On congruence extension property for ordered algebras

Valdis Laan

(Joint work with Nasir Sohail and Lauri Tart)

Definitions

The *type* of an algebra is a (possibly empty) set Ω which is a disjoint union of sets Ω_k , $k \in \mathbb{N} \cup \{0\}$.

Definition 1 Let Ω be a type. An ordered Ω -algebra is a triplet $\mathcal{A} = (A, \Omega_A, \leq_A)$ comprising a poset (A, \leq_A) and a set Ω_A of operations on A (for every k-ary operation symbol $\omega \in \Omega_k$ there is a k-ary operation $\omega_A \in \Omega_A$ on A) such that all the operations ω_A are monotone mappings, where monotonicity of ω_A ($\omega \in \Omega_k$) means that

$$a_1 \leq_A a'_1 \wedge \ldots \wedge a_k \leq_A a'_k \Longrightarrow \omega_A(a_1, \ldots, a_k) \leq_A \omega_A(a'_1, \ldots, a'_k)$$

for all $a_1, \ldots, a_k, a'_1, \ldots, a'_k \in A$.

A homomorphism $f: \mathcal{A} \longrightarrow \mathcal{B}$ of ordered algebras is a monotone operation-preserving map from an ordered Ω -algebra \mathcal{A} to an ordered Ω -algebra \mathcal{B} . A subalgebra of an ordered algebra $\mathcal{A} =$ (A, Ω_A, \leq_A) is a subset B of A, which is closed under operations and equipped with the order $\leq_B = \leq_A \cap (B \times B)$. On the direct product of ordered algebras the order is defined componentwise.

Definition 2 A class of ordered Ω -algebras is called a *variety*, if it is closed under isomorphisms, quotients, subalgebras and products.

Every variety of ordered Ω -algebras together with their homomorphisms forms a category.

An *inequality* of type Ω is a sequence of symbols $t \leq t'$, where t, t' are Ω -terms. We say that " $t \leq t'$ holds in an ordered algebra \mathcal{A} " if $t_{\mathcal{A}} \leq t'_{\mathcal{A}}$ where $t_{\mathcal{A}}, t'_{\mathcal{A}} : \mathcal{A}^n \to \mathcal{A}$ are the functions on \mathcal{A} induced by t and t'. Inequalities $t \leq t'$ and $t' \leq t$ hold if and only if the identity t = t' holds. A class \mathcal{K} of Ω -algebras is a variety if and only if it consists precisely of all the algebras satisfying some set of inequalities.

Example 1 Lattices, bounded posets, posemigroups or pomonoids form a variety.

If S is a pomonoid then the class of all right S-posets is a variety of ordered Ω -algebras, where $\Omega = \Omega_1 = \{\cdot s \mid s \in S\}$, defined by the following set of identities and inequalities:

$$\{(x \cdot s) \cdot t = x \cdot (st) \mid s, t \in S\} \cup \{x \cdot 1 = x\} \cup \{x \cdot s \le x \cdot t \mid s, t \in S, s \le t\}.$$

If θ is a preorder on a poset (A, \leq) and $a, a' \in A$ then we write

$$a \leq a' \iff (\exists n \in \mathbb{N})(\exists a_1, \dots, a_n \in A) (a \leq a_1 \theta a_2 \leq a_3 \theta \dots \theta a_n \leq a').$$

Definition 3 An order-congruence on an ordered algebra A is an algebraic congruence θ such that the following condition is satisfied,

$$(\forall a, a' \in A) \left(a \leq a' \leq a \Longrightarrow a \theta a' \right).$$

We call a preorder σ on an ordered algebra \mathcal{A} a **lax congruence** if it is compatible with operations and extends the order of \mathcal{A} .

CEP and **LEP**

Definition 4 We say that an ordered algebra \mathcal{A} has the **congruence extension property** (CEP for short) if every ordercongruence θ on an arbitrary subalgebra \mathcal{B} of \mathcal{A} is induced by an order-congruence Θ on \mathcal{A} , i.e. $\Theta \cap (B \times B) = \theta$.

Definition 5 We say that an ordered algebra \mathcal{A} has the **lax congruence extension property** (LEP for short) if every lax congruence σ on an arbitrary subalgebra \mathcal{B} of \mathcal{A} is induced by a lax congruence Σ on \mathcal{A} , i.e. $\Sigma \cap (B \times B) = \sigma$.

Proposition 1 If an ordered algebra has LEP then it has CEP.

Example 2 Consider a pomonoid *S* with the following multiplication table and order:

Then S has CEP. To show that S does not have LEP we consider a lax congruence

 $\theta = \{(b, e), (e, b), (b, b), (e, e), (1, 1)\}$

on a subpomonoid $U = \{b, e, 1\}$. Now any lax congruence Γ on S extending θ must contain (a, b) = (ea, ba). Since Γ extends the order of S, it shoud also contain the pair (1, a). Using the transitivity we have $(1, b) \in \Gamma$ from $(1, a), (a, b) \in \Gamma$. Therefore $\Gamma \cap (U \times U) \neq \theta$ because $(1, b) \notin \theta$, and LEP fails for S.

Proposition 2 Let $\Omega = \Omega_0 \cup \Omega_1$. Then every ordered Ω -algebra has LEP (and hence CEP).

Corollary 1 Every poset has LEP.

Corollary 2 If *S* is a posemigroup or a pomonoid then every *S*-poset has LEP.

LEP and diagrams

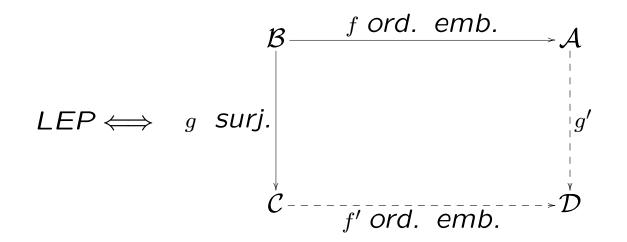
Definition 6 A mapping $f : A \to B$ between posets $A = (A, \leq_A)$ and $B = (B, \leq_B)$ is called an **order embedding** if

$$a \leq_A a' \iff f(a) \leq_B f(a')$$

for all $a, a' \in A$.

Proposition 3 An algebra \mathcal{A} in a variety \mathcal{V} of ordered Ω -algebras has LEP if and only if for each order embedding $f : \mathcal{B} \longrightarrow \mathcal{A}$ and surjective morphism $g : \mathcal{B} \longrightarrow \mathcal{C}$ there exist an order embedding $f' : \mathcal{C} \longrightarrow \mathcal{D}$ and a homomorphism $g' : \mathcal{A} \longrightarrow \mathcal{D}$ such that g'f = f'g.

Shortly:

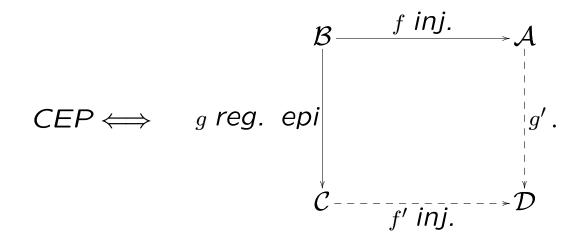


Definition 7 A morphism $g : \mathcal{B} \to \mathcal{C}$ of ordered Ω -algebras is a **regular epimorphism** if

$$(\forall c, c' \in \mathcal{C})(\exists b, b' \in \mathcal{B})(c = g(b) \land c' = g(b') \land b \leq b').$$

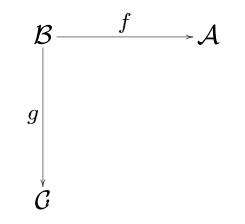
Proposition 4 An algebra \mathcal{A} in a variety \mathcal{V} of ordered Ω -algebras has CEP if and only if for each injective homomorphism $f : \mathcal{B} \longrightarrow \mathcal{A}$ and regular epimorphism $g : \mathcal{B} \longrightarrow \mathcal{C}$ there exist an injective homomorphism $f' : \mathcal{C} \longrightarrow \mathcal{D}$ and a homomorphism $g' : \mathcal{A} \longrightarrow \mathcal{D}$ such that g'f = f'g.

Shortly:



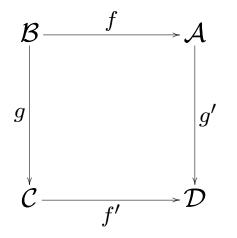
Definition 8 We say that an unordered algebra \mathcal{A} has the **strong** congruence extension property (SCEP) if any order-congruence θ on a subalgebra \mathcal{B} of \mathcal{A} can be extended to an order-congruence Θ on \mathcal{A} in such a way that $\Theta \cap (B \times A) = \theta$.

Proposition 5 An algebra \mathcal{A} in a variety \mathcal{V} of ordered Ω -algebras has SCEP if and only if each diagram



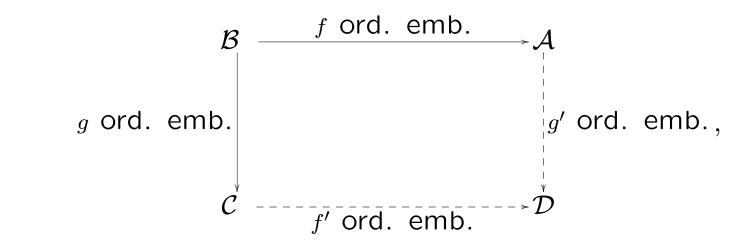
where f is an order embedding and g is a regular epimorphism,

can be completed to a pullback diagram

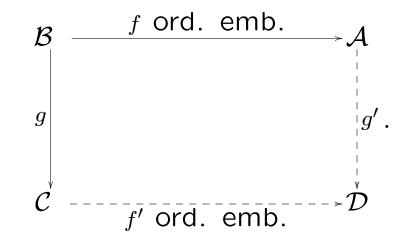


in \mathcal{V} , where f' is an injective homomorphism.

Amalgamation property (AP):



transferability property $(\top P)$:



Proposition 6 In a class \mathcal{K} of ordered Ω -algebras we have the following.

- 1. If \mathcal{K} is closed under quotients then LEP and AP imply TP.
- 2. TP implies LEP.
- 3. If \mathcal{K} has finite products then \mathcal{K} has TP iff it has LEP and AP.

The case of Hamiltonian algebras

An unordered algebra \mathcal{A} is called **Hamiltonian** if every subalgebra \mathcal{B} of \mathcal{A} is a class of a suitable congruence on \mathcal{A} . A variety is called **Hamiltonian** if all its algebras are Hamiltonian.

An unordered algebra is said to have the **strong congruence** extension property (SCEP) if any congruence θ on a subalgebra \mathcal{B} of an algebra \mathcal{A} can be extended to a congruence Θ of \mathcal{A} in such a way that each Θ -class is either contained in B or disjoint from B. The last means that $\Theta \cap (B \times A) = \theta$.

Theorem 1 (Kiss; Gould and Wild) If A is an algebra such that $A \times A$ is Hamiltonian, then A has the SCEP. In particular, each Hamiltonian variety of unordered algebras has the SCEP.

If θ is an order-congruence on an ordered algebra \mathcal{A} then every θ -class is a convex subset of \mathcal{A} .

We say that an ordered algebra \mathcal{A} is **Hamiltonian** if every convex subalgebra \mathcal{B} of \mathcal{A} is a class of a suitable order-congruence on \mathcal{A} .

Example 3 The variety of *S*-posets is Hamiltonian, because of the Rees congruences.

Proposition 7 Let \mathcal{B} be an up-closed subalgebra of an ordered algebra \mathcal{A} , where $\mathcal{A} \times \mathcal{A}$ is Hamiltonian. If σ is a lax congruence on \mathcal{B} which is a convex subset of $B \times B$ then σ can be extended to a lax congruence Σ on \mathcal{A} in such a way that $\Sigma \cap (B \times A) = \sigma$.

Proposition 8 Let \mathcal{B} be an up-closed subalgebra of an ordered algebra \mathcal{A} , where $\mathcal{A} \times \mathcal{A}$ is Hamiltonian. If θ is an order-congruence on \mathcal{B} which extends the order of \mathcal{B} then θ can be extended to an order-congruence on \mathcal{A} .

Proposition 9 Let \mathcal{B} be an up-closed (or down-closed) subalgebra of an ordered algebra \mathcal{A} . Assume that \mathcal{A} has the algebraic SCEP with respect to \mathcal{B} . Then every order-congruence of \mathcal{B} can be extended to \mathcal{A} .

References

- 1. Biró, B.; Kiss, E.W.; Pálfy, P.P. On the congruence extension property. Universal algebra (Esztergom, 1977), pp. 129151, Colloq. Math. Soc. János Bolyai, 29, North-Holland, Amsterdam-New York, 1982.
- 2. Bloom S.L., *Varieties of ordered algebras*, J. Comput. System Sci. **13** (1976), 200–212.
- 3. Czédli G., Lenkehegyi A., *On congruence n-distributivity of ordered algebras*, Acta Math. Hungar. **41** (1983), 17–26.
- 4. Czédli G., Lenkehegyi A., *On classes of ordered algebras and quasiorder distributivity*, Acta Sci. Math. **46** (1983), 41–54.
- 5. Gould, V., Wild, M., Every Hamiltonian variety has the congruence extension property — a short proof, Algebra Universalis **26** (1989), 187–188.

6. Kiss, E.W., *Each Hamiltonian variety has the congruence extension property*, Algebra Universalis **12** (1981), 395398.

7. Kiss E. W., Márki L., Pröhle P., Tholen W., *Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity*, Studia Sci. Math Hung. **18** (1983), 79-141.