## CSPs and dualities

### Catarina Carvalho PAM, University of Hertfordshire

**NBSAN 2014** 

# Constraint Satisfaction Problem

Given two finite relational structures  $\mathcal{A} = (A; R_1^{\mathcal{A}}, \dots, R_m^{\mathcal{A}})$  and  $\mathcal{B} = (B; R_1^{\mathcal{B}}, \dots, R_m^{\mathcal{B}})$  is there a homomorphism  $h : \mathcal{A} \longrightarrow \mathcal{B}$ ?

#### Example

A graph is a relation structure with exactly one binary relation: the edge relation.

Can one graph be mapped homomorphically to another graph?

## Example

The domain  $B = \{-1, 0, 1\}$  with ternary relations

$$R_1 = \{(x, y, z) \in B^3 : x + y + z \ge 1\}$$

#### and

$$R_2 = \{(-x, -y, -z) : (x, y, z) \in R_1\}$$

forms a relational structure  $\mathcal{B} = (B; R_1, R_2)$ .

$$(1,0,0),(1,1,-1)\in R_1$$
 and  $(1,0,-1)
ot\in R_1$   
 $(-1,0,0)\in R_2$  and  $(1,0,-1)
ot\in R_1$ , actually  $R_1\cap R_2=\emptyset$ 

# Non-uniform CSP

We fix a target structure  $\mathcal{B}$  and ask which structures (with the same signature) admit a homomorphism to  $\mathcal{B}$  $CSP(\mathcal{B}) = \{\mathcal{A} : \mathcal{A} \longrightarrow \mathcal{B}\}$ 

#### Example

The 2-colourability problem is equivalent to  $CSP(K_2)$ .



# Complexity of CSP

Problem: Classify CSP(B) wrt computational complexity.

Dichotomy Conjecture (Feder/Vardi '98)

For each  $\mathcal{B}$ , the problem  $CSP(\mathcal{B})$  is either tractable (i.e., in **P**) or **NP**-complete.

How can this be done? We like algebra

# Polymorphisms

A polymorphism *f* of a structure  $\mathcal{B}$  is an *n*-ary operation in *B* that is a homomorphism  $f : \mathcal{B}^n \longrightarrow \mathcal{B}$ .

### Example

Oriented paths have polymorphisms  $\min(x_1, \ldots, x_n)$  for every  $n \ge 1$ .

$$1 \bigcirc 2 & 3 & 4 & 5 & 6 \\ \bigcirc 2 & 2 & 3 & 4 & 5 & 6 \\ \bigcirc 2 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 & 2 &$$

An *n*-ary operation *f* is

- a projection on coordinate *i* if  $f(x_1, \ldots, x_n) = x_i$
- idempotent if  $f(x, \ldots, x) = x$ ,
- symmetric if  $f(x_1, \ldots, x_n) = f(x_{\pi(1)}, \ldots, x_{\pi(n)})$  for any permutation  $\pi$  of  $\{1, \ldots, n\}$ ,
- totally symmetric (TS) if  $f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ whenever  $\{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$ ,
- near-unanimity (NU) if

$$f(x, y, \ldots, y) = f(y, x, y, \ldots, y) = \cdots = f(y, \ldots, y, x) = y$$

### Example

Meet on a semilattice is a TSI operation. It can be defined of any arity we want.

## Example

On  $B = \{-1, 0, 1\}$  we define and *n*-ary operation as follows

$$s_n(x_1,...,x_n) = \begin{cases} 0 & \text{if } x_1 + \cdots + x_n = 0 \\ -1 & \text{if } x_1 + \cdots + x_n < 0 \\ 1 & \text{if } x_1 + \cdots + x_n > 0 \end{cases}$$

For any *n* this operation is symmetric and idempotent.

## Corollary (Bulatov, Jeavons; Willard)

If  $\mathcal{B}_1$  and  $\mathcal{B}_2$  support the same strong Maltsev conditions then  $CSP(\mathcal{B}_1)$  and  $CSP(\mathcal{B}_2)$  are equivalent.

polymorphisms control the complexity of the CSP

A strong Maltsev condition is any finite set of identities Generally, a strong Maltsev condition may involve many functions and/or superpositions.

# Algebraic Conjecture (FV'98, Bulatov, Jeavons, Krokhin '05)

#### For each core structure $\mathcal{B}$

- either all polymorphisms of B<sup>c</sup> are projections, and CSP(B) is NP-complete,
- or else B<sup>c</sup> has a Taylor polymorphism of some arity and CSP(B) is tractable.

A structure is a core if every endomorphism is an automorphism.

 $\mathcal{B}^c$  is the structure  $\mathcal{B}$  together with all constants, i.e. unary relations  $\{a\}$  for every *a* in the domain. We only need to consider idempotent polymorphisms, i.e. f(x, ..., x) = x

#### Theorem

For any structure B, tfae:

- 1.  $\mathcal{B}^c$  has a Taylor polymorphism
- 2. *B<sup>c</sup>* has a weak near-unanimity polymorphism [Maroti,McKenzie'06]

$$f(y, x, ..., x, x) = f(x, y, ..., x, x) = ... = f(x, x, ..., x, y)$$

3. B<sup>c</sup> has a cyclic polymorphism [Barto,Kozik'11]

$$f(x_1, x_2, x_3, ..., x_n) = f(x_2, x_3, ..., x_n, x_1)$$

4. B<sup>c</sup> has a Siggers polymorphism [Siggers'09,KMM'09]

$$f(a, r, e, a) = f(r, a, r, e)$$

#### Theorem (Barto, Kozik, Niven' 09/10)

Tfae (roughly)

- *B* has a cyclic polymorphism;
- *B* has a lot of cyclic polymorphisms of arities greater than the size of the domain |*B*|.

How does a lot differ from all?

What does "of all arities" do?

# **Duality land**



The idea is to justify the existence of a homomorphism by the non-existence of other homomorphisms.

If all structures  $\mathcal{A} \not\longrightarrow \mathcal{B}$  can be characterized in uniform way then we can obtain information about the complexity of  $CSP(\mathcal{B})$ .

## **Obstruction sets**

An obstruction set for a structure  ${\cal B}$  is a class  ${\cal O}_{\cal B}$  of structures such that, for all structures  ${\cal A}$ 

$$\mathcal{A} \mapsto \mathcal{B} \text{ iff } \mathcal{A}' \not\mapsto \mathcal{A} \text{ for all } \mathcal{A}' \in \mathcal{O}_{\mathcal{B}}.$$



## Example

If  ${\mathcal B}$  is a bipartite graph then  ${\mathcal O}_{{\mathcal B}}$  can be chosen to consist of all

# **Dualities**

A structure  ${\cal B}$  has "nice" duality if  ${\cal O}_{\cal B}$  can be chosen to be "simple":

| Duality | $\mathcal{O}_\mathcal{B}$ | Example $\mathcal{B}$                                                             |
|---------|---------------------------|-----------------------------------------------------------------------------------|
| finite  | finite                    | transitive tournament                                                             |
| path    | consisting of "paths"     | oriented path                                                                     |
|         |                           |                                                                                   |
| tree    | consisting of "trees"     | Horn 3-SAT                                                                        |
|         |                           | $x \wedge y \rightarrow z, \ \overline{x} \vee \overline{y} \vee \overline{z}, x$ |

The incidence multigraph of  $\ensuremath{\mathcal{A}}$  is a bipartite multigraph with vertices

- all elements of A and;
- all pairs (blocks) (R, (a<sub>1</sub>,..., a<sub>n</sub>)), with R a relation of A and (a<sub>1</sub>,..., a<sub>n</sub>) a tuple in R.
- $a \in A$  is connected to  $(R, (a_1, \ldots, a_n))$  iff  $a = a_i$ .

A structure A is a  $\tau$ -tree, or just tree, if its incidence multigraph is a tree, i.e. has no cycles or multiple edges.

## Example

If  $\tau$  is the signature of digraphs then  $\tau\text{-trees}$  are exactly the oriented trees.

## Example

The structure  $\mathcal{A}$  with domain  $\{1, \ldots, 6\}$  and relations  $R_1 = \{2, 3\}, R_2 = \{(1, 2), (2, 3), (3, 6)\}, R_3 = \{(3, 4, 5)\}$  is a tree.



# Some dualities

- B has finite duality iff CSP(B) is FO-definable iff CSP(B) is in non-uniform AC<sup>0</sup> (Larose, Loten, Tardif'07; Libkin'04)
- if B has bounded pathwidth duality then CSP(B) is in NL (Dalmau'05)
- B has bounded treewidth duality iff it has weak-NU polymorphisms of all but finitely many arities (Barto, Kozik '09), then CSP(B) is in P
- B has tree duality iff it has TSIs of all arities (Dalmau, Pearson '99)

## Caterpillars

A structure A is a  $\tau$ -path if Inc(A) is a tree with two "end" blocks.

 $\mathcal{A}$  is a  $\tau$ -caterpillar if it is a  $\tau$ -path with extra block legs.



 $\mathcal{A}=(\{1,\ldots,6\};\ \{2,3\},\ \{(1,2),(2,3),(3,6)\},\ \{(3,4,5)\}$  is a caterpillar.

# More polymorphisms

A (*mn*)-ary operation *f* is *m*-block symmetric if  $f(S_1, \ldots, S_n) = f(T_1, \ldots, T_n)$ whenever  $\{S_1, \ldots, S_n\} = \{T_1, \ldots, T_n\}$ , with  $S_i = \{x_{i1}, \ldots, x_{im}\}$ .

*f* is an *m*-ABS operation if it is *m*-block symmetric and it satisfies the absorptive rule  $f(S_1, S_2, S_3, ..., S_n) = f(S_2, S_2, S_3, ..., S_n)$  whenever  $S_2 \subseteq S_1$ .

#### Example

For a fixed linear order the operation  $min(max(x_{11},...,x_{1m}),...,max(x_{n1},...,x_{nm}))$  is an *m*-ABS operation.

Like block cyphers with extra absorption!

# Caterpillar duality

*m*-ABS operations generalize  $(x_1 \sqcap \ldots \sqcap x_m) \sqcup \ldots \sqcup (x_{jm+1} \sqcap \ldots \sqcap x_{(j+1)m}).$ 

### Theorem (C., Dalmau, Krokhin)

#### Tfae

- 1. *B* has caterpillar duality;
- co-CSP(B) is definable by a linear monadic Datalog program with at most one EDB per rule;
- 3.  $\mathcal{B}$  has m-ABS polymorphisms of arity mn, for all  $m, n \ge 1$ ;
- B is homomorphically equivalent to a structure A with polymorphisms x ⊓ y and x ⊔ y for some distributive lattice (A, ⊔, ⊓);
- B is homomorphically equivalent to a structure A with polymorphisms x □ y and x ⊔ y for some lattice (A, ⊔, □).

## Caterpillars and regular languages

Characterizing obstruction sets: given a family O is there a structure B s.t. O is an obstruction set for B.

#### Theorem (Nesestril, Tardif '00)

If a structure has finite duality then it has a finite obstruction set consisting of trees.

#### Theorem (Erdős, Tardif, Tardos '12)

Let  $\mathcal{L}$  be a language,  $\mathcal{O}$  the family of caterpillars described by  $\mathcal{L}$ . Then  $\mathcal{O}$  is an obstruction set for a structure  $\mathcal{A}$  iff  $\mathcal{L}^+$  is regular.

The family of caterpillar obstructions for a structure is described by a regular language.

## Example (Kun)

$$B = \{-1, 0, 1\}$$
 with ternary relations

$$R_1 = \{(x, y, z) \in B^3 : x + y + z \ge 1\}$$

and

$$R_2 = \{(-x, -y, -z) : (x, y, z) \in R_1\}$$

is preserved by symmetric operations

$$s_n(x_1,...,x_n) = \begin{cases} 0 & \text{if } x_1 + \cdots + x_n = 0\\ -1 & \text{if } x_1 + \cdots + x_n < 0\\ 1 & \text{if } x_1 + \cdots + x_n > 0 \end{cases}$$

but not by TSI of arity 3.

algebra rocks <3



So, tree duality is characterised by TSIs of all arities. What duality do we get from SIs of all arities?

What about cyclic of all arities?

# Symmetric does not imply cyclic

### Theorem (C., Krokhin)

If an algebra has term operations of arities 2 and 3 then it also has symmetric term operations of arities up to 4.

## Theorem (C., Krokhin)

There exists a structure (domain size 21) preserved by cyclic polymorphisms of all arities, but no symmetric polymorphism of arity 5.

Given by the group  $A_5$ .

## Proposition (Barto et al.)

Let  $\mathcal{A}$  be a finite algebra.

- Either A has cyclic term operations of all arities,
- or else there is a finite algebra B in V(A) with a fixed-point-free automorphism.

## Theorem (C., Krokhin)

Let  $\mathcal{A}$  be a finite algebra.

- Either A has symmetric term operations of all arities,
- or else there is a finite algebra B in V(A) that has two automorphisms without a common fixed point.
   Furthermore, one of the automorphisms can be chosen to have order two.

# **Open questions**

- As it stands having cyclic operations of al arities but no symmetric operations of all arities is a property expressible in the variety, can it be expressed just in HS? I.e. without using finite products.
- Do these properties collapse with any natural added assumptions?
- What dualities do we have here?