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Definitions

The type of an algebra is a (possibly empty) set Ω which is a

disjoint union of sets Ωk, k ∈ N ∪ {0}.

Definition 1 Let Ω be a type. An ordered Ω-algebra is a triplet

A = (A,ΩA,≤A) comprising a poset (A,≤A) and a set ΩA of

operations on A (for every k-ary operation symbol ω ∈ Ωk there

is a k-ary operation ωA ∈ ΩA on A) such that all the operations

ωA are monotone mappings, where monotonicity of ωA (ω ∈ Ωk)

means that

a1 ≤A a′1 ∧ . . . ∧ ak ≤A a′k =⇒ ωA(a1, . . . , ak) ≤A ωA(a
′
1, . . . , a

′
k)

for all a1, . . . , ak, a
′
1, . . . , a

′
k ∈ A.



A homomorphism f : A −→ B of ordered algebras is a monotone

operation-preserving map from an ordered Ω-algebra A to an

ordered Ω-algebra B. A subalgebra of an ordered algebra A =

(A,ΩA,≤A) is a subset B of A, which is closed under operations

and equipped with the order ≤B = ≤A ∩(B×B). On the direct

product of ordered algebras the order is defined componentwise.

Definition 2 A class of ordered Ω-algebras is called a variety,

if it is closed under isomorphisms, quotients, subalgebras and

products.

Every variety of ordered Ω-algebras together with their homo-

morphisms forms a category.



An inequality of type Ω is a sequence of symbols t ≤ t′, where t, t′

are Ω-terms. We say that “t ≤ t′ holds in an ordered algebra A”

if tA ≤ t′A where tA, t′A : An → A are the functions on A induced

by t and t′. Inequalities t ≤ t′ and t′ ≤ t hold if and only if the

identity t = t′ holds. A class K of Ω-algebras is a variety if and

only if it consists precisely of all the algebras satisfying some set

of inequalities.

Example 1 Lattices, bounded posets, posemigroups or pomonoids

form a variety.

If S is a pomonoid then the class of all right S-posets is a variety

of ordered Ω-algebras, where Ω = Ω1 = {·s | s ∈ S}, defined by

the following set of identities and inequalities:

{(x ·s) ·t = x ·(st) | s, t ∈ S}∪{x ·1 = x}∪{x ·s ≤ x ·t | s, t ∈ S, s ≤ t}.



If θ is a preorder on a poset (A,≤) and a, a′ ∈ A then we write

a ≤
θ
a′ ⇐⇒ (∃n ∈ N)(∃a1, . . . , an ∈ A)(a ≤ a1θa2 ≤ a3θ . . . θan ≤ a′).

Definition 3 An order-congruence on an ordered algebra A is

an algebraic congruence θ such that the following condition is

satisfied,

(∀a, a′ ∈ A)

(
a ≤

θ
a′ ≤

θ
a =⇒ aθa′

)
.

We call a preorder σ on an ordered algebra A a lax congruence

if it is compatible with operations and extends the order of A.



CEP and LEP

Definition 4 We say that an ordered algebra A has the con-

gruence extension property (CEP for short) if every order-

congruence θ on an arbitrary subalgebra B of A is induced by an

order-congruence Θ on A, i.e. Θ ∩ (B ×B) = θ.

Definition 5 We say that an ordered algebra A has the lax con-

gruence extension property (LEP for short) if every lax con-

gruence σ on an arbitrary subalgebra B of A is induced by a lax

congruence Σ on A, i.e. Σ ∩ (B ×B) = σ.

Proposition 1 If an ordered algebra has LEP then it has CEP.



Example 2 Consider a pomonoid S with the following multipli-

cation table and order:

· a b e 1
a a a a a
b b b b b
e a b e e
1 a b e 1

,

a
� |

e 1
�

b

.

Then S has CEP. To show that S does not have LEP we consider

a lax congruence

θ = {(b, e), (e, b), (b, b), (e, e), (1,1)}

on a subpomonoid U = {b, e,1}. Now any lax congruence Γ on

S extending θ must contain (a, b) = (ea, ba). Since Γ extends

the order of S, it shoud also contain the pair (1, a). Using the

transitivity we have (1, b) ∈ Γ from (1, a), (a, b) ∈ Γ. Therefore

Γ ∩ (U × U) ̸= θ because (1, b) ̸∈ θ, and LEP fails for S.



Proposition 2 Let Ω = Ω0∪Ω1. Then every ordered Ω-algebra

has LEP (and hence CEP).

Corollary 1 Every poset has LEP.

Corollary 2 If S is a posemigroup or a pomonoid then every

S-poset has LEP.



LEP and diagrams

Definition 6 A mapping f : A → B between posets A = (A,≤A)

and B = (B,≤B) is called an order embedding if

a ≤A a′ ⇐⇒ f(a) ≤B f(a′)

for all a, a′ ∈ A.



Proposition 3 An algebra A in a variety V of ordered Ω-algebras

has LEP if and only if for each order embedding f : B // A and

surjective morphism g : B // C there exist an order embedding

f ′ : C //D and a homomorphism g′ : A //D such that g′f = f ′g.

Shortly:

LEP ⇐⇒

C D
f ′ ord. emb.

//_____________________

B

C

g surj.

��

B Af ord. emb.
//A

D

g′

���
�
�
�
�
�
�
�
�
�
�



Definition 7 A morphism g : B → C of ordered Ω-algebras is a

regular epimorphism if

(∀c, c′ ∈ C)(∃b, b′ ∈ B)(c = g(b) ∧ c′ = g(b′) ∧ b ≤
ker g

b′).



Proposition 4 An algebra A in a variety V of ordered Ω-algebras

has CEP if and only if for each injective homomorphism

f : B // A and regular epimorphism g : B // C there exist

an injective homomorphism f ′ : C // D and a homomorphism

g′ : A // D such that g′f = f ′g.

Shortly:

CEP ⇐⇒

C D
f ′ inj.

//______________

B

C

g reg. epi

��

B Af inj.
//A

D

g′

���
�
�
�
�
�
�
�
�
�
�

.



Definition 8 We say that an unordered algebra A has the strong

congruence extension property (SCEP) if any order-congruence

θ on a subalgebra B of A can be extended to an order-congruence

Θ on A in such a way that Θ ∩ (B ×A) = θ.

Proposition 5 An algebra A in a variety V of ordered Ω-algebras

has SCEP if and only if each diagram

C

B

C

g

��

B Af
//A

,

where f is an order embedding and g is a regular epimorphism,



can be completed to a pullback diagram

C D
f ′

//

B

C

g

��

B Af
//A

D

g′

��

in V, where f ′ is an injective homomorphism.



Amalgamation property (AP):

C D
f ′ ord. emb.

//_____________________

B

C

g ord. emb.

��

B Af ord. emb.
//A

D

g′ ord. emb.

���
�
�
�
�
�
�
�
�
�
�

,

transferability property (TP):

C D
f ′ ord. emb.

//_____________________

B

C

g

��

B Af ord. emb.
//A

D

g′

���
�
�
�
�
�
�
�
�
�
�

.



Proposition 6 In a class K of ordered Ω-algebras we have the

following.

1. If K is closed under quotients then LEP and AP imply TP.

2. TP implies LEP.

3. If K has finite products then K has TP iff it has LEP and

AP.



The case of Hamiltonian algebras

An unordered algebra A is called Hamiltonian if every subalgebra

B of A is a class of a suitable congruence on A. A variety is called

Hamiltonian if all its algebras are Hamiltonian.

An unordered algebra is said to have the strong congruence

extension property (SCEP) if any congruence θ on a subalgebra

B of an algebra A can be extended to a congruence Θ of A in

such a way that each Θ-class is either contained in B or disjoint

from B. The last means that Θ ∩ (B ×A) = θ.

Theorem 1 (Kiss; Gould and Wild) If A is an algebra such

that A × A is Hamiltonian, then A has the SCEP. In particular,

each Hamiltonian variety of unordered algebras has the SCEP.



If θ is an order-congruence on an ordered algebra A then every

θ-class is a convex subset of A.

We say that an ordered algebra A is Hamiltonian if every convex

subalgebra B of A is a class of a suitable order-congruence on

A.

Example 3 The variety of S-posets is Hamiltonian, because of

the Rees congruences.



Proposition 7 Let B be an up-closed subalgebra of an ordered

algebra A, where A×A is Hamiltonian. If σ is a lax congruence

on B which is a convex subset of B ×B then σ can be extended

to a lax congruence Σ on A in such a way that Σ∩ (B×A) = σ.

Proposition 8 Let B be an up-closed subalgebra of an ordered

algebra A, where A×A is Hamiltonian. If θ is an order-congruence

on B which extends the order of B then θ can be extended to an

order-congruence on A.

Proposition 9 Let B be an up-closed (or down-closed) subalge-

bra of an ordered algebra A. Assume that A has the algebraic

SCEP with respect to B. Then every order-congruence of B can

be extended to A.
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