{n}\right\} \forall n \geq 0\right\}$.
There is then a one-to-one correspondence between FSL languages L and real numbers s_{L} in the interval $[0,2]$: the initial digit determines the presence or absence of ε, the nth digit is 0 if and only if $L_{n}=E_{n}$.

[^0]
Letter scan languages

Take the definition of full scan language and strengthen the condition $u x v \in L, u x^{\prime} v \in L^{\prime}$ by insisting that $x \in A$. If we take $A=\{a, b\}$ the FSL languages are as follows.

Definitions

Let $E=\left\{w \in A^{*}:|w|_{a} \equiv 0(\bmod 2)\right\}$ and $O=A^{*} \backslash E$. Let
$E_{n}=E \cap A^{n}, O_{n}=O \cap A^{n}$. For any $L \subseteq A^{*}$ let $L_{n}=L \cap A^{n}$.

Theorem

L is FSL if and only if $\left.L_{n} \in\left\{E_{n}, O_{n}\right\} \forall n \geq 0\right\}$.
There is then a one-to-one correspondence between FSL languages
L and real numbers s_{L} in the interval $[0,2]$: the initial digit determines the presence or absence of ε, the nth digit is 0 if and only if $L_{n}=E_{n}$.

Theorem

Let $L \in F S L$. Then L is regular if and only if $s_{L} \in \mathbb{Q}$.

Universal FSL Automaton

Minimal automaton in rational case

The universal automaton \mathscr{U} will recognize a given FSL language L by putting n or $n^{\prime} \in T$ according as $L_{n}=E_{n}$ or $L_{n}=O_{n}$. In effect we just read s_{L} into \mathscr{U}.
k and n, then we may identify the pairs of states $(k, k+n)$ and $\left(k^{\prime},(k+n)^{\prime}\right)$. The resulting finite automaton $\mathscr{A}(L)$ has the form of a cylinder with a trailing tape that leads to a point (0): and $\mathscr{A}(L)$ is the minimal automaton of L EXCEPT if s_{L} has the form:

Minimal automaton in rational case

The universal automaton \mathscr{U} will recognize a given FSL language L by putting n or $n^{\prime} \in T$ according as $L_{n}=E_{n}$ or $L_{n}=O_{n}$. In effect we just read s_{L} into \mathscr{U}.
Let $s_{L}=e_{0} \cdot e_{1} e_{2} \cdots$. If $s_{L} \in \mathbb{Q}$ with $e_{k}=e_{k+n}$ for some minimum k and n, then we may identify the pairs of states $(k, k+n)$ and $\left(k^{\prime},(k+n)^{\prime}\right)$. The resulting finite automaton $\mathscr{A}(L)$ has the form of a cylinder with a trailing tape that leads to a point (0):
form:

Minimal automaton in rational case

The universal automaton \mathscr{U} will recognize a given FSL language L by putting n or $n^{\prime} \in T$ according as $L_{n}=E_{n}$ or $L_{n}=O_{n}$. In effect we just read s_{L} into \mathscr{U}.
Let $s_{L}=e_{0} \cdot e_{1} e_{2} \cdots$. If $s_{L} \in \mathbb{Q}$ with $e_{k}=e_{k+n}$ for some minimum k and n, then we may identify the pairs of states $(k, k+n)$ and $\left(k^{\prime},(k+n)^{\prime}\right)$. The resulting finite automaton $\mathscr{A}(L)$ has the form of a cylinder with a trailing tape that leads to a point (0): and $\mathscr{A}(L)$ is the minimal automaton of L EXCEPT if s_{L} has the form:

Minimal automaton in rational case

The universal automaton \mathscr{U} will recognize a given FSL language L by putting n or $n^{\prime} \in T$ according as $L_{n}=E_{n}$ or $L_{n}=O_{n}$. In effect we just read s_{L} into \mathscr{U}.
Let $s_{L}=e_{0} \cdot e_{1} e_{2} \cdots$. If $s_{L} \in \mathbb{Q}$ with $e_{k}=e_{k+n}$ for some minimum k and n, then we may identify the pairs of states $(k, k+n)$ and $\left(k^{\prime},(k+n)^{\prime}\right)$. The resulting finite automaton $\mathscr{A}(L)$ has the form of a cylinder with a trailing tape that leads to a point (0): and $\mathscr{A}(L)$ is the minimal automaton of L EXCEPT if s_{L} has the form:

$$
s_{L}=\frac{1}{2^{k}}\left(n+\frac{t}{1+2^{r}}\right), 0 \leq k, 0 \leq n \leq 2^{k}-1,1 \leq r, 1 \leq t \leq 2^{r} .
$$

Cylinder versus Mobius strip

This special case is where the recurring part of s_{L} has the form $z \bar{z}$ where \bar{z} is defined by $z+\bar{z}=11 \cdots 1$ (with $2 r 1$'s), so that \bar{z} is the obtained from z by interchanging the symbols 0 and 1 throughout. In this case the cylinder of circumference $2 r$ may be replaced by a Mobius strip of edge length $2 r$:
We may identify the pairs of states $\left(k+r, k^{\prime}\right)$ and $\left((k+r)^{\prime}, k\right)$, the resulting half-twist giving the form of a Mobius strip.

Cylinder versus Mobius strip

This special case is where the recurring part of s_{L} has the form $z \bar{z}$ where \bar{z} is defined by $z+\bar{z}=11 \cdots 1$ (with $2 r 1$'s), so that \bar{z} is the obtained from z by interchanging the symbols 0 and 1 throughout. In this case the cylinder of circumference $2 r$ may be replaced by a Mobius strip of edge length $2 r$:
We may identify the pairs of states $\left(k+r, k^{\prime}\right)$ and $\left((k+r)^{\prime}, k\right)$, the
resulting half-twist giving the form of a Mobius strip.

Cylinder versus Mobius strip

This special case is where the recurring part of s_{L} has the form $z \bar{z}$ where \bar{z} is defined by $z+\bar{z}=11 \cdots 1$ (with $2 r 1$'s), so that \bar{z} is the obtained from z by interchanging the symbols 0 and 1 throughout. In this case the cylinder of circumference $2 r$ may be replaced by a Mobius strip of edge length $2 r$:
We may identify the pairs of states $\left(k+r, k^{\prime}\right)$ and $\left((k+r)^{\prime}, k\right)$, the resulting half-twist giving the form of a Mobius strip.

[^0]: Theorem
 Let $L \in F S L$. Then L is regular if and only if $s_{L} \in \mathbb{Q}$.

