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Endomorphism growth

S a finitely generated semigroup.

T a subsemigroup of S.

A a finite generating set for S.

|x|A the length of x ∈ S with respect to A; that is, the minimum length

of a product of elements of A that equals x.

φ endomorphism of S.

For m ∈ N, the growth function of φ with respect to elements of

length m over A is defined by

Γφ,m,A(n) = max
{∣
∣wφn

∣

∣ : |w|A 6 m
}
.

The growth of φ is defined by

Γ(φ) = sup
{

lim sup
n→∞

n

√

Γφ,m,A(n) : m ∈ N

}

.



Endomorphism growth

Γφ,m,A(n) = max
{∣
∣wφn

∣

∣ : |w|A 6 m
}

Γ(φ) = sup
{

lim supn→∞
n

√

Γφ,m,A(n) : m ∈ N
}

Example
Let S = {a}+, A = {a}, and aφ = a2. Then

Γφ,m,A(n) =
∣

∣amφn
∣

∣ =
∣

∣a2nm
∣

∣ = 2nm,

and so

Γ(φ) = sup
{

lim supn→∞

n
√
2nm : m ∈ N

}
= 2.



Properties of endomorphism growth

Γφ,m,A(n) = max
{∣
∣wφn

∣

∣ : |w|A 6 m
}

Γ(φ) = sup
{

lim supn→∞
n

√

Γφ,m,A(n) : m ∈ N
}

Proposition
Γ(φ) = limn→∞

n

√

Γφ,1,A(n) = inf{ n

√

Γφ,1,A(n) : n ∈ N}.

Proof.
First, |(a1 · · ·am)φn| 6 |a1φ

n| · · · |amφn|;

and thus Γφ,m,A(n) 6 mΓφ,1,A(n).

Also, Γφ,1,A(n)

= max{|aφn| : a ∈ A}

= max{|(w1 · · ·wk)φ| : w1 · · ·wk = aφn−1, a ∈ A}

6 max{|w1φ| · · · |wkφ| : w1 · · ·wk = aφn−1, a ∈ A}

6 Γφ,1,A(1)Γφ,1,A(n− 1).



Properties of endomorphism growth

Γφ,m,A(n) = max
{∣
∣wφn

∣

∣ : |w|A 6 m
}

Γ(φ) = sup
{

lim supn→∞
n

√

Γφ,m,A(n) : m ∈ N
}

Proposition
Γ(f) = limn→∞

n

√

Γf,1,A(n) = inf{ n

√

Γf,1,A(n) : n ∈ N}.

Proof (continued).
So far, we have Γφ,m,A(n) 6 mΓφ,1,A(n) and

Γφ,1,A(n) 6 Γφ,1,A(1)Γφ,1,A(n− 1).

Hence Γ(φ) 6 sup
{

lim supn→∞
n

√

mΓφ,1,A(n) : m ∈ N
}

Γ(φ) = lim supn→∞
n

√

Γφ,1,A(n).

Furthermore, (Γφ,A(n))
1/n is non-increasing in n, so

Γ(φ) = limn→∞
n

√

Γφ,1,A(n) = inf
{

n

√

Γφ,1,A(n) : n ∈ N
}
.



Attainable growths

Theorem (C, Maltcev)
For any real number r > 1, there exists an endomorphism whose

growth is r.

Proof.
Growth of the identity endomorphism is 1, so consider r > 1.

Let pn = ⌈rn+1⌉+ n for all n ∈ N ∪ {0}. Note that

2 6 p0 < p1 < p2 < · · · .
Define the semigroup S by the following rewriting system over

A = {a, b}:

aph(apibpiab)pha(apibpiab) → api+h+1bpi+h+1ab

for i, h ∈ N ∪ {0}.

This rewriting system is

◮ confluent, since there are no non-trivial overlaps between

left-hand sides;

◮ noetherian, since it is length-reducing.



Attainable growths

aph(apibpiab)pha(apibpiab) → api+h+1bpi+h+1ab

Proof (continued).
Define φ by a 7→ a and b 7→ ap0bp0ab. Then φ is a well-defined

endomorphism, since

(

aph(apibpiab)pha(apibpiab)
)

φ

= aph

(

api(ap0bp0ab)pia(ap0bp0ab)
)ph

a
(

api(ap0bp0ab)pia(ap0bp0ab)
)

→ aph(api+1bpi+1ab)pha(api+1bpi+1ab)

→ api+h+2bpi+h+2ab

and

(api+h+1bpi+h+1ab)φ = api+h+1

(

ap0bp0ab
)pi+h+1

a
(

ap0bp0ab
)

→ api+h+2bpi+h+2ab.



Attainable growths

Γ(φ) = lim
n→∞

n

√

Γφ,1,A(n) = inf{ n

√

Γφ,1,A(n) : n ∈ N}

φ : a 7→ a, b 7→ ap0bp0ab pn = ⌈rn+1⌉+ n

Proof (continued).
Since φ fixes a, we have |aφn| = 1.

By induction, bφn = apn−1bpn−1ab, so

Γφ,1,A(n) = |bφn| = 2(n− 1+ ⌈rn⌉) + 2 = 2n+ 2⌈rn⌉.

Hence

Γ(φ) = lim
n→∞

n

√

2n+ 2⌈rn⌉

= r.



Homogeneous semigroup presentations

◮ A presentation 〈A | R〉 is homogeneous if for all (u, v) ∈ R,

|u| = |v|.

◮ So if w,w ′ ∈ A+ are equal in the semigroup, |w| = |w ′|.

Let x
(n)

ij the number of letters aj in aiφ
n.

Let P be the matrix [x
(1)
ij ]. Then
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and so,

|aiφ
n| =

[

1 · · · 1
]
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

.



Homogeneous semigroup presentations

◮ If x
(1)
i1 + · · ·+ x

(1)
ik = 0 for some i, then φ maps S onto the

subsemigroup T = 〈a1, . . . , ai−1, ai+1, . . . , ak〉, which is also a

homogeneous semigroup. This reduces the calculation of Γ(φ) to

the calculation of Γ(φ|T ).

◮ If x
(1)
i1 + · · ·+ x

(1)
ik > 0 for all i, then

Γ(φ) = limn→∞
n

√

‖Pn‖,

where ‖Pn‖ is the sum of the entries of Pn.

By Gelfand’s formula,

Γ(φ) = limn→∞
n

√

‖Pn‖ = ρ(P).

where ρ(P) is the spectral radius of P.

Proposition (C, Maltcev)
The growth of an endomorphism of a homogeneous semigroup is an

algebraic number.



Mapping into a subsemigroup

Proposition (C, Maltcev)
Let T be a finitely generated subsemigroup of S, and suppose

Sφ ⊆ T . Then Γ(φ) = Γ(φ|T ).

Proof.
Let B generate T and let A ⊃ B generate S.

6 Let a ∈ A. Then aφ ∈ T and so

|aφn+1|A 6 |aφn+1|B = |(aφ)φ|nT |B 6 |aφ|BΓφ|T ,1,B(n).

Thus

Γφ,1,A(n+ 1) 6 max
a∈A

|aφ|BΓφ,1,B(n) = kΓφ|T ,1,B(n)

and so Γ(φ) 6 Γ(φ|T ).



Mapping into a subsemigroup

Proposition (C, Maltcev)
Let T be a finitely generated subsemigroup of S, and suppose

Sφ ⊆ T . Then Γ(φ) = Γ(φ|T ).

Proof (continued).
Let B generate T and let A ⊃ B generate S.

> Let b ∈ B. Let p = |bφn|A, so that bφn = a1 · · ·ap.

Then

|bφn+1|B = |(a1φ) · · · (apφ)|B 6 Mp,where M = max
a∈A

|aφ|B.

Thus |bφn+1|B 6 MΓφ,1,A(n). This implies

Γφ|T ,1,B(n+ 1) 6 MΓφ,1,A(n), and hence Γ(φ|T ) 6 Γ(φ).



General subsemigroups

Let φ be such that Tφ ⊆ T .

In general, there is no connection between the Γ(φ) and Γ(φ|T ). That

is, both Γ(φ|T ) < Γ(φ) and Γ(φ) < Γ(φT ) are possible.

Example
Let S = ({a}+)0, let T = {0} and define φ by a 7→ a2 and 0 7→ 0.

Then Γ(φ) = 2 and Γ(φ|T ) = 1. So Γ(φ|T ) < Γ(φ).



General subsemigroups

Example (continued)
Let φ be the endomorphsim of {a, b, c, d}+ defined by

a 7→ ab, b 7→ ba, c 7→ c, d 7→ d.

Let S be defined by the following rewriting system over {a, b, c, d}:

ancnand → aφn for n > 1;

bncnbnd → aφn for n > 1;
(

aφk
)n

cn
(

aφk
)n

d → aφk+n for k, n > 1;
(

bφk
)n

cn
(

bφk
)n

d → bφk+n for k, n > 1.

This system is

◮ noetherian, since every rule reduces the number of symbols c;

◮ confluent, since if two left-hand sides overlap, the exponents n

must coincide and (xφk)n = (yφℓ)n for x, y ∈ {a, b} and

k, ℓ, n ∈ N if and only if k = ℓ and x = y.



General subsemigroups

Example (continued)
Let φ be the endomorphsim of {a, b, c, d}+ defined by

a 7→ ab, b 7→ ba, c 7→ c, d 7→ d.

Let S be defined by the following rewriting system over {a, b, c, d}:

ancnand → aφn for n > 1;

bncnbnd → aφn for n > 1;
(

aφk
)n

cn
(

aφk
)n

d → aφk+n for k, n > 1;
(

bφk
)n

cn
(

bφk
)n

d → bφk+n for k, n > 1.

The map φ gives an endomorphism of S. Let T = 〈a, b〉 = {a, b}+.

Then Tφ ⊆ T , and Γ(φ|T ) = 2.

But max{aφn, bφn, xφn, dφn} 6 3n+ 1 and so Γ(φ) = 1.

Thus Γ(φT ) < Γ(φ).



Special types of subsemigroups

Proposition (C, Maltcev)
Suppose T is finitely generated and there is a finite set R ⊆ S such

that S = RT , and φ is such that Tφ ⊆ T . Then Γ(φ) 6 Γ(φ|T ).

For x, y ∈ S, define

x RT y ⇐⇒ xT ∪ {x} = yT ∪ {y},

x LT y ⇐⇒ Tx ∪ {x} = Ty ∪ {y},

x HT y ⇐⇒ x RT y∧ x LT y.

The Green index of T in S is the number of HT -classes in S− T .

Proposition (C, Maltcev)
Let T have finite Green index in S, with Tφ ⊆ T . Then Γ(φ) = Γ(φ|T ).



Semigroups with soluble word problem

Theorem (C, Maltcev)
Every computable real number arises as an endomorphism of a

finitely generated semigroup with soluble word problem.

Question
What are the growths of endomorphisms of finitely presented

semigroups? (Always computable?)

Question
What are the growths of endomorphisms of semigroups presented by

finite complete rewriting systems?



Hopficity and co-hopficity

S is hopfian if every surjective homomorphism φ : S → S is injective

and thus an automorphism.

S is co-hopfian if every injective homomorphism φ : S → S is

surjective and thus an automorphism.

Theorem (Maltcev, Ruškuc)
Suppose T has finite Rees index in S, and that S and T are finitely

generated. If T is hopfian, then S is hopfian as well.

◮ Key is to prove that Tφ 6= S when T 6= S.

◮ Without finite generation, the result does not hold.

◮ T does not inherit hopficity from S.



Co-hopficity

Theorem (C, Maltcev)
Suppose T has finite Rees index in S, and that S and T are finitely

generated. If T is co-hopfian, then S is co-hopfian as well.

Proof.
Assume T is co-hopfian. Let B generate T . Let φ : S → S be an

injective endomorphism.

Let t ∈ T . Consider tφ, tφ2, . . ..

◮ If tφi = tφj for i < j, then tφj−i = t and so tφℓ(j−i) ∈ T for all

ℓ ∈ N.

◮ If tφ, tφ2, . . . are distinct, then tφℓ ∈ T for ℓ > N.

In both cases, there exist kt,mt ∈ N such that tφℓmt ∈ T for all

ℓ > kt.

Let k = max{kt : t ∈ B} and m = lcm{mt : t ∈ B}. Then Bφkm ⊆ T ,

and so Tφkm ⊆ T .



Co-hopficity

Proof (continued).
Since φ : S → S is injective, so is φkm : S → S.

Hence φkm|T : T → T is injective and so bijective (by co-hopficity of

T ).

So φkm|S−T : S− T → S− T must be injective and so bijective (since

S− T is finite).

Thus φkm : S → S is bijective, and hence so is φ.



Co-hopficity

Example
Let S = 〈x, y | y2 = xy = yx = x2〉, and let T = 〈x〉 = {x}+. Then

|S− T | = 1. Then S is co-hopfian but T is not co-hopfian.

x

x2 x3 x4
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y x

y

x

y
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y



Co-hopficity

Example
Let Γ be the graph

x0 x1 x2 x3x−1x−2x−3

y0 y1 y2 y3y−1y−2y−3

z1 z2 z3

and let ∆ = Γ − {y0}.

Let SΓ = Γ ∪ {e, n, 0} and define products by

v1v2 =

{
e if there is an edge between v1 and v2 in Γ ,

n if there is no edge between v1 and v2 in Γ ,

v1e = ev1 = v1n = nv1 = en = ne = e2 = n2 = 0x = x0 = 0

for v1, v2 ∈ V and x ∈ SΓ .

Define S∆ similarly. Then |SΓ − S∆| = 1, SΓ is not co-hopfian and S∆ is

co-hopfian.



Summary of hopficity and co-hopficity results

Preserved on passing to

Finite Rees index Finite Green index

Property Subsemigroup Extension Subsemigroup Extension

Hopficity N N N N

Hopficity & f.g. N Y N N

Co-hopficity N N N N

Co-hopficity & f.g. N Y N ?

Question
Is ‘co-hopficity and finite generation’ preserved on passing to finite

Green index extensions?


