Languages that require full scanning of words to determine membership

Peter M. Higgins & Suhear Alwan

Department of Mathematical Sciences, University of Essex

NBSAN Norwich April 15th 2014

$$L_1 = aA^* \cup A^*a, \quad L_2 = A^*a, \quad L_3 = aA^*$$

 $L_4 = aA^*b \cup bA^*a, \quad L_5 = (A^2)^*.$

L₁ has the *Factor Property (FP)*:

 $\forall u \in A^* \exists u_1, u_2, u_1', u_2' \in A^* : u_1 u u_2 \in L \,\&\, u_1' u u_2' \in L'$

*L*₂ (resp. *L*₃) has the *Prefix Property (PP)* (resp. *Suffix Property (SP)*):

 $\forall x \in A^* \exists v, v' \in A^* : xv \in L, xv' \in L' \text{ (resp. } \exists u, u' \in A^* : ux \in L, u'x \in L').$

*L*₄ has both the Prefix and Suffix properties (*Weak Scan property* (*WS*)).

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$L_1 = aA^* \cup A^*a, \quad L_2 = A^*a, \quad L_3 = aA^*$$

 $L_4 = aA^*b \cup bA^*a, \quad L_5 = (A^2)^*.$

 L_1 has the Factor Property (FP):

$$\forall u \in A^* \exists u_1, u_2, u'_1, u'_2 \in A^* : u_1 u u_2 \in L \& u'_1 u u'_2 \in L'$$

*L*₂ (resp. *L*₃) has the *Prefix Property (PP)* (resp. *Suffix Property (SP)*):

 $\forall x \in A^* \exists v, v' \in A^* : xv \in L, xv' \in L' \text{ (resp. } \exists u, u' \in A^* : ux \in L, u'x \in L').$

*L*₄ has both the Prefix and Suffix properties (*Weak Scan property* (*WS*)).

$$L_1 = aA^* \cup A^*a, \quad L_2 = A^*a, \quad L_3 = aA^*$$

 $L_4 = aA^*b \cup bA^*a, \quad L_5 = (A^2)^*.$

 L_1 has the Factor Property (FP):

$$\forall u \in A^* \exists u_1, u_2, u'_1, u'_2 \in A^* : u_1 u u_2 \in L \& u'_1 u u'_2 \in L'$$

 L_2 (resp. L_3) has the Prefix Property (PP) (resp. Suffix Property (SP)):

 $\forall x \in A^* \exists v, v' \in A^* : xv \in L, xv' \in L' \text{ (resp. } \exists u, u' \in A^* : ux \in L, u'x \in L').$

*L*₄ has both the Prefix and Suffix properties (*Weak Scan property* (*WS*)).

$$L_1 = aA^* \cup A^*a, \quad L_2 = A^*a, \quad L_3 = aA^*$$

 $L_4 = aA^*b \cup bA^*a, \quad L_5 = (A^2)^*.$

 L_1 has the Factor Property (FP):

$$\forall u \in A^* \exists u_1, u_2, u'_1, u'_2 \in A^* : u_1 u u_2 \in L \& u'_1 u u'_2 \in L'$$

 L_2 (resp. L_3) has the Prefix Property (PP) (resp. Suffix Property (SP)):

 $\forall x \in A^* \exists v, v' \in A^* : xv \in L, xv' \in L' \text{ (resp. } \exists u, u' \in A^* : ux \in L, u'x \in L').$

L₄ has both the Prefix and Suffix properties (*Weak Scan property* (*WS*)).

 $\forall u, v \in A^* \exists x, x' \in A^* : uxv \in \& ux'v \in L'.$

L_5 has the full scan property.

For regular languages, in terms of the minimal automaton $\mathscr{A}(Q, i, T) = \mathscr{A}(L)$ we have:

 $L \in FP \Leftrightarrow \nexists$ a sink state $q \in Q : Q \cdot z = q \forall z \in A^*$

 $L \in PP \Leftrightarrow |q \cdot A^*| > 1 \,\forall q \in Q; \ L \in SP \Leftrightarrow L^R \in PP$

 $L \in WS \Leftrightarrow L \in PP \& L \in SP$

 $L \in FS \Leftrightarrow Lv^{-1} \in PP \forall v \in A^*.$

Peter M. Higgins & Suhear Alwan Languages that require full scanning of words to determine

b) a (B) b) a (B) b)

$$\forall u, v \in A^* \exists x, x' \in A^* : uxv \in \& ux'v \in L'.$$

 L_5 has the full scan property. For regular languages, in terms of the minimal automaton $\mathscr{A}(Q, i, T) = \mathscr{A}(L)$ we have:

$$L \in FP \Leftrightarrow
earrow \exists a \text{ sink state } q \in Q : Q \cdot z = q \, \forall z \in A^*$$

$$L \in PP \Leftrightarrow |q \cdot A^*| > 1 \,\forall q \in Q; \ L \in SP \Leftrightarrow L^R \in PP$$

$L \in WS \Leftrightarrow L \in PP \& L \in SP$

 $L \in FS \Leftrightarrow Lv^{-1} \in PP \forall v \in A^*.$

$$\forall u, v \in A^* \exists x, x' \in A^* : uxv \in \& ux'v \in L'.$$

 L_5 has the full scan property. For regular languages, in terms of the minimal automaton $\mathscr{A}(Q, i, T) = \mathscr{A}(L)$ we have:

$$L \in FP \Leftrightarrow
earrow \exists a \text{ sink state } q \in Q : Q \cdot z = q \, \forall z \in A^*$$

 $L \in PP \Leftrightarrow |q \cdot A^*| > 1 \forall q \in Q; \ L \in SP \Leftrightarrow L^R \in PP$

$L \in WS \Leftrightarrow L \in PP \& L \in SP$

 $L \in FS \Leftrightarrow Lv^{-1} \in PP \forall v \in A^*.$

$$\forall u, v \in A^* \exists x, x' \in A^* : uxv \in \& ux'v \in L'.$$

 L_5 has the full scan property. For regular languages, in terms of the minimal automaton $\mathscr{A}(Q, i, T) = \mathscr{A}(L)$ we have:

$$L \in FP \Leftrightarrow
earrow \exists a \text{ sink state } q \in Q : Q \cdot z = q \, orall z \in A^*$$

$$L \in PP \Leftrightarrow |q \cdot A^*| > 1 \,\forall q \in Q; \ L \in SP \Leftrightarrow L^R \in PP$$

$L \in WS \Leftrightarrow L \in PP \& L \in SP$

$$L \in FS \Leftrightarrow Lv^{-1} \in PP \forall v \in A^*.$$

$$\forall u, v \in A^* \exists x, x' \in A^* : uxv \in \& ux'v \in L'.$$

 L_5 has the full scan property. For regular languages, in terms of the minimal automaton $\mathscr{A}(Q, i, T) = \mathscr{A}(L)$ we have:

$$L \in FP \Leftrightarrow
earrow \exists a \text{ sink state } q \in Q : Q \cdot z = q \, orall z \in A^*$$

$$L \in PP \Leftrightarrow |q \cdot A^*| > 1 \,\forall q \in Q; \ L \in SP \Leftrightarrow L^R \in PP$$

$L \in WS \Leftrightarrow L \in PP \& L \in SP$

$$L \in FS \Leftrightarrow Lv^{-1} \in PP \,\forall v \in A^*.$$

Let $\overline{(\cdot)}: A^* \to A^*/\eta = M(L)$ denote the natural morphism of A^* onto the syntactic monoid M(L) of language $L \subseteq A^*$, so that

 $\overline{u} = \overline{v} \Leftrightarrow (puq \in L \Leftrightarrow pvq \in L, \forall p, q \in A^*) - \eta \text{ saturates } L.$

We say a set $X \subseteq M(L)$ is a *bridge* if

$$X\eta^{-1}\cap L\neq\emptyset\&X\eta^{-1}\cap L'\neq\emptyset.$$

Theorem

Let L be regular and let I be the minimum ideal of M = M(L) Then

(i) L ∈ FP if and only if the D-class I of M is a bridge;
(ii) L ∈ PP (resp. SP) if and only if each R-class (resp. L-class of L is bridge;

(iii) $L \in WS$ if and only if each \mathscr{R} -class and each \mathscr{L} -class of I is bridge;

(iv) $L \in FS$ if and only if each \mathcal{H} -class of I is bridge. Conversely, if I is a non-trivial group, then $L \in FS$.

Let $\overline{(\cdot)}: A^* \to A^*/\eta = M(L)$ denote the natural morphism of A^* onto the syntactic monoid M(L) of language $L \subseteq A^*$, so that

 $\overline{u} = \overline{v} \Leftrightarrow (puq \in L \Leftrightarrow pvq \in L, \forall p,q \in A^*) - \eta \text{ saturates } L.$

We say a set $X \subseteq M(L)$ is a *bridge* if

$$X\eta^{-1}\cap L\neq \emptyset\&X\eta^{-1}\cap L'\neq \emptyset.$$

Theorem

Let L be regular and let I be the minimum ideal of M = M(L) Then

(i) $L \in FP$ if and only if the \mathscr{D} -class I of M is a bridge;

(ii) $L \in PP$ (resp. SP) if and only if each \mathscr{R} -class (resp. \mathscr{L} -class) of I is bridge;

(iii) $L \in WS$ if and only if each \mathscr{R} -class and each \mathscr{L} -class of I is bridge;

(iv) $L \in FS$ if and only if each \mathcal{H} -class of I is bridge. Conversely, if I is a non-trivial group, then $L \in FS$, $a \in I$.

Let $\overline{(\cdot)}: A^* \to A^*/\eta = M(L)$ denote the natural morphism of A^* onto the syntactic monoid M(L) of language $L \subseteq A^*$, so that

 $\overline{u} = \overline{v} \Leftrightarrow (puq \in L \Leftrightarrow pvq \in L, \forall p, q \in A^*) - \eta \text{ saturates } L.$

We say a set $X \subseteq M(L)$ is a *bridge* if

$$X\eta^{-1}\cap L\neq \emptyset\&X\eta^{-1}\cap L'\neq \emptyset.$$

Theorem

Let L be regular and let I be the minimum ideal of M = M(L) Then

(i) L ∈ FP if and only if the D-class I of M is a bridge;
(ii) L ∈ PP (resp. SP) if and only if each R-class (resp. L-class) of I is bridge;

(iii) $L \in WS$ if and only if each \mathscr{R} -class and each \mathscr{L} -class of I is bridge;

(iv) $L \in FS$ if and only if each \mathcal{H} -class of I is bridge.

Let $\overline{(\cdot)}: A^* \to A^*/\eta = M(L)$ denote the natural morphism of A^* onto the syntactic monoid M(L) of language $L \subseteq A^*$, so that

 $\overline{u} = \overline{v} \Leftrightarrow (puq \in L \Leftrightarrow pvq \in L, \forall p,q \in A^*) - \eta \text{ saturates } L.$

We say a set $X \subseteq M(L)$ is a *bridge* if

$$X\eta^{-1}\cap L\neq\emptyset\&X\eta^{-1}\cap L'\neq\emptyset.$$

Theorem

Let L be regular and let I be the minimum ideal of M = M(L) Then

(i) $L \in FP$ if and only if the \mathscr{D} -class I of M is a bridge;

(ii) $L \in PP$ (resp. SP) if and only if each \mathscr{R} -class (resp. \mathscr{L} -class) of I is bridge;

(iii) $L \in WS$ if and only if each \mathscr{R} -class and each \mathscr{L} -class of I is bridge;

(iv) $L \in FS$ if and only if each \mathscr{H} -class of I is bridge. Conversely, if I is a non-trivial group, then $L \in FS_{a}$, $A \in A$.

Let $\overline{(\cdot)}: A^* \to A^*/\eta = M(L)$ denote the natural morphism of A^* onto the syntactic monoid M(L) of language $L \subseteq A^*$, so that

 $\overline{u} = \overline{v} \Leftrightarrow (puq \in L \Leftrightarrow pvq \in L, \forall p, q \in A^*) - \eta \text{ saturates } L.$

We say a set $X \subseteq M(L)$ is a *bridge* if

$$X\eta^{-1}\cap L\neq\emptyset\&X\eta^{-1}\cap L'\neq\emptyset.$$

Theorem

Let L be regular and let I be the minimum ideal of M = M(L) Then

(i) $L \in FP$ if and only if the \mathscr{D} -class I of M is a bridge;

(ii) $L \in PP$ (resp. SP) if and only if each \mathscr{R} -class (resp. \mathscr{L} -class) of I is bridge;

(iii) $L \in WS$ if and only if each \mathscr{R} -class and each \mathscr{L} -class of I is bridge;

(iv) $L \in FS$ if and only if each \mathscr{H} -class of I is bridge.

Let $\overline{(\cdot)}: A^* \to A^*/\eta = M(L)$ denote the natural morphism of A^* onto the syntactic monoid M(L) of language $L \subseteq A^*$, so that

 $\overline{u} = \overline{v} \Leftrightarrow (puq \in L \Leftrightarrow pvq \in L, \forall p,q \in A^*) - \eta \text{ saturates } L.$

We say a set $X \subseteq M(L)$ is a *bridge* if

$$X\eta^{-1}\cap L\neq \emptyset\&X\eta^{-1}\cap L'\neq \emptyset.$$

Theorem

Let L be regular and let I be the minimum ideal of M = M(L) Then

(i) $L \in FP$ if and only if the \mathscr{D} -class I of M is a bridge;

(ii) $L \in PP$ (resp. SP) if and only if each \mathscr{R} -class (resp. \mathscr{L} -class) of I is bridge;

(iii) $L \in WS$ if and only if each \mathscr{R} -class and each \mathscr{L} -class of I is bridge;

(iv) $L \in FS$ if and only if each \mathscr{H} -class of I is bridge.

Conversely, if I is a non-trivial group, then $L \in FS$, $r \in FS$.

(A) $L(f, m, K) = \{w \in A^* : |w|_f \pmod{m} \in K\}$ where $f \in A^*$, $m \ge 2$ and K a proper subset of $\{0, 1, \dots, m-1\}$ is a full scan language.

(B) $L \in FS$ then so is L', L^R , $u^{-1}L$, Lu^{-1} for any $u \in A^*$; (C) L is full scan if and only if $u^{-1}Lv^{-1}$ is proper for all $u, v \in A^*$ The following languages are not regular: (i) $\{w \in A^* : |w|_a = |w|_b\}$; (ii) Primitive words; (iii) Words with borders.

Argument for (ii): $L \in FS$ (easy to check) so suppose L were regular and let $\overline{u} \in H$, a maximal subgroup of I. Take $k \ge 1$ such that $\overline{u} = \overline{u}^{k+1}$: $u^{k+1} \in L' \Rightarrow u \in L' \forall \overline{u} \in H$, whence H is not a bridge, contradiction!

(A) $L(f, m, K) = \{w \in A^* : |w|_f (mod m) \in K\}$ where $f \in A^*$, $m \ge 2$ and K a proper subset of $\{0, 1, \dots, m-1\}$ is a full scan language.

(B) $L \in FS$ then so is L', L^R , $u^{-1}L$, Lu^{-1} for any $u \in A^*$;

(C) L is full scan if and only if $u^{-1}Lv^{-1}$ is proper for all $u, v \in A^*$. The following languages are not regular:

(i) $\{w \in A^* : |w|_a = |w|_b\}$; (ii) Primitive words; (iii) Words with borders.

Argument for (ii): $L \in FS$ (easy to check) so suppose L were regular and let $\overline{u} \in H$, a maximal subgroup of I. Take $k \ge 1$ such that $\overline{u} = \overline{u}^{k+1}$: $u^{k+1} \in L' \Rightarrow u \in L' \forall \overline{u} \in H$, whence H is not a bridge, contradiction!

(A) $L(f, m, K) = \{w \in A^* : |w|_f \pmod{m} \in K\}$ where $f \in A^*$, $m \ge 2$ and K a proper subset of $\{0, 1, \dots, m-1\}$ is a full scan language.

(B) $L \in FS$ then so is L', L^R , $u^{-1}L$, Lu^{-1} for any $u \in A^*$; (C) L is full scan if and only if $u^{-1}Lv^{-1}$ is proper for all $u, v \in A^*$. The following languages are not regular: (i) $\{w \in A^* : |w|_a = |w|_b\}$; (ii) Primitive words; (iii) Words with borders.

Argument for (ii): $L \in FS$ (easy to check) so suppose L were regular and let $\overline{u} \in H$, a maximal subgroup of I. Take $k \ge 1$ such that $\overline{u} = \overline{u}^{k+1}$: $u^{k+1} \in L' \Rightarrow u \in L' \forall \overline{u} \in H$, whence H is not a bridge, contradiction!

(A) $L(f, m, K) = \{w \in A^* : |w|_f \pmod{m} \in K\}$ where $f \in A^*$, $m \ge 2$ and K a proper subset of $\{0, 1, \dots, m-1\}$ is a full scan language.

(B) $L \in FS$ then so is L', L^R , $u^{-1}L$, Lu^{-1} for any $u \in A^*$; (C) L is full scan if and only if $u^{-1}Lv^{-1}$ is proper for all $u, v \in A^*$. The following languages are not regular:

(i) $\{w \in A^* : |w|_a = |w|_b\}$; (ii) Primitive words; (iii) Words with borders.

Argument for (ii): $L \in FS$ (easy to check) so suppose L were regular and let $\overline{u} \in H$, a maximal subgroup of I. Take $k \ge 1$ such that $\overline{u} = \overline{u}^{k+1}$: $u^{k+1} \in L' \Rightarrow u \in L' \forall \overline{u} \in H$, whence H is not a bridge, contradiction!

(A) $L(f, m, K) = \{w \in A^* : |w|_f \pmod{m} \in K\}$ where $f \in A^*$, $m \ge 2$ and K a proper subset of $\{0, 1, \dots, m-1\}$ is a full scan language.

(B) $L \in FS$ then so is L', L^R , $u^{-1}L$, Lu^{-1} for any $u \in A^*$; (C) L is full scan if and only if $u^{-1}Lv^{-1}$ is proper for all $u, v \in A^*$. The following languages are not regular: (i) $\{w \in A^* : |w|_a = |w|_b\}$; (ii) Primitive words; (iii) Words with borders.

Argument for (ii): $L \in FS$ (easy to check) so suppose L were regular and let $\overline{u} \in H$, a maximal subgroup of I. Take $k \ge 1$ such that $\overline{u} = \overline{u}^{k+1}$: $u^{k+1} \in L' \Rightarrow u \in L' \forall \overline{u} \in H$, whence H is not a bridge, contradiction!

(A) $L(f, m, K) = \{w \in A^* : |w|_f \pmod{m} \in K\}$ where $f \in A^*$, $m \ge 2$ and K a proper subset of $\{0, 1, \dots, m-1\}$ is a full scan language.

(B) $L \in FS$ then so is L', L^R , $u^{-1}L$, Lu^{-1} for any $u \in A^*$;

(C) *L* is full scan if and only if $u^{-1}Lv^{-1}$ is proper for all $u, v \in A^*$. The following languages are not regular:

(i) $\{w \in A^* : |w|_a = |w|_b\}$; (ii) Primitive words; (iii) Words with borders.

Argument for (ii): $L \in FS$ (easy to check) so suppose L were regular and let $\overline{u} \in H$, a maximal subgroup of I.

Take $k \ge 1$ such that $\overline{u} = \overline{u}^{k+1}$: $u^{k+1} \in L' \Rightarrow u \in L' \forall \overline{u} \in H$, whence H is <u>not</u> a bridge, contradiction!

・ロト ・ 一日 ・ ・ 日 ・

(A) $L(f, m, K) = \{w \in A^* : |w|_f \pmod{m} \in K\}$ where $f \in A^*$, $m \ge 2$ and K a proper subset of $\{0, 1, \dots, m-1\}$ is a full scan language.

- (B) $L \in FS$ then so is L', L^R , $u^{-1}L$, Lu^{-1} for any $u \in A^*$;
- (C) *L* is full scan if and only if $u^{-1}Lv^{-1}$ is proper for all $u, v \in A^*$. The following languages are not regular:

(i) $\{w \in A^* : |w|_a = |w|_b\}$; (ii) Primitive words; (iii) Words with borders.

Argument for (ii): $L \in FS$ (easy to check) so suppose L were regular and let $\overline{u} \in H$, a maximal subgroup of I. Take $k \ge 1$ such that $\overline{u} = \overline{u}^{k+1}$: $u^{k+1} \in L' \Rightarrow u \in L' \forall \overline{u} \in H$, whence H is not a bridge, contradiction!

・ロト ・ 同ト ・ ヨト ・ ヨト -

(A) $L(f, m, K) = \{w \in A^* : |w|_f \pmod{m} \in K\}$ where $f \in A^*$, $m \ge 2$ and K a proper subset of $\{0, 1, \dots, m-1\}$ is a full scan language.

- (B) $L \in FS$ then so is L', L^R , $u^{-1}L$, Lu^{-1} for any $u \in A^*$;
- (C) *L* is full scan if and only if $u^{-1}Lv^{-1}$ is proper for all $u, v \in A^*$. The following languages are not regular:

(i) $\{w \in A^* : |w|_a = |w|_b\}$; (ii) Primitive words; (iii) Words with borders.

Argument for (ii): $L \in FS$ (easy to check) so suppose L were regular and let $\overline{u} \in H$, a maximal subgroup of I. Take $k \ge 1$ such that $\overline{u} = \overline{u}^{k+1}$: $u^{k+1} \in L' \Rightarrow u \in L' \forall \overline{u} \in H$, whence H is not a bridge, contradiction!

・ロト ・ 同ト ・ ヨト ・ ヨト -

A set $C \subseteq A^*$ is called a *chameleon set* if $\forall u, v \in A^* \exists u', v' \in A^*$ such that $uu'A^*v'v \cap C = \emptyset$. Equivalently, each two-sided quotient $u^{-1}Cv^{-1}$ has an empty two-sided quotient $u'^{-1}(u^{-1}Cv^{-1})v'^{-1}$.

Examples

finite sets, complements of ideals.

CP closed under sublanguages, finite unions, reversals, left quotients and right quotients, and so forms a topology on A*.

・ 同 ト ・ ヨ ト ・ ヨ

A set $C \subseteq A^*$ is called a *chameleon set* if $\forall u, v \in A^* \exists u', v' \in A^*$ such that $uu'A^*v'v \cap C = \emptyset$. Equivalently, each two-sided quotient $u^{-1}Cv^{-1}$ has an empty two-sided quotient $u'^{-1}(u^{-1}Cv^{-1})v'^{-1}$.

Examples

finite sets, complements of ideals.

CP closed under sublanguages, finite unions, reversals, left quotients and right quotients, and so forms a topology on A*.

・ 同 ト ・ 三 ト ・

A set $C \subseteq A^*$ is called a *chameleon set* if $\forall u, v \in A^* \exists u', v' \in A^*$ such that $uu'A^*v'v \cap C = \emptyset$. Equivalently, each two-sided quotient $u^{-1}Cv^{-1}$ has an empty two-sided quotient $u'^{-1}(u^{-1}Cv^{-1})v'^{-1}$.

Examples

finite sets, complements of ideals.

CP closed under sublanguages, finite unions, reversals, left quotients and right quotients, and so forms a topology on A^* .

A set $C \subseteq A^*$ is called a *chameleon set* if $\forall u, v \in A^* \exists u', v' \in A^*$ such that $uu'A^*v'v \cap C = \emptyset$. Equivalently, each two-sided quotient $u^{-1}Cv^{-1}$ has an empty two-sided quotient $u'^{-1}(u^{-1}Cv^{-1})v'^{-1}$.

Examples

finite sets, complements of ideals.

CP closed under sublanguages, finite unions, reversals, left quotients and right quotients, and so forms a topology on A^* .

Let L be full scan and C chameleon. Then $L \cup C$ and $L \setminus C$ are full scan.

Proof Let $u, v \in A^*$. Since $C \in CP \exists u'v' \in A^*$ such that $uu'A^*v'v \cap C = \emptyset$. Since $L \in FS \exists x, x' \in A^*$ such that $(uu')x(v'v) \in L$ and $(uu')x'(v'v) \in L'$. But then:

 $u(u'xv')v \in L \cup C$ and $u(u'x'v')v \in L' \cap C' = (L \cup C)'$, thus $L \cup C \in FS$.

 $L \in FS \Rightarrow L' \cup C \in FS \Rightarrow (L' \cup C)' \in FS \Rightarrow L \cap C' = L \setminus C \in FS. \quad \Box$

• • • • •

Let L be full scan and C chameleon. Then $L \cup C$ and $L \setminus C$ are full scan.

Proof Let $u, v \in A^*$. Since $C \in CP \exists u'v' \in A^*$ such that $uu'A^*v'v \cap C = \emptyset$. Since $L \in FS \exists x, x' \in A^*$ such that $(uu')x(v'v) \in L$ and $(uu')x'(v'v) \in L'$. But then:

 $u(u'xv')v \in L \cup C$ and $u(u'x'v')v \in L' \cap C' = (L \cup C)'$, thus $L \cup C \in FS$.

 $L \in FS \Rightarrow L' \cup C \in FS \Rightarrow (L' \cup C)' \in FS \Rightarrow L \cap C' = L \setminus C \in FS. \quad \Box$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let L be full scan and C chameleon. Then $L \cup C$ and $L \setminus C$ are full scan.

Proof Let $u, v \in A^*$. Since $C \in CP \exists u'v' \in A^*$ such that $uu'A^*v'v \cap C = \emptyset$. Since $L \in FS \exists x, x' \in A^*$ such that $(uu')x(v'v) \in L$ and $(uu')x'(v'v) \in L'$. But then:

 $u(u'xv')v \in L \cup C$ and $u(u'x'v')v \in L' \cap C' = (L \cup C)'$, thus $L \cup C \in FS$.

 $L \in FS \Rightarrow L' \cup C \in FS \Rightarrow (L' \cup C)' \in FS \Rightarrow L \cap C' = L \setminus C \in FS. \quad \Box$

Let L be full scan and C chameleon. Then $L \cup C$ and $L \setminus C$ are full scan.

Proof Let $u, v \in A^*$. Since $C \in CP \exists u'v' \in A^*$ such that $uu'A^*v'v \cap C = \emptyset$. Since $L \in FS \exists x, x' \in A^*$ such that $(uu')x(v'v) \in L$ and $(uu')x'(v'v) \in L'$. But then:

 $u(u'xv')v \in L \cup C$ and $u(u'x'v')v \in L' \cap C' = (L \cup C)'$, thus $L \cup C \in FS$.

 $L \in FS \Rightarrow L' \cup C \in FS \Rightarrow (L' \cup C)' \in FS \Rightarrow L \cap C' = L \setminus C \in FS. \quad \Box$

A regular chameleon set has none of the five scanning properties.

In consequence, none of the following languages are regular.

Examples

(A) Language of all palindromes is weak scan and chameleon;

(B) The language of all Lyndon words is chameleon and has the factor property;
(C) The Dyck language (of all meaningful parantheses) is chameleon and has the factor property.

▲ □ ▶ → □ ▶

A regular chameleon set has none of the five scanning properties.

In consequence, none of the following languages are regular.

Examples

(A) Language of all palindromes is weak scan and chameleon;

(B) The language of all Lyndon words is chameleon and has the factor property;
(C) The Dyck language (of all meaningful parantheses) is chameleon and has the factor property.

A regular chameleon set has none of the five scanning properties.

In consequence, none of the following languages are regular.

Examples

(A) Language of all palindromes is weak scan and chameleon;

(B) The language of all Lyndon words is chameleon and has the factor property;
 (C) The Dyck language (of all meaningful parantheses) is chameleon and has the factor property.

A regular chameleon set has none of the five scanning properties.

In consequence, none of the following languages are regular.

Examples

(A) Language of all palindromes is weak scan and chameleon;

(B) The language of all Lyndon words is chameleon and has the factor property;

(C) The Dyck language (of all meaningful parantheses) is chameleon and has the factor property.

Theorem

A regular chameleon set has none of the five scanning properties.

In consequence, none of the following languages are regular.

Examples

(A) Language of all palindromes is weak scan and chameleon;

(B) The language of all Lyndon words is chameleon and has the factor property;

(C) The Dyck language (of all meaningful parantheses) is chameleon and has the factor property.

Take the definition of full scan language and strengthen the condition $uxv \in L$, $ux'v \in L'$ by insisting that $x \in A$. If we take $A = \{a, b\}$ the FSL languages are as follows.

Definitions

Let $E = \{w \in A^* : |w|_a \equiv 0 \pmod{2}\}$ and $O = A^* \setminus E$. Let $E_n = E \cap A^n$, $O_n = O \cap A^n$. For any $L \subseteq A^*$ let $L_n = L \cap A^n$.

Theorem

L is FSL if and only if $L_n \in \{E_n, O_n\} \forall n \ge 0\}$.

There is then a one-to-one correspondence between FSL languages L and real numbers s_L in the interval [0,2]: the initial digit determines the presence or absence of ε , the *n*th digit is 0 if and only if $L_n = E_n$.

Theorem

Let $L \in FSL$. Then L is regular if and only if $s_L \in \mathbb{Q}$.

Peter M. Higgins & Suhear Alwan

Take the definition of full scan language and strengthen the condition $uxv \in L$, $ux'v \in L'$ by insisting that $x \in A$. If we take $A = \{a, b\}$ the FSL languages are as follows.

Definitions

Let
$$E = \{w \in A^* : |w|_a \equiv 0 \pmod{2}\}$$
 and $O = A^* \setminus E$. Let $E_n = E \cap A^n$, $O_n = O \cap A^n$. For any $L \subseteq A^*$ let $L_n = L \cap A^n$.

Theorem

L is FSL if and only if $L_n \in \{E_n, O_n\} \forall n \ge 0\}$.

There is then a one-to-one correspondence between FSL languages L and real numbers s_L in the interval [0,2]: the initial digit determines the presence or absence of ε , the *n*th digit is 0 if and only if $L_n = E_n$.

Theorem

Let $L \in FSL$. Then L is regular if and only if $s_L \in \mathbb{Q}$.

Peter M. Higgins & Suhear Alwan

Take the definition of full scan language and strengthen the condition $uxv \in L$, $ux'v \in L'$ by insisting that $x \in A$. If we take $A = \{a, b\}$ the FSL languages are as follows.

Definitions

Let
$$E = \{w \in A^* : |w|_a \equiv 0 \pmod{2}\}$$
 and $O = A^* \setminus E$. Let $E_n = E \cap A^n$, $O_n = O \cap A^n$. For any $L \subseteq A^*$ let $L_n = L \cap A^n$.

Theorem

L is FSL if and only if $L_n \in \{E_n, O_n\} \forall n \ge 0\}$.

There is then a one-to-one correspondence between FSL languages L and real numbers s_L in the interval [0,2]: the initial digit determines the presence or absence of ε , the *n*th digit is 0 if and only if $L_n = E_n$.

Theorem

Let $L \in FSL$. Then L is regular if and only if $s_L \in \mathbb{Q}$.

Peter M. Higgins & Suhear Alwan

Take the definition of full scan language and strengthen the condition $uxv \in L$, $ux'v \in L'$ by insisting that $x \in A$. If we take $A = \{a, b\}$ the FSL languages are as follows.

Definitions

Let
$$E = \{w \in A^* : |w|_a \equiv 0 \pmod{2}\}$$
 and $O = A^* \setminus E$. Let $E_n = E \cap A^n$, $O_n = O \cap A^n$. For any $L \subseteq A^*$ let $L_n = L \cap A^n$.

Theorem

L is FSL if and only if
$$L_n \in \{E_n, O_n\} \forall n \ge 0\}$$
.

There is then a one-to-one correspondence between FSL languages L and real numbers s_L in the interval [0,2]: the initial digit determines the presence or absence of ε , the *n*th digit is 0 if and only if $L_n = E_n$.

Theorem

Let $L \in FSL$. Then L is regular if and only if $s_L \in \mathbb{Q}$.

Peter M. Higgins & Suhear Alwan Languages that

Take the definition of full scan language and strengthen the condition $uxv \in L$, $ux'v \in L'$ by insisting that $x \in A$. If we take $A = \{a, b\}$ the FSL languages are as follows.

Definitions

Let
$$E = \{w \in A^* : |w|_a \equiv 0 \pmod{2}\}$$
 and $O = A^* \setminus E$. Let $E_n = E \cap A^n$, $O_n = O \cap A^n$. For any $L \subseteq A^*$ let $L_n = L \cap A^n$.

Theorem

L is FSL if and only if
$$L_n \in \{E_n, O_n\} \forall n \ge 0\}$$
.

There is then a one-to-one correspondence between FSL languages L and real numbers s_L in the interval [0,2]: the initial digit determines the presence or absence of ε , the *n*th digit is 0 if and only if $L_n = E_n$.

Theorem

Let $L \in FSL$. Then L is regular if and only if $s_L \in \mathbb{Q}$.

Peter M. Higgins & Suhear Alwan Languages that require full scanning of words to determine

Universal FSL Automaton

Peter M. Higgins & Suhear Alwan Languages that require full scanning of words to determine

The universal automaton \mathscr{U} will recognize a given FSL language L by putting n or $n' \in T$ according as $L_n = E_n$ or $L_n = O_n$. In effect we just read s_L into \mathscr{U} .

Let $s_L = e_0 \cdot e_1 e_2 \cdots$. If $s_L \in \mathbb{Q}$ with $e_k = e_{k+n}$ for some minimum k and n, then we may identify the pairs of states (k, k+n) and (k', (k+n)'). The resulting finite automaton $\mathscr{A}(L)$ has the form of a cylinder with a trailing tape that leads to a point (0): and $\mathscr{A}(L)$ is the minimal automaton of L EXCEPT if s_L has the form:

$$s_L = \frac{1}{2^k} \left(n + \frac{t}{1+2^r} \right), 0 \le k, 0 \le n \le 2^k - 1, 1 \le r, 1 \le t \le 2^r.$$

• • = • • = •

The universal automaton \mathscr{U} will recognize a given FSL language L by putting n or $n' \in T$ according as $L_n = E_n$ or $L_n = O_n$. In effect we just read s_L into \mathscr{U} . Let $s_L = e_0 \cdot e_1 e_2 \cdots$. If $s_L \in \mathbb{Q}$ with $e_k = e_{k+n}$ for some minimum k and n, then we may identify the pairs of states (k, k+n) and (k', (k+n)'). The resulting finite automaton $\mathscr{A}(L)$ has the form of a cylinder with a trailing tape that leads to a point (0): and $\mathscr{A}(L)$ is the minimal automaton of L EXCEPT if s_L has the form:

$$s_L = rac{1}{2^k} \left(n + rac{t}{1+2^r} \right), 0 \le k, 0 \le n \le 2^k - 1, 1 \le r, 1 \le t \le 2^r.$$

The universal automaton \mathscr{U} will recognize a given FSL language Lby putting n or $n' \in T$ according as $L_n = E_n$ or $L_n = O_n$. In effect we just read s_L into \mathscr{U} . Let $s_L = e_0 \cdot e_1 e_2 \cdots$. If $s_L \in \mathbb{Q}$ with $e_k = e_{k+n}$ for some minimum k and n, then we may identify the pairs of states (k, k+n) and (k', (k+n)'). The resulting finite automaton $\mathscr{A}(L)$ has the form of a cylinder with a trailing tape that leads to a point (0): and $\mathscr{A}(L)$ is the minimal automaton of L EXCEPT if s_L has the form:

$$s_L = \frac{1}{2^k} \left(n + \frac{t}{1+2^r} \right), 0 \le k, 0 \le n \le 2^k - 1, 1 \le r, 1 \le t \le 2^r.$$

The universal automaton \mathscr{U} will recognize a given FSL language Lby putting n or $n' \in T$ according as $L_n = E_n$ or $L_n = O_n$. In effect we just read s_L into \mathscr{U} . Let $s_L = e_0 \cdot e_1 e_2 \cdots$. If $s_L \in \mathbb{Q}$ with $e_k = e_{k+n}$ for some minimum k and n, then we may identify the pairs of states (k, k+n) and (k', (k+n)'). The resulting finite automaton $\mathscr{A}(L)$ has the form of a cylinder with a trailing tape that leads to a point (0): and $\mathscr{A}(L)$ is the minimal automaton of L EXCEPT if s_L has the form:

$$s_L = \frac{1}{2^k} \left(n + \frac{t}{1+2^r} \right), 0 \le k, 0 \le n \le 2^k - 1, 1 \le r, 1 \le t \le 2^r.$$

This special case is where the recurring part of s_L has the form $z\overline{z}$ where \overline{z} is defined by $z + \overline{z} = 11 \cdots 1$ (with $2r \ 1$'s), so that \overline{z} is the obtained from z by interchanging the symbols 0 and 1 throughout. In this case the cylinder of circumference 2r may be replaced by a Mobius strip of edge length 2r: We may identify the pairs of states (k+r, k') and ((k+r)', k), the This special case is where the recurring part of s_L has the form $z\overline{z}$ where \overline{z} is defined by $z + \overline{z} = 11 \cdots 1$ (with $2r \ 1$'s), so that \overline{z} is the obtained from z by interchanging the symbols 0 and 1 throughout. In this case the cylinder of circumference 2r may be replaced by a Mobius strip of edge length 2r:

We may identify the pairs of states (k + r, k') and ((k + r)', k), the resulting half-twist giving the form of a Mobius strip.

This special case is where the recurring part of s_L has the form $z\overline{z}$ where \overline{z} is defined by $z + \overline{z} = 11 \cdots 1$ (with $2r \ 1$'s), so that \overline{z} is the obtained from z by interchanging the symbols 0 and 1 throughout. In this case the cylinder of circumference 2r may be replaced by a Mobius strip of edge length 2r:

We may identify the pairs of states (k+r, k') and ((k+r)', k), the resulting half-twist giving the form of a Mobius strip.