Semigroups with skeletons and Zappa-Szép products

Rida-E Zenab
University of York

NBSAN, Manchester July, 24th 2013

Based on joint work with Victoria Gould

Contents

- Definitions and basics
- Restriction semigroups with skeletons
- Special $\widetilde{\mathcal{D}}_{E^{-} \text {-simple restriction monoids and Zappa-Szép }}$ products
- Deduction and applications to bisimple inverse monoids

Definitions and basics

The relations $\widetilde{\mathcal{R}}_{E}$ and $\widetilde{\mathcal{L}}_{E}$
Let S be a semigroup and E be a distinguished set of idempotents. The relation $\widetilde{\mathcal{R}}_{E}$ is defined by a $\widetilde{\mathcal{R}}_{E} b$ if and only if for all $e \in E$,

$$
e a=a \Leftrightarrow e b=b .
$$

The relation $\widetilde{\mathcal{L}}_{E}$ is dual.
Note that:

- The relations $\widetilde{\mathcal{R}}_{E}$ and $\widetilde{\mathcal{L}}_{E}$ are equivalence relations.
- $\mathcal{R} \subseteq \widetilde{\mathcal{R}}_{E}$ and $\mathcal{L} \subseteq \widetilde{\mathcal{L}}_{E}$.

The relation $\widetilde{\mathcal{H}}_{E}$ is the intersection of $\widetilde{\mathcal{R}}_{E}$ and $\widetilde{\mathcal{L}}_{E}$ and the relation $\widetilde{\mathcal{D}}_{E}$ is the join of $\widetilde{\mathcal{R}}_{E}$ and $\widetilde{\mathcal{L}}_{E}$.

Definitions and basics

A semigroup S satisfies the congruence condition (C) if $\widetilde{\mathcal{R}}_{E}$ is a left congruence and $\widetilde{\mathcal{L}}_{E}$ is a right congruence.

We will denote the $\widetilde{\mathcal{R}}_{E}$-class ($\widetilde{\mathcal{L}}_{E^{-}}$-class, $\widetilde{\mathcal{H}}_{E}$-class) of any $a \in S$ by $\widetilde{R}_{E}^{a}\left(\widetilde{L}_{E}^{a}, \widetilde{H}_{E}^{a}\right)$.

If S satisfies (C), then \widetilde{H}_{E}^{e} is a monoid with identity e, for any $e \in E$.

Weakly E-abundant semigroups
A semigroup S with $E \subseteq E(S)$ is said to be weakly E-abundant if every $\widetilde{\mathcal{R}}_{E^{-}}$and every $\widetilde{\mathcal{L}}_{E^{-}}$-class of S contains an idempotent of E.

E-regular elements
Let S be a semigroup and $E \subseteq E(S)$. We say that an element $c \in S$ is E-regular if c has an inverse c° such that $c c^{\circ}, c^{\circ} c \in E$.

Analogues of Green's Lemmas

Lemma Let S be a semigroup with (C) and suppose S has an E-regular element c such that

$$
c c^{\circ}=e, c^{\circ} c=f
$$

Then the right translations

$$
\rho_{c}: \widetilde{L}_{E}^{e} \rightarrow \widetilde{L}_{E}^{f} \quad \text { and } \rho_{c^{\circ}}: \widetilde{L}_{E}^{f} \rightarrow \widetilde{L}_{E}^{e}
$$

are mutually inverse $\widetilde{\mathcal{R}}_{E}$-class preserving bijections and the left translations

$$
\lambda_{c^{\circ}}: \widetilde{R}_{E}^{e} \rightarrow \widetilde{R}_{E}^{f} \text { and } \lambda_{c}: \widetilde{R}_{E}^{f} \rightarrow \widetilde{R}_{E}^{e}
$$

are mutually inverse $\widetilde{\mathcal{L}}_{E}$-class preserving bijections.

Analogues of Green's Lemmas

The following "egg" box picture helps us to understand the above Lemma

Corollary Let S be a semigroup with (C). Let c be an E-regular element of S such that

$$
c c^{\circ}=e, c^{\circ} c=f
$$

Then $\widetilde{H}_{E}^{e} \cong \widetilde{H}_{E}^{f}$.

Observations

Let S be a semigroup and $E \subseteq E(S)$. Suppose every $\widetilde{\mathcal{H}}_{E}$-class contains an E-regular element. Then
(1) S is weakly E-abundant;
(2) if S has (C), then $\widetilde{\mathcal{R}}_{E} \circ \widetilde{\mathcal{L}}_{E}=\widetilde{\mathcal{L}}_{E} \circ \widetilde{\mathcal{R}}_{E}$ (so that $\left.\widetilde{\mathcal{D}}_{E}=\widetilde{\mathcal{R}}_{E} \circ \widetilde{\mathcal{L}}_{E}\right)$;
(3) if $a, b \in S$ with a $\widetilde{\mathcal{D}}_{E} b$, then $\left|\widetilde{H}_{E}^{a}\right|=\left|\widetilde{H}_{E}^{b}\right|$;
(0) if E is a band and $\widetilde{\mathcal{H}}_{E}$ is a congruence, then for $k \in S$ and $k \widetilde{\mathcal{H}}_{E} k^{2}, E \cap \widetilde{H}_{E}^{K} \neq \emptyset$.

Semigroups inheriting congruence extension property

A subsemigroup M of a semigroup S has the right congruence extension property if for any right congruence ρ on M we have

$$
\rho=\bar{\rho} \cap(M \times M)
$$

where $\bar{\rho}=\langle\rho\rangle$ is right congruence on S.
Lemma Let S be a weakly E-abundant semigroup with (C). Suppose that $\widetilde{\mathcal{H}}_{E}$ is a congruence. Let $e \in E$. Then $M=\widetilde{H}_{E}^{e}$ has the right congruence extension property.

Semigroups inheriting congruence extension property

We say that a congruence ρ on M is closed under conjugation if for $u, v \in M$ with $u \rho v$ and for any $c \in S$, with $c c^{\circ}, c^{\circ} c \in E$ and $c u c^{\circ}, c v c^{\circ} \in M$,

$$
c u c^{\circ} \rho c v c^{\circ}
$$

Lemma Let S be a semigroup with (C) such that every $\widetilde{\mathcal{H}}_{E}$-class contains an E-regular element, E is a band and $\widetilde{\mathcal{H}}_{E}$ is a congruence. Let $e \in E$ and $M=\widetilde{H}_{E}^{e}$. Let ρ be a congruence on M. Then

$$
\rho=\bar{\rho} \cap(M \times M)
$$

if and only if ρ is closed under conjugation.

Restriction semigroups

Left restriction semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, denoted by ${ }^{+}$. The identities that define a left restriction semigroup S are:

$$
a^{+} a=a, a^{+} b^{+}=b^{+} a^{+},\left(a^{+} b\right)^{+}=a^{+} b^{+}, a b^{+}=(a b)^{+} a
$$

We put

$$
E=\left\{a^{+}: a \in S\right\},
$$

then E is a semilattice known as the semilattice of projections of S.
Dually right restriction semigroups form a variety of unary semigroups. In this case the unary operation is denoted by *.

A semigroup is restriction, if it is both left and right restriction with same semilattice of projections.

Restriction semigroups

If a restriction semigroup S has an identity element 1 , then

$$
1^{+}=1^{*}=1
$$

Such a restriction semigroup is called a restriction monoid.
We consider special classes of restriction semigroups that consists of single $\widetilde{\mathcal{D}}_{E^{-}}$-classes. Such semigroups are called $\widetilde{\mathcal{D}}_{E}$-simple semigroups.

$\widetilde{\mathcal{H}}_{E}$-transversal subsets

We say that a subset V of W, where $W \subseteq S$ and W is a union of $\widetilde{\mathcal{H}}_{E}$-classes, is an $\widetilde{\mathcal{H}}_{E}$-transversal of W if

$$
\left|V \cap \widetilde{H}_{E}^{a}\right|=1 \quad \text { for all } a \in W
$$

Example1

Let $S=B R(M, \theta)$, where M is a monoid. Then $(0,1,0)$ is the identity of S and

$$
\begin{aligned}
\widetilde{L}_{E}^{(0,1,0)} & =\left\{(a, l, 0): a \in \mathbb{N}^{0}, I \in M\right\} \\
\widetilde{R}_{E}^{(0,1,0)} & =\left\{(0, m, a): a \in \mathbb{N}^{0}, m \in M\right\}
\end{aligned}
$$

are $\widetilde{\mathcal{L}}_{E^{-}}$and $\widetilde{\mathcal{R}}_{E^{-} \text {-classes of the identity respectively. Let }}$

$$
L=\left\{(a, 1,0): a \in \mathbb{N}^{0}\right\}
$$

Clearly L is a submonoid $\widetilde{\mathcal{H}}_{E}$-transversal of $\widetilde{L}_{E}^{(0,1,0)}$.

Definition

Let S be a semigroup with $E \subseteq E(S)$. Let U be a subset of S consisting of E-regular elements, where $E \subseteq U$. If U intersects every $\widetilde{\mathcal{H}}_{E}$-class of $S\left(U\right.$ is an $\widetilde{\mathcal{H}}_{E}$-transversal of $\left.S\right)$, then U is a (combinatorial) inverse skeleton of S. If in addition U is a subsemigroup, then U is a (combinatorial) inverse S-skeleton.

Example

Let $S=\mathcal{B}^{\circ}(M, I)$ be a Brandt semigroup, where M is a monoid. Then

$$
U=\{(i, 1, j): i \in I\} \cup\{0\}
$$

is a combinatorial inverse S-skeleton of S.

Semigroups containing inverse skeletons

Theorem 1 Let S be a $\widetilde{\mathcal{D}}_{E}$-simple restriction monoid with $\widetilde{\mathcal{R}}_{E} \circ \widetilde{\mathcal{L}}_{E}=\widetilde{\mathcal{L}}_{E} \circ \widetilde{\mathcal{R}}_{E}$. Suppose there is a submonoid $\widetilde{\mathcal{H}}_{E}$-transversal L of \widetilde{L}_{E}^{1} such that every $c \in L$ is E-regular and for all $c \in L, e \in E$ we have $c e c^{\circ}, c^{\circ} e c \in E$. Let

$$
R=\left\{c^{\circ}: c \in L\right\} .
$$

Then R is a submonoid $\widetilde{\mathcal{H}}_{E}$-transversal of \widetilde{R}_{E}^{1}.
Suppose in addition that $R L \subseteq R \cup L$. Then $U=\langle R \cup L\rangle=L R$ and U is a combinatorial inverse S-skeleton for S.

Examples

Example
Going back to Example 1 let $(a, 1,0) \in L$. Putting

$$
(a, 1,0)^{\circ}=(0,1, a)
$$

we have that $(a, 1,0)^{\circ}$ is an inverse of $(0,1, a)$. Set

$$
R=\left\{(a, 1,0)^{\circ}:(a, 1,0) \in L\right\}
$$

We note that R is a submonoid $\widetilde{\mathcal{H}}_{E}$ transversal of $\widetilde{R}_{E}^{(0,1,0)}$. Also $R L \subseteq R \cup L$.

Semigroups with skeletons

Then

$$
U=\left\{(a, 1, b): a, b \in \mathbb{N}^{0}\right\}
$$

is a combinatorial inverse S-skeleton of S.
Example
Let $S=B R(M, \mathbb{Z}, \theta)$ be extended Bruck-Reilly extension of monoid M. The semigroup operation on S is defined by the rule:

$$
(k, s, I)(m, t, n)= \begin{cases}\left.\left(k-I+m,(s) \theta^{m-I} t\right), n\right), & \text { if } I<m \\ (k, s t, n), & \text { if } I=m \\ \left(k, s(t) \theta^{I-m}, n-m+I\right), & \text { if } I>m\end{cases}
$$

for $k, l, m, n \in \mathbb{Z}$ and $s, t \in M$. Then S has an inverse skeleton

Example
Let $S=\left[Y ; S_{\alpha}, \chi_{\alpha, \beta}\right]$ be a strong semilattice Y of monoids S_{α}, where

$$
\chi_{\alpha, \beta}: S_{\alpha} \rightarrow S_{\beta}
$$

is a monoid homomorphism such that
(1) $\chi_{\alpha, \alpha}=1_{S_{\alpha}}$,
(2) $\chi_{\alpha, \beta} \chi_{\beta, \gamma}=\chi_{\alpha, \gamma}$ if $\alpha \geq \beta \geq \gamma$

On $S=\cup_{\alpha \in Y} S_{\alpha}$, multiplication is defined by

$$
a b=\left(a \chi_{\alpha, \alpha \beta}\right)\left(b \chi_{\beta, \alpha \beta}\right) \quad a \in S_{\alpha}, b \in S_{\beta} .
$$

Let e_{α} be the identity of S_{α}. Then $E=\left\{e_{\alpha}: \alpha \in Y\right\}$ is a semilattice, S is a restriction semigroup with respect to E and the $\widetilde{\mathcal{H}}_{E}$-classes are the S_{α} 's. Then E is an inverse S-skeleton.

Special \mathcal{D}_{E}-simple restriction monoids

Definition

Let S be a $\widetilde{\mathcal{D}}_{E}$-simple restriction monoid. We say that S is special if $\widetilde{\mathcal{R}}_{E} \circ \widetilde{\mathcal{L}}_{E}=\widetilde{\mathcal{L}}_{E} \circ \widetilde{\mathcal{R}}_{E}$ and there is a submonoid $\widetilde{\mathcal{H}}_{E}$-transversal L of \widetilde{L}_{E}^{1} such that every $c \in L$ is E-regular and for all $c \in L$, e $\in E$ we have $\operatorname{cec}^{\circ}, c^{\circ}$ ec $\in E$.

If S is a special $\widetilde{\mathcal{D}}_{E}$-simple restriction monoid, then by
$R=\left\{c^{\circ}: c \in L\right\}$ is a submonoid $\widetilde{\mathcal{H}}_{E^{-}}$transversal of \widetilde{R}_{E}^{1}.

Zappa-Szép products

Let S and T be semigroups and suppose that we have maps

$$
\begin{aligned}
& T \times S \rightarrow S, \quad(t, s) \mapsto t \cdot s \\
& T \times S \rightarrow T, \quad(t, s) \mapsto t^{s}
\end{aligned}
$$

such that for all $s, s^{\prime} \in S, t, t^{\prime} \in T$, the following hold:
ZS1 $t t^{\prime} \cdot s=t \cdot\left(t^{\prime} \cdot s\right)$;
ZS2 $t \cdot\left(s s^{\prime}\right)=(t \cdot s)\left(t^{s} \cdot s^{\prime}\right)$;
ZS3 $\left(t^{s}\right)^{s^{\prime}}=t^{5 s^{\prime}}$;
ZS4 $\left(t t^{\prime}\right)^{s}=t^{t^{\prime} \cdot s} t^{\prime s}$.
Define a binary operation on $S \times T$ by

$$
(s, t)\left(s^{\prime}, t^{\prime}\right)=\left(s\left(t \cdot s^{\prime}\right), t^{s^{\prime}} t^{\prime}\right)
$$

Zappa-Szép products

Then $S \times T$ is a semigroup, known as the Zappa-Szép product of S and T and denoted by $S \bowtie T$.

If S and T are monoids then we insist that the following four axioms also hold:

ZS5 $t \cdot 1_{S}=1_{S}$;
ZS6 $t^{1 s}=t ;$
$\mathrm{ZS} 71_{T} \cdot s=s ;$
ZS8 $1_{T}^{s}=1_{T}$.

Then $S \bowtie T$ is monoid with identity $\left(1_{S}, 1_{T}\right)$.

Kunze discovered that the Bruck-Reilly extension of a monoid $B R(S, \theta)$ is the Zappa-Szép product of \mathbb{N}^{0} under addition and the semidirect product $\mathbb{N}^{0} \ltimes S$, where multiplication in $\mathbb{N}^{0} \ltimes S$ is defined by the following rule:

$$
(k, s) \cdot(I, t)=\left(k+I,\left(s \theta^{\prime}\right) t\right)
$$

Define for $m \in \mathbb{N}^{0}$ and $(I, s) \in \mathbb{N}^{0} \ltimes S$

$$
m \cdot(I, s)=\left(g-m, s \theta^{g-l}\right) \text { and } m^{(I, s)}=g-l
$$

where g is greater of m and I. Then $\left(\mathbb{N}^{0} \ltimes S\right) \times \mathbb{N}^{0}$ is Zappa-Szép product with composition rule

$$
[(k, s), m] \circ[(I, t), n]=\left[\left(k-m+g, s \theta^{g-m} t \theta^{g-l}\right), n-I+g\right],
$$

where again g is greater of m and l.

Special $\mathcal{D}_{E-s i m p l e ~ r e s t r i c t i o n ~ m o n o i d s ~ a n d ~ Z a p p a-S z e ́ p ~}^{\text {-s }}$ products

Theorem 2 Let S be a special $\widetilde{\mathcal{D}}_{E}$-simple restriction monoid. Then $M=L \bowtie \widetilde{R}_{E}^{1}$ is a Zappa-Szép product of L and \widetilde{R}_{E}^{1} under the actions defined by

$$
r \cdot I=d \text { where } d \in L \text { and } d^{+}=(r l)^{+}
$$

and

$$
r^{\prime}=d^{\circ} r l \text { where } d \in L \text { and } d^{+}=(r l)^{+}
$$

for $I \in L$ and $r \in \widetilde{R}_{E}^{1}$. Further $S \cong M$.

Special \mathcal{D}_{E}-simple restriction monoids and Zappa-Szép products

We explain these actions with the help of an egg box picture.

1		r	$r^{\prime}=d^{\circ} r l$
I			
$r \cdot I=d$			
		$r l$	

Special \mathcal{D}_{E}-simple restriction monoids and Zappa-Szép products

Theorem 3 Let S be a special $\widetilde{\mathcal{D}}_{E}$-simple restriction monoid. Then $Z=\widetilde{H}_{E}^{1} \bowtie R$ is a Zappa-Szép product isomorphic to \widetilde{R}_{E}^{1} under the action of R on \widetilde{H}_{E}^{1} defined by

$$
r \cdot h=r h t^{\circ} \text { where } t^{*}=(r h)^{*} \text { and } t \in R
$$

and action of \widetilde{H}_{E}^{1} on R by

$$
r^{h}=t \text { where } t^{*}=(r h)^{*} \text { and } t \in R
$$

Now we see that if $\widetilde{\mathcal{H}}_{E}$ is a congruence, then for $r \in R$ and $h \in \widetilde{H}_{E}^{1}$

$$
r h \widetilde{\mathcal{H}}_{E} r 1=r
$$

and thus $r^{h}=r$, so that Z becomes a semidirect product.

Deduction

Kunze showed that if S is a monoid and \mathbb{N} is the set of natural numbers under addition, then a semidirect product $\mathbb{N}^{0} \ltimes S$ can be formed under the multiplication,

$$
(k, s)(I, t)=\left(k+I,\left(s \theta^{\prime}\right) t\right)
$$

Now we see that

$$
L_{1}=\left\{(l, s, 0): l \in \mathbb{N}^{0}, s \in S\right\}
$$

so that if we put

$$
L=\left\{(I, e, 0): I \in \mathbb{N}^{0}\right\} \cong \mathbb{N}^{0}
$$

then L is submonoid $\widetilde{\mathcal{H}}_{E}$-transversal of L_{1}. Further,

$$
\widetilde{H}_{1}=\{(0, s, 0): s \in S\} .
$$

For $(I, e, 0) \in L$ and $(0, s, 0) \in \widetilde{H}_{1}$,

$$
\begin{aligned}
(0, s, 0)^{(I, e, 0)} & =(I, e, 0)^{-1}(0, s, 0)(I, e, 0) \\
& =\left(0, s \theta^{\prime}, 0\right) \in \widetilde{H}_{1} .
\end{aligned}
$$

Thus $L \ltimes \widetilde{H}_{1}$ is semidirect product under multiplication defined by $((k, e, 0),(0, s, 0))((I, e, 0),(0, t, 0))=\left((k+I, e, 0),\left(0, s \theta^{\prime} t, 0\right)\right)$.

Applications to bisimple inverse monoids

We specialise Theorem 2 and Theorem 3 to obtain corresponding results for bisimple inverse monoids.

Example
The bicyclic semigroup B is the Zappa-Szép product of $L=L_{1}$ and $R=R_{1}$, where

$$
\begin{aligned}
& L=\left\{(m, 0): m \in \mathbb{N}^{0}\right\} \cong \mathbb{N}^{0} \\
& R=\left\{(0, n): n \in \mathbb{N}^{0}\right\} \cong \mathbb{N}^{0}
\end{aligned}
$$

under the actions of R on L and L on R defined respectively as:

$$
(0, m) \cdot(n, 0)=(\max (m, n)-m, 0)
$$

and

$$
(0, m)^{(n, 0)}=(0, \max (m, n)-n)
$$

