Left Restriction Semigroups from Incomplete Automata

Yanhui Wang

Shandong University of Science and Technology, China

20th Nov. 2013

NBSAN York

Let $S = (S, \cdot, +)$ be a semigroup equipped with a unary operation +.

Definition S is left restriction if the following identities hold:

$$x^+x = x, \ x^+y^+ = y^+x^+, (x^+y)^+ = x^+y^+, xy^+ = (xy)^+x.$$

An **inverse system** of algebras and homomorphisms is $\{(A_i)_{i \in I}; f_{ji}, i \leq j\}$, where

- (I, \leq) is a directed poset, that is, for any $i, j \in I$, there exists $k \in I$ such that $i \leq k$ and $j \leq k$;
- **2** $(A_i)_{i \in I}$ is a family of algebras;
- **(3)** $f_{ji}: A_j \to A_i$ for all $i \le j$ in I is a family of homomorphisms satisfying

(1)
$$f_{ii} = Id_{A_i}$$
 for all $i \in I$;
(2) for any $i \leq j \leq k$, we have $f_{ki} = f_{ji} \circ f_{kj}$.

The **inverse limit** of an inverse system of algebras and homomorphisms $\{(A_i)_{i \in I}; f_{ji}, i \leq j\}$ is a subalgebra of $\prod_{i \in I} A_i$ defined by

$$\varprojlim_{i\in I}A_i=\{(a_i)_{i\in I}\in \prod\nolimits_{i\in I}A_i|a_i=a_jf_{j_i} \text{ for all } i\leq j \text{ in } I\}.$$

Wreath Products

Let X be a non-empty set. We will denote the (partial) transformation semigroup S over X by (S, X).

Let (S, X) and (T, Y) be (partial) transformation semigroups. We put

$$S \wr T = \{(g, h) : g \in S, h : \operatorname{dom}(g) \to T\}.$$

For any $(x, y) \in X \times Y$, we define

$$(x,y)^{(g,h)} = \begin{cases} (x^g, y^{xh}) & \text{if } x \in \text{dom}(g), y \in \text{dom}(xh) \\ undefined, & \text{otherwise.} \end{cases}$$

For any (g_1, h_1) , $(g_2, h_2) \in S \wr T$, and $x \in \mathsf{dom}(g_1g_2)$,

$$(g_1, h_1)(g_2, h_2) = (g_1g_2, h),$$

where $xh = (xh_1)(x^{g_1})h_2$.

Then $S \wr T$ forms a semigroup of (partial) transformations over $X \times Y$, called the **wreath product** of (S, X) and (T, Y).

(Yanhui Wang)

Infinitely Iterated Wreath Products

Let (S_i, X_i) $(i \ge 1)$ be a sequence of (partial) transformation semigroups. For arbitrary $n \ge 2$, we have a wreath product

$$W_n = \wr_{i=1}^n (S_i, X_i),$$

which acts by (partial) transformation on $X^{(n)} = X_1 \times X_2 \times \cdots \times X_n$, and is called the **iterated wreath product** of (S_i, X_i) $(i = 1, 2, \cdots, n)$.

For any $n \leq m$, we define a map $\phi_{m,n} : W_m \to W_n$ by the rule that for any $(s_1, s_2, \ldots, s_n, \ldots, s_m) \in W_m$,

$$(s_1, s_2, \ldots, s_n, \ldots, s_m)\phi_{m,n} = (s_1, s_2, \ldots, s_n).$$

The inverse limit of $((W_n)_{n \in \mathbb{N}}, \phi_{m,n}, n \leq m)$ is

$$\varprojlim_{n\in\mathbb{N}}W_n=\{(w_n)_{n\in\mathbb{N}}\in\prod_{n\in\mathbb{N}}W_n|w_n=w_m\phi_{m,n} \text{ for all } n\leq m \text{ in } \mathbb{N}\},$$

called the **infinitely iterated wreath product** of (S_i, X_i) $(i \ge 1)$.

(Incomplete) Automata

An (incomplete) automaton A is a quadruple (Q, X, τ, λ) , where

- Q is a finite (resp. infinite) set of states
- X is a finite alphabet
- **③** au is a (partial) function from $Q \times X$ to Q
- λ is a (partial) function from $Q \times X$ to X

$$(\operatorname{\mathsf{dom}}(\tau) = \operatorname{\mathsf{dom}}(\lambda)).$$

Further,

() if for each $q \in Q$, $\lambda_q : X \to X$ defined by the rule that

$$x\lambda_q = (q, x)\lambda, \quad x \in X,$$

is a (partial) permutation over X, then A is called an **(incomplete)** permutational automaton.

Given an (incomplete) automaton $\mathcal{A} = (Q, X, \tau, \lambda)$, τ and λ can be extended as follows:

$$au: Q \times X^*(\operatorname{resp.} X^\omega) \to Q: \quad (q, \varepsilon)\tau = q, \quad (q, wx)\tau = ((q, w)\tau, x)\tau$$

$$\begin{split} \lambda &: Q \times X^*(\text{resp. } X^{\omega}) \to X \cup \{\varepsilon\} : \quad (q, \varepsilon) \lambda = \varepsilon, \quad (q, wx) \lambda = ((q, w)\tau, x) \lambda \\ \text{where } q \in Q, w \in X^*(\text{resp. } X^{\omega}), x \in X. \end{split}$$

Remark: if $(q, w)\tau$ (resp. $(q, w)\lambda$) is not defined, then τ (resp. λ) is not defined for all pairs (q, u), where w is a prefix of u.

Let $\mathcal{A} = (Q, X, \tau, \lambda)$ be an (incomplete) automaton.

For any $q \in Q$, $u = x_1 x_2 x_3 \cdots \in X^*$ (resp. $u \in X^{\omega}$), we define $uf_{\mathcal{A},q} = (q, x_1)\lambda(q, x_1 x_2)\lambda(q, x_1 x_2 x_3)\lambda \cdots$ $= (q, x_1)\lambda((q, x_1)\tau, x_2)\lambda((q, x_1 x_2)\tau, x_3)\lambda \cdots$.

We call $f_{\mathcal{A},q}$ a (partial) automaton transformation over X^* (resp. X^{ω}).

In an incomplete automaton \mathcal{A} , $f_{\mathcal{A},q}$ is called a **partial automaton permutation** if its restriction to the domain is injective.

Groups and Semigroups from (Incomplete) Automata

- if A is a permutational automaton with finite set of states Q, then G(A) = ⟨f_{A,q} : q ∈ Q ∪ Q⁻¹⟩ is a group. A group G is called an automaton group if G ≅ G(A);
- ② if A is an automaton with finite set of states Q, then $\Sigma(A) = \langle f_{A,q} : q \in Q \rangle$ is a semigroup. A semigroup S is called an automaton semigroup if $S \cong \Sigma(A)$.

In the following, (incomplete) automata have an infinite state set.

- \bigcup { $f_{\mathcal{A},q} : q \in Q \cup Q^{-1}, \mathcal{A}$ is an permutational automaton over X} forms a group GA(X);
- **②** \bigcup {*f*_{*A*,*q*} : *q* ∈ *Q*, *A* is an automaton over *X*} forms a monoid *AS*(*X*);
- U{f_{A,q}: q ∈ Q, A is an incomplete permutational automaton over X} forms an inverse semigroup ISA(X);
- \bigcup { $f_{A,q} : q \in Q, A$ is an incomplete automaton over X} forms a left restriction semigroup PAS(X).

PAS(X)

Lemma 1 PAS(X) is a subsemigroup of $\mathcal{PT}(X^*)$.

Lemma 2 All partial automaton identities over X form a semilattice. We denote it by $EA(X^*)$.

Let $\mathcal{A} = (Q, X, \tau, \lambda)$ be an incomplete automaton. We define $\mathcal{A}^+ = (Q, X, \tau^+, \lambda^+)$, where for any $q \in Q$ and $x \in X$,

$$(q,x)\tau^+ = \begin{cases} p & \text{if } (q,x)\tau = p \\ undefined, & \text{otherwise.} \end{cases}$$

and

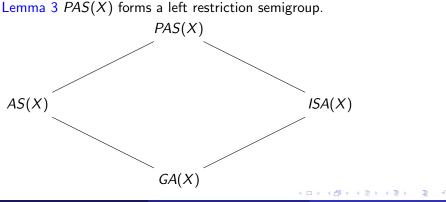
$$(q,x)\lambda^+ = \left\{egin{array}{cc} x & ext{if} & (q,x)\in & ext{dom}(\lambda) \ undefined, & ext{otherwise}. \end{array}
ight.$$

For any $q\in Q$, we have $f^+_{\mathcal{A},q}=f_{\mathcal{A}^+,q}.$

PAS(X)

Remark:

• for any $f_{\mathcal{A},q} \in PAS(X)$ and $I_{\mathcal{B},q'} \in EA(X^*)$, we have $(f_{\mathcal{A},q}I_{\mathcal{B},q'})^+ f_{\mathcal{A},q} = f_{\mathcal{A},q}I_{\mathcal{B},q'}$



Let X be a finite alphabet such that $|X| \ge 2$.

- The group GA(X) is isomorphic to the infinitely iterated wreath product of the symmetric group Sym(X) of X.
- **②** The monoid AS(X) is isomorphic to the infinitely iterated wreath product of the transformation monoid $\mathcal{T}(X)$ of X.
- The inverse semigroup ISA(X) is isomorphic to the infinitely iterated wreath product of the symmetric inverse semigroup IS(X) of X.

The Infinitely Iterated Wreath Product of $\mathcal{PT}(X)$

A construction:

•
$$PT(X)^n = \wr_{i=1}^n \mathcal{PT}(X)$$
, for any $n \in \mathbb{N}$.

3 The collection $((PT(X)^n)_{n\in\mathbb{N}}, \phi_{m,n}, n \leq m)$ is an inverse system.

$$\underbrace{\lim_{n \in \mathbb{N}} PT(X)^n}_{= \{(w_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} PT(X)^n | w_n = w_m \phi_{m,n} \text{ for all } n \leq m \text{ in } \mathbb{N} \}.$$

Remark:

$\varprojlim_{n\in\mathbb{N}} PT(X)^n \to PAS(X)$

For any element s of $\lim_{n\in\mathbb{N}} PT(X)^n$ is in the form

$$s = [s_1, s_2, \cdots, s_n, \cdots]$$

where $s_1 \in \mathcal{PT}(X)$ and $s_n : X^{n-1} \to \mathcal{PT}(X)$ for each $n \ge 2$. Remark:

• $x = (x_n)_{n \ge 1} \in X^{\omega}$ is contained in dom(s) if and only if $x_1 \in \text{dom}(s_1)$ and $x_n \in \text{dom}((x_1x_2\cdots x_{n-1})s_n)$ for $n \ge 2$.

2
$$x^{s} = (x_{1}^{s_{1}}, x_{2}^{(x_{1})s_{2}}, \cdots, x_{n}^{(x_{1}x_{2}\cdots x_{n-1})s_{n}}, \cdots)$$

Lemma 4 A partial transformation $f : X^{\omega} \to X^{\omega}$ is a partial automaton transformation if and only if it preserves the lengths of common beginnings of ω -words.

$$s = [s_1, s_2, \cdots, s_n, \cdots] \in PAS(X).$$

$PAS(X) \rightarrow \varprojlim_{n \in \mathbb{N}} PT(X)^n$

Let $f \in PAS(X)$. Then there exists an incomplete automaton $\mathcal{A} = \{Q, X, \tau, \lambda\}$ and $q \in Q$ such that $f = f_{\mathcal{A},q}$.

Notice:

For any $u = x_1 x_2 x_3 \dots \in X^{\omega}$, we have

$$uf_{\mathcal{A},q} = (q, x_1)\lambda(q, x_1x_2)\lambda(q, x_1x_2x_3)\lambda\cdots$$

= $(q, x_1)\lambda((q, x_1)\tau, x_2)\lambda((q, x_1x_2)\tau, x_3)\lambda\cdots$

We define

$$f_1 = \lambda_q \in \mathcal{PT}(X)$$

 $f_n: X^{n-1} \to \mathcal{PT}(X)$ by $(x_1 x_2 \cdots x_{n-1}) f_n = \lambda_{(q, x_1 x_2 \cdots x_{n-1})\tau}$ Then $f = [f_1, f_2, \cdots, f_n, \cdots] \in \varprojlim_{n \in \mathbb{N}} \mathcal{PT}(X)^n$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let X be a finite alphabet such that $|X| \ge 2$.

Theorem The left restriction semigroup PAS(X) is isomorphic to the infinitely iterated wreath product of the partial transformation semigroup $\mathcal{PT}(X)$ of X.