Free idempotent generated semigroups: maximal subgroups and the word problem

Igor Dolinka

dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

The 17th NBSAN Meeting Norwich, UK, April 14, 2014

Man is condemned to be free.

Jean-Paul Sartre

Idempotent generated semigroups

Many natural semigroups are idempotent-generated $(S = \langle E(S) \rangle)$:

- ► The semigroup T_n \ S_n of singular (non-invertible) transformations on a finite set (Howie, 1966);
- ► The singular part of M_n(𝔅), the semigroup of all n × n matrices over a field 𝔅 (Erdos (not Paul!), 1967);
- Classification of linear algebraic monoids that are idempotent-generated (Putcha, 2006);
- ► The singular part of P_n, the singular part of the partition monoid on a finite set (East, FitzGerald, 2012);

Hence:

What can we say about the structure of the free-est idempotent-generated (IG) semigroup with a fixed structure/configuration of idempotents ???

Biordered sets of idempotents

'Configuration of idempotents' = biordered sets Basic pair $\{e, f\}$ of idempotents:

$$\{e, f\} \cap \{ef, fe\} \neq \emptyset$$

(If e.g.
$$ef \in \{e, f\}$$
, then $(fe)^2 = fe$, and conversely.)

Biordered set of a semigroup S = the partial algebra on E(S) obtained by retaining the products of basic pairs (in S).

Alternatively, biordered sets can be (abstractly) described as relational structures $(E(S), \leq^{(I)}, \leq^{(r)})$ with two quasi-orders and several simple rules/axioms (Easdown, Nambooripad, '80s).

Free IG semigroups: idea

- ► To every semigroup S with idempotents E associate the free-est semigroup IG(E) whose idempotents form the same biordered set as in S.
- ► To every regular semigroup S with idempotents E associate the free-est regular semigroup RIG(E) in whose idempotents form the same biordered set as in S.

Free IG semigroups: formal definitions

Let E be the biordered set of idempotents of a semigroup S.

$$\mathsf{IG}(E) := \langle E \mid e \cdot f = ef \text{ where } \{e, f\} \text{ is a basic pair } \rangle.$$

Suppose now S is regular. We define the sandwich sets:

$$S(e, f) = \{h \in E : ehf = ef, fhe = h\} \neq \emptyset$$

$$\mathsf{RIG}(E) := \langle E \mid \mathsf{IG}, ehf = ef (e, f \in E, h \in S(e, f)) \rangle.$$

Example 1: V-semilattice

Let
$$S = \bigvee_{z}^{e} \int_{z}^{f} IG(S) = \langle e, f, z \mid e^{2} = e, f^{2} = f, z^{2} = z, ez = ze = fz = zf = z \rangle$$
:

$$(e^{f})^{i}e^{-(ef)^{i}}$$

$$(fe)^{i} (fe)^{i}f^{-}$$

$$Z$$

$$RIG(S) = \langle e, f, z \mid IG, ef = fe = z \rangle = S.$$

Example 2: 2×2 rectangular band

$$S = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i,j,k,l \in \{1,2\}) \rangle:$$

$$\mathsf{IG}(S) = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i,j,k,l \in \{1,2\}, \ i = k \text{ or } j = l) \rangle:$$

$(e_{11}e_{22})^i e_{11} \\ (e_{12}e_{21})^i$	$(e_{12}e_{21})^i e_{12} \ (e_{11}e_{22})^i$
$(e_{21}e_{12})^i e_{21} (e_{22}e_{11})^i$	$(e_{22}e_{11})^i e_{22} (e_{21}e_{12})^i$

$$\operatorname{RIG}(S) = \operatorname{IG}(S).$$

Relationships between $S = \langle E \rangle$, IG(E), and RIG(E)

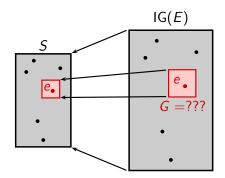
- (Easdown, 1985) There exists a surjective homomorphism $\phi : IG(E) \rightarrow S$ such that
 - the restriction of ϕ to *E* is an isomorphism of biordered sets;
 - the maximal subgroup H_e in S is the ϕ -image of its counterpart in IG(E) (which is in turn isomorphic to its counterpart in RIG(E)).
- ► The 'eggbox picture' of the *D*-class of *e* has the same dimensions in all three.
- IG(E) may contain other, non-regular D-classes.

So, understanding IG(E) is essential in understanding the structure of arbitrary IG semigroups.

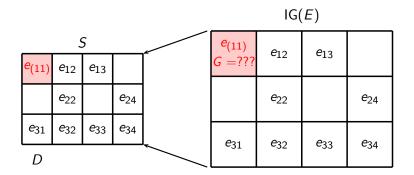
Question

Which groups arise as maximal subgroups of IG(E) (and thus of RIG(E))?

The big picture



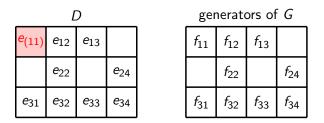
Let's zoom in



Presentation for a max. subgroup of IG(E): Generators

Fact

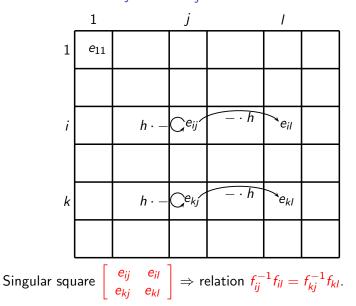
G is generated by a set in 1-1 correspondence with $D \cap E(S)$.



$$G = \langle f_{ij} \ (e_{ij} \in D \cap E) \mid ??? \rangle$$

Typical relations: $f_{ij}^{-1}f_{il} = f_{kj}^{-1}f_{kl}$

 $\bullet h = h^2$



Presentation – Approach #1

Theorem (Nambooripad 1979; Gray, Ruškuc 2012) The maximal subgroup G of $e \in E$ in IG(E) or RIG(E) is defined by the presentation:

$$\langle f_{ij} \mid f_{i,\pi(i)} = 1$$
 $(i \in I),$
 $f_{ij} = f_{il}$ $(if r_j e_{il} = r_l \text{ is a Schreier rep.}),$
 $f_{ij}^{-1} f_{il} = f_{kj}^{-1} f_{kl} \left(\begin{bmatrix} e_{ij} & e_{il} \\ e_{kj} & e_{kl} \end{bmatrix} \text{ sing. sq.})
angle.$

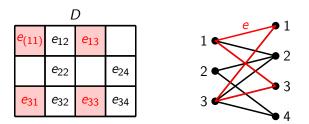
Proof: Reidemeister–Schreier rewriting process followed by Tietze transformations.

NBSAN, Norwich, April 14/15, 2014

Graham-Houghton complex

Let S be an idempotent generated regular semigroup.

GH(S): a 2-complex whose connected components are in a 1-1 correspondence with \mathcal{D} -classes of S.



Presentation – Approach #2

Theorem (Brittenham, Margolis, Meakin, 2009)

The fundamental group of GH(S) at any point of its connected component C_e containing the edge $e \cong$ the maximal subgroup of RIG(E(S)) (and thus of IG(E(S))) containing e. So,...

... let \mathcal{T} be an arbitrary spanning tree of C_e . Then the maximal subgroup G of $e \in E$ in IG(E) (or RIG(E)) is defined by the presentation:

$$\langle f_{ij} \mid f_{ij} = 1 \qquad ((i,j) \in \mathcal{T}), \ f_{ij}f_{kj}^{-1}f_{kl}f_{jl}^{-1} = 1 \ ((i,j,k,l) \text{ is a 2-cell})
angle.$$

Obviously, a clever choice of $\ensuremath{\mathcal{T}}$ may speed up the computation.

Remarks (1)

- Two types of relations:
 - Initial conditions: declaring some generators equal to 1 (or to each other in approach #1);
 - Main relations: one per singular square.
- All relations of length \leq 4.
- What can be defined by relations $f_{ij}^{-1}f_{il} = f_{kj}^{-1}f_{kl}$?

$$\blacktriangleright \begin{bmatrix} 1 & b \\ a & c \end{bmatrix} \Rightarrow ab = c.$$

Remarks (2)

- But: Every semigroup can be defined by relations of the form ab = c.
- Even better: Every finitely presented semigroup can be defined by finitely many relations of the form ab = c.
- Some more special squares ...

$$\begin{bmatrix} a & a \\ b & c \end{bmatrix} \Rightarrow b = c.$$

$$\begin{bmatrix} 1 & 1 \\ 1 & a \end{bmatrix} \Rightarrow a = 1.$$

The freeness conjecture

Question

Which groups arise as maximal subgroups of IG(E) (and thus of RIG(E))?

- Work of Pastijn and Nambooripad ('70s and '80s) and McElwee (2002) led to the belief that these maximal subgroups must always be free groups (of a suitable rank).
- ► This conjecture was proved false by Brittenham, Margolis, and Meakin in 2009 who obtained the groups Z ⊕ Z (from a particular 73-element semigroup) and F^{*} for an arbitrary field F.
- Finally, Gray and Ruškuc (2012) proved that every group arises as a maximal subgroup of some free idempotent generated semigroup (!!!).

Gray & Ruškuc, 2012

Theorem

Every group is a maximal subgroup of some free idempotent generated semigroup (over a regular semigroup).

Theorem

Every finitely presented group is a maximal subgroup of some free idempotent generated semigroup arising from a finite semigroup.

Remark

Maximal subgroups of free idempotent generated semigroups arising from finite semigroups have to be finitely presented by Reidemeister–Schreier.

Remaining Question

Is every finitely presented group a maximal subgroup in some free idempotent generated semigroup over a finite regular semigroup?

Calculating the groups for natural examples of S

Some or all maximal subgroups in IG(E(S)) have been calculated for the following S:

- ► Full transformation monoids: Gray, Ruškuc (symmetric groups, provided rank ≤ n − 2);
- Partial transformation monoids: ID (symmetric groups again);
- Full matrix monoid over a skew field: Brittenham, Margolis, Meakin (rank = 1); ID, Gray (rank < n/3 - general linear groups);
- Endomorphism monoid of a free G-act: Dolinka, Gould, Yang (wreath products of G by symmetric groups).

Bands

Theorem (ID)

For every left- or right seminormal band B, all maximal subgroups of IG(B) are free. For every variety V not contained in **LSNB** \cup **RSNB** there exists $B \in V$ such that IG(B) contains a non-free maximal subgroup.

Remaining Question

Which groups arise as maximal subgroups of IG(B), B a (finite) band?

Answer (ID, Ruškuc, 2013): All of them! (Resp. all finitely presented ones.)

New construction (ID & Ruškuc): set-up

Suppose we want to obtain

$$G = \langle a, b, c, \dots \mid ab = c, \dots \rangle$$

as a maximal subgroup of IG(B) for a band B.

•
$$I = \{0, a, b, c, ..., 0', a', b', c', ...\};$$

• $J = \{0, a, b, c, ..., \infty\};$
• $T = T_I^* \times T_J;$
• the minimal ideal: $K = \{(\sigma, \tau) : \sigma, \tau \text{ constants}\};$

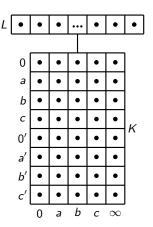
• K is an
$$I \times J$$
 rectangular band.

New construction: set-up

- $B = K \cup L$, where L is a left zero semigroup.
- We ensure this by virtue of every (σ, τ) ∈ L satisfying:

•
$$\sigma^2 = \sigma$$
, $\tau^2 = \tau$;

- ► ker(σ) = {{0, a, b, c}, {0', a', b', c'}};
- thus σ is determined by its image
 {x, y} transversing its kernel;
- $im(\tau) = \{0, a, b, c\};$
- thus τ is specified by $(\infty)\tau$.



New construction: the action of L on K

Notation	Indexing	$im(\sigma)$	$(\infty) au$	
(σ_0, τ_0)	-	$\{0, 0'\}$	0	
(σ_a, τ_a)	$a \in A$	$\{0, a'\}$	а	
$(\overline{\sigma}_a,\overline{\tau}_a)$	$a \in A$	$\{a,a'\}$	0	
$(\sigma_{\mathbf{r}}, \tau_{\mathbf{r}})$	$\mathbf{r} = (ab, c) \in R$	$\{b, c'\}$	а	

New construction: the endgame

	0	а	b	с	∞		0	а	Ь	с	∞
0	<i>f</i> ₀₀	f _{0a}	f _{0b}	f _{0c}	$f_{0\infty}$	0	1	1	1	1	1
а	f _{a0}	f _{aa}	f _{ab}	f _{ac}	$f_{a\infty}$	(σ_0, au_0) a	1	1	1	1	а
b	<i>f</i> _{b0}	f _{ba}	f _{bb}	f _{bc}	$f_{b\infty}$	$egin{array}{lll} (\sigma_{a}, au_{a})\ (\overline{\sigma}_{a},\overline{ au}_{a}) \end{array} b$	1	1	1	1	Ь
с	f_{c0}	f _{ca}	f _{cb}	f _{cc}	$f_{c\infty}$	(a, T_a)	1	1	1	1	с
0′	<i>f</i> _{0′0}	$f_{0'a}$	$f_{0'b}$	f _{0'c}	$f_{0'\infty}$	́о́	1	а	Ь	с	1
a'	$f_{a'0}$	$f_{a^\prime a}$	f _{a' b}	f _{a'c}	$f_{a'\infty}$	a'	1	а	Ь	с	а
b'	$f_{b'0}$	$f_{b^\prime a}$	$f_{b'b}$	f _{b'c}	$f_{b'\infty}$	b	1	а	Ь	с	Ь
c'	$f_{c'0}$	$f_{c'a}$	$f_{c'b}$	$f_{c'c}$	$f_{c'\infty}$	C'	1	а	b	с	с

 $(\sigma_{\mathbf{r}}, \tau_{\mathbf{r}})$ $\mathbf{r} : ab = c$

The word problem

(ongoing joint work with R.D.Gray and N.Ruškuc)

Let S be a semigroup with a finite biordered set E = E(S).

Theorem

There exists an algorithm deciding whether $w \in E^+$ represents a regular element of IG(E).

Key tool: generalised sandwich sets.

Theorem

If every maximal subgroup of IG(E) has a solvable word problem, then there is an algorithm which, given $u, v \in E^+$ such that urepresents a regular element, decides whether u = v holds in IG(E).

Corollary

The word problem for RIG(E) is solvable iff the word problem for each of its maximal subgroups is solvable.

The word problem(?)

So, the following question naturally arises:

Question

Is it true that the word problem for IG(E) (where E = E(S) is finite) is solvable iff the word problem for each of its maximal subgroups is solvable?

ID + RG + NR (2013/14): NO!

Theorem

There exists a finite band B such that all the maximal subgroups of IG(E(B)) are free, but the word problem of IG(E(B)) is still undecidable.

The band $B_{G,H}$

Let *G* be a finitely presented group and *H* its finitely generated group. The band $B_{G,H}$ has 5 \mathcal{D} -classes, forming 3 'floors', from top to bottom:

- ▶ a left zero band *L*,
- ▶ an 'intermediate' rectangular band K₁,
- ► a 0-direct union of two copies K', K" of the rectangular band K from the ID-NR construction,
- ► the action of L on K' and K" is exactly the same as in the ID-NR construction.

The band $B_{G,H}$

Properties of $B_{G,H}$:

- ► any maximal subgroup of IG(E(B_{G,H})) is either trivial, or isomorphic to G,
- ► as known from the properties of IG(E), to the rectangular bands K' and K" correspond two D-classes M' and M" of IG(E) which are completely simple subsemigroups, with typical elements

$$(i', g_1, j')$$
 and (i'', g_2, j'') ,

 $g_1,g_2\in G.$

Proposition

(1',1,1')(1'',1,1'')=(1',1,1')(1'',g,1'') if and only if $g\in H.$

The Mikhailova construction

Hence, it suffices to take G with a solvable word problem and its finitely generated subgroup H with and undecidable membership problem!

If $G = F_2 \times F_2$ and W is a f.p. 2-generated group with an undecidable problem, then taking H to be the fibre product w.r.t. the natural homomorphism $\pi: F_2 \to W$ (i.e. $H = \ker \pi$) suffices.

Open Problem

Is it at least true that the word problem for IG(E) is solvable when E is the biorder of a finite normal band?

THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at: http://people.dmi.uns.ac.rs/~dockie