Semigroups with skeletons and Zappa-Szép products

Rida-E Zenab

University of York

NBSAN, Manchester July, 24th 2013

Based on joint work with Victoria Gould

Rida-E Zenab Semigroups with skeletons and Zappa-Szép products

- Definitions and basics
- Restriction semigroups with skeletons
- Special $\widetilde{\mathcal{D}}_{\textit{E}}\text{-simple restriction monoids and Zappa-Szép products}$
- Deduction and applications to bisimple inverse monoids

The relations $\widetilde{\mathcal{R}}_{\textit{E}}$ and $\widetilde{\mathcal{L}}_{\textit{E}}$

Let S be a semigroup and E be a distinguished set of idempotents. The relation $\widetilde{\mathcal{R}}_E$ is defined by $a\widetilde{\mathcal{R}}_E b$ if and only if for all $e \in E$,

 $ea = a \Leftrightarrow eb = b.$

The relation $\widetilde{\mathcal{L}}_E$ is dual. Note that:

- The relations $\widetilde{\mathcal{R}}_E$ and $\widetilde{\mathcal{L}}_E$ are equivalence relations.
- $\mathcal{R} \subseteq \widetilde{\mathcal{R}}_E$ and $\mathcal{L} \subseteq \widetilde{\mathcal{L}}_E$.

The relation $\widetilde{\mathcal{H}}_E$ is the intersection of $\widetilde{\mathcal{R}}_E$ and $\widetilde{\mathcal{L}}_E$ and the relation $\widetilde{\mathcal{D}}_E$ is the join of $\widetilde{\mathcal{R}}_E$ and $\widetilde{\mathcal{L}}_E$.

Definitions and basics

A semigroup S satisfies the congruence condition (C) if $\widetilde{\mathcal{R}}_E$ is a left congruence and $\widetilde{\mathcal{L}}_E$ is a right congruence.

We will denote the $\widetilde{\mathcal{R}}_E$ -class ($\widetilde{\mathcal{L}}_E$ -class, $\widetilde{\mathcal{H}}_E$ -class) of any $a \in S$ by \widetilde{R}^a_E ($\widetilde{\mathcal{L}}^a_E$, $\widetilde{\mathcal{H}}^a_E$).

If S satisfies (C), then \widetilde{H}_{E}^{e} is a monoid with identity e, for any $e \in E$.

Weakly E-abundant semigroups

A semigroup S with $E \subseteq E(S)$ is said to be *weakly E-abundant* if every $\widetilde{\mathcal{R}}_{E^-}$ and every $\widetilde{\mathcal{L}}_{E^-}$ class of S contains an idempotent of E.

E-regular elements

Let S be a semigroup and $E \subseteq E(S)$. We say that an element $c \in S$ is *E*-regular if c has an inverse c° such that $cc^{\circ}, c^{\circ}c \in E$.

Lemma Let S be a semigroup with (C) and suppose S has an E-regular element c such that

$$cc^\circ = e, \ c^\circ c = f$$

Then the right translations

$$ho_{c}:\widetilde{L}_{E}^{e}
ightarrow\widetilde{L}_{E}^{f}$$
 and $ho_{c^{\circ}}:\widetilde{L}_{E}^{f}
ightarrow\widetilde{L}_{E}^{e}$

are mutually inverse $\widetilde{\mathcal{R}}_{\textit{E}}\text{-}\mathsf{class}$ preserving bijections and the left translations

$$\lambda_{c^{\circ}}: \widetilde{R}_{E}^{e} \to \widetilde{R}_{E}^{f}$$
 and $\lambda_{c}: \widetilde{R}_{E}^{f} \to \widetilde{R}_{E}^{e}$

are mutually inverse $\widetilde{\mathcal{L}}_E$ -class preserving bijections.

Analogues of Green's Lemmas

The following "egg" box picture helps us to understand the above Lemma

Corollary Let S be a semigroup with (C). Let c be an E-regular element of S such that

$$cc^{\circ} = e, c^{\circ}c = f.$$

Then $\widetilde{H}_{E}^{e} \cong \widetilde{H}_{E}^{f}$.

Let S be a semigroup and $E \subseteq E(S)$. Suppose every $\widetilde{\mathcal{H}}_E$ -class contains an E-regular element. Then

• S is weakly E-abundant;

$$\begin{array}{l} \textbf{if } S \text{ has } (C), \text{ then } \widetilde{\mathcal{R}}_E \circ \widetilde{\mathcal{L}}_E = \widetilde{\mathcal{L}}_E \circ \widetilde{\mathcal{R}}_E \text{ (so that } \\ \widetilde{\mathcal{D}}_E = \widetilde{\mathcal{R}}_E \circ \widetilde{\mathcal{L}}_E \text{)}; \end{array}$$

- if $a, b \in S$ with $a \widetilde{D}_E b$, then $|\widetilde{H}_E^a| = |\widetilde{H}_E^b|$;
- if *E* is a band and $\widetilde{\mathcal{H}}_E$ is a congruence, then for $k \in S$ and $k \widetilde{\mathcal{H}}_E k^2$, $E \cap \widetilde{\mathcal{H}}_E^k \neq \emptyset$.

A subsemigroup M of a semigroup S has the right congruence extension property if for any right congruence ρ on M we have

 $\rho = \bar{\rho} \cap (M \times M)$

where $\bar{\rho} = \langle \rho \rangle$ is right congruence on *S*.

Lemma Let S be a weakly E-abundant semigroup with (C). Suppose that $\widetilde{\mathcal{H}}_E$ is a congruence. Let $e \in E$. Then $M = \widetilde{\mathcal{H}}_E^e$ has the right congruence extension property. We say that a congruence ρ on M is closed under conjugation if for $u, v \in M$ with $u \rho v$ and for any $c \in S$, with $cc^{\circ}, c^{\circ}c \in E$ and $cuc^{\circ}, cvc^{\circ} \in M$,

 $cuc^{\circ} \rho cvc^{\circ}$

Lemma Let S be a semigroup with (C) such that every $\widetilde{\mathcal{H}}_E$ -class contains an E-regular element, E is a band and $\widetilde{\mathcal{H}}_E$ is a congruence. Let $e \in E$ and $M = \widetilde{H}_E^e$. Let ρ be a congruence on M. Then

 $\rho = \bar{\rho} \cap (M \times M)$

if and only if ρ is closed under conjugation.

Left restriction semigroups form a variety of unary semigroups, that is, semigroups equipped with an additional unary operation, denoted by $^+$. The identities that define a left restriction semigroup S are:

$$a^+a=a, a^+b^+=b^+a^+, (a^+b)^+=a^+b^+, ab^+=(ab)^+a.$$

We put

$$E=\{a^+:a\in S\},$$

then E is a semilattice known as the semilattice of projections of S.

Dually right restriction semigroups form a variety of unary semigroups. In this case the unary operation is denoted by *.

A semigroup is restriction, if it is both left and right restriction with same semilattice of projections.

If a restriction semigroup S has an identity element 1, then

 $1^+ = 1^* = 1.$

Such a restriction semigroup is called a restriction monoid.

We consider special classes of restriction semigroups that consists of single $\widetilde{\mathcal{D}}_E$ -classes. Such semigroups are called $\widetilde{\mathcal{D}}_E$ -simple semigroups.

$\widetilde{\mathcal{H}}_E$ -transversal subsets

We say that a subset V of W, where $W \subseteq S$ and W is a union of $\widetilde{\mathcal{H}}_E$ -classes, is an $\widetilde{\mathcal{H}}_E$ -transversal of W if

 $|V \cap \widetilde{H}^a_E| = 1$ for all $a \in W$.

Example1 🜑

Let $S = BR(M, \theta)$, where M is a monoid. Then (0, 1, 0) is the identity of S and

 $\widetilde{L}_{E}^{(0,1,0)} = \{(a, l, 0) : a \in \mathbb{N}^{0}, l \in M\},\$ $\widetilde{R}_{E}^{(0,1,0)} = \{(0, m, a) : a \in \mathbb{N}^{0}, m \in M\}$ are $\widetilde{\mathcal{L}}_{E}$ - and $\widetilde{\mathcal{R}}_{E}$ -classes of the identity respectively. Let

 $L = \{(a, 1, 0) : a \in \mathbb{N}^0\}.$

Clearly L is a submonoid $\widetilde{\mathcal{H}}_E$ -transversal of $\widetilde{L}_E^{(0,1,0)}$.

Definition

Let S be a semigroup with $E \subseteq E(S)$. Let U be a subset of S consisting of E-regular elements, where $E \subseteq U$. If U intersects every $\tilde{\mathcal{H}}_E$ -class of S (U is an $\tilde{\mathcal{H}}_E$ -transversal of S), then U is a (combinatorial) inverse skeleton of S. If in addition U is a subsemigroup, then U is a (combinatorial) inverse S-skeleton.

Example

Let $S = \mathcal{B}^{\circ}(M, I)$ be a Brandt semigroup, where M is a monoid. Then

$$U = \{(i, 1, j) : i \in I\} \cup \{0\}$$

is a combinatorial inverse S-skeleton of S.

Theorem 1 Let S be a $\widetilde{\mathcal{D}}_E$ -simple restriction monoid with $\widetilde{\mathcal{R}}_E \circ \widetilde{\mathcal{L}}_E = \widetilde{\mathcal{L}}_E \circ \widetilde{\mathcal{R}}_E$. Suppose there is a submonoid $\widetilde{\mathcal{H}}_E$ -transversal L of $\widetilde{\mathcal{L}}_E^1$ such that every $c \in L$ is E-regular and for all $c \in L$, $e \in E$ we have $cec^\circ, c^\circ ec \in E$. Let

 $R = \{c^\circ : c \in L\}.$

Then R is a submonoid $\widetilde{\mathcal{H}}_E$ -transversal of \widetilde{R}_E^1 .

Suppose in addition that $RL \subseteq R \cup L$. Then $U = \langle R \cup L \rangle = LR$ and U is a combinatorial inverse S-skeleton for S.

Example

Going back to \bullet Example 1 let $(a, 1, 0) \in L$. Putting $(a, 1, 0)^\circ = (0, 1, a)$

we have that $(a, 1, 0)^{\circ}$ is an inverse of (0, 1, a). Set

 $R = \{(a, 1, 0)^{\circ} : (a, 1, 0) \in L\}$

We note that R is a submonoid $\widetilde{\mathcal{H}}_E$ transversal of $\widetilde{R}_E^{(0,1,0)}$. Also $RL \subseteq R \cup L$.

Then

$$U = \{(a,1,b) : a, b \in \mathbb{N}^0\}$$

is a combinatorial inverse S-skeleton of S.

Example

Let $S = BR(M, \mathbb{Z}, \theta)$ be extended Bruck-Reilly extension of monoid M. The semigroup operation on S is defined by the rule:

$$(k, s, l)(m, t, n) = \begin{cases} (k - l + m, (s)\theta^{m-l}t), n), & \text{if } l < m; \\ (k, st, n), & \text{if } l = m; \\ (k, s(t)\theta^{l-m}, n - m + l), & \text{if } l > m. \end{cases}$$

for $k, l, m, n \in \mathbb{Z}$ and $s, t \in M$. Then S has an inverse skeleton

Examples

Example

Let $S = [Y; S_{\alpha}, \chi_{\alpha, \beta}]$ be a strong semilattice Y of monoids S_{α} , where

 $\chi_{\alpha,\beta}: S_{\alpha} \to S_{\beta}$

is a monoid homomorphism such that

$$\ \ \, \mathbf{1}_{\mathbf{X}_{\alpha,\alpha}} = \mathbf{1}_{\mathbf{S}_{\alpha}},$$

On $S = \bigcup_{\alpha \in Y} S_{\alpha}$, multiplication is defined by

 $ab=(a\chi_{lpha,lphaeta})(b\chi_{eta,lphaeta}) \quad a\in S_lpha,\ b\in S_eta.$

Let e_{α} be the identity of S_{α} . Then $E = \{e_{\alpha} : \alpha \in Y\}$ is a semilattice, S is a restriction semigroup with respect to E and the $\widetilde{\mathcal{H}}_E$ -classes are the S_{α} 's. Then E is an inverse S-skeleton.

Definition

Let S be a $\widetilde{\mathcal{D}}_E$ -simple restriction monoid. We say that S is special if $\widetilde{\mathcal{R}}_E \circ \widetilde{\mathcal{L}}_E = \widetilde{\mathcal{L}}_E \circ \widetilde{\mathcal{R}}_E$ and there is a submonoid $\widetilde{\mathcal{H}}_E$ -transversal L of $\widetilde{\mathcal{L}}_E^1$ such that every $c \in L$ is E-regular and for all $c \in L$, $e \in E$ we have $cec^\circ, c^\circ ec \in E$.

If S is a special $\widetilde{\mathcal{D}}_E$ -simple restriction monoid, then by Theorem 1 $R = \{c^\circ : c \in L\}$ is a submonoid $\widetilde{\mathcal{H}}_E$ -transversal of \widetilde{R}_E^1 .

Zappa-Szép products

Let S and T be semigroups and suppose that we have maps

$$egin{array}{ll} T imes S o S, & (t,s)\mapsto t\cdot s\ T imes S o T, & (t,s)\mapsto t^s \end{array}$$

such that for all $s, s' \in S, t, t' \in T$, the following hold: ZS1 $tt' \cdot s = t \cdot (t' \cdot s)$;

ZS2
$$t \cdot (ss') = (t \cdot s)(t^s \cdot s');$$

ZS3 $(t^s)^{s'} = t^{ss'};$
ZS4 $(tt')^s = t^{t' \cdot s} t'^s.$

Define a binary operation on $S \times T$ by

$$(s,t)(s',t') = (s(t \cdot s'),t^{s'}t').$$

Then $S \times T$ is a semigroup, known as the Zappa-Szép product of S and T and denoted by $S \bowtie T$.

If S and T are monoids then we insist that the following four axioms also hold:

ZS5 $t \cdot 1_S = 1_S$;

ZS6 $t^{1s} = t$;

ZS7 $1_T \cdot s = s$;

ZS8 $1_T^s = 1_T$.

Then $S \bowtie T$ is monoid with identity $(1_S, 1_T)$.

The Bruck-Reilly extension of a monoid

Kunze discovered that the Bruck-Reilly extension of a monoid $BR(S, \theta)$ is the Zappa-Szép product of \mathbb{N}^0 under addition and the semidirect product $\mathbb{N}^0 \ltimes S$, where multiplication in $\mathbb{N}^0 \ltimes S$ is defined by the following rule:

 $(k,s)\cdot(l,t)=(k+l,(s\theta^l)t).$

Define for $m \in \mathbb{N}^0$ and $(I, s) \in \mathbb{N}^0 \ltimes S$

$$m \cdot (l,s) = (g - m, s\theta^{g-l})$$
 and $m^{(l,s)} = g - l$

where g is greater of m and l. Then $(\mathbb{N}^0 \ltimes S) \times \mathbb{N}^0$ is Zappa-Szép product with composition rule

$$[(k, s), m] \circ [(l, t), n] = [(k - m + g, s\theta^{g - m} t\theta^{g - l}), n - l + g],$$

where again g is greater of m and l.

Theorem 2 Let S be a special $\widetilde{\mathcal{D}}_E$ -simple restriction monoid. Then $M = L \bowtie \widetilde{R}_E^1$ is a Zappa-Szép product of L and \widetilde{R}_E^1 under the actions defined by

$$r \cdot l = d$$
 where $d \in L$ and $d^+ = (rl)^+$

and

$$r^{l} = d^{\circ}rl$$
 where $d \in L$ and $d^{+} = (rl)^{+}$

for $l \in L$ and $r \in \widetilde{R}^1_E$. Further $S \cong M$.

Special $\widetilde{\mathcal{D}}_E$ -simple restriction monoids and Zappa-Szép products

We explain these actions with the help of an egg box picture.

1	r	$r^{\prime} = d^{\circ} r l$
1		
$r \cdot l = d$		rl

Special $\widetilde{\mathcal{D}}_E$ -simple restriction monoids and Zappa-Szép products

Theorem 3 Let *S* be a special $\widetilde{\mathcal{D}}_E$ -simple restriction monoid. Then $Z = \widetilde{H}_E^1 \bowtie R$ is a Zappa-Szép product isomorphic to \widetilde{R}_E^1 under the action of *R* on \widetilde{H}_E^1 defined by

$$r \cdot h = rht^{\circ}$$
 where $t^* = (rh)^*$ and $t \in R$.

and action of \widetilde{H}^1_E on R by

$$r^h = t$$
 where $t^* = (rh)^*$ and $t \in R$.

Now we see that if $\widetilde{\mathcal{H}}_E$ is a congruence, then for $r \in R$ and $h \in \widetilde{\mathcal{H}}_E^1$

$$rh \,\widetilde{\mathcal{H}}_E \, r1 = r$$

and thus $r^h = r$, so that Z becomes a semidirect product.

Deduction

Kunze showed that if S is a monoid and \mathbb{N} is the set of natural numbers under addition, then a semidirect product $\mathbb{N}^0 \ltimes S$ can be formed under the multiplication,

$$(k,s)(l,t) = (k+l,(s\theta^{l})t).$$

Now we see that

$$L_1 = \{(I, s, 0) : I \in \mathbb{N}^0, s \in S\},\$$

so that if we put

$$L = \{(I, e, 0) : I \in \mathbb{N}^0\} \cong \mathbb{N}^0,$$

then L is submonoid $\widetilde{\mathcal{H}}_E$ -transversal of L_1 . Further,

$$\widetilde{H}_1 = \{(0,s,0): s \in S\}.$$

For $(I, e, 0) \in L$ and $(0, s, 0) \in \widetilde{H}_1$, $(0, s, 0)^{(I, e, 0)} = (I, e, 0)^{-1} (0, s, 0) (I, e, 0)$ $= (0, s\theta^I, 0) \in \widetilde{H}_1.$

Thus $L \ltimes \widetilde{H}_1$ is semidirect product under multiplication defined by $((k, e, 0), (0, s, 0))((l, e, 0), (0, t, 0)) = ((k + l, e, 0), (0, s\theta^l t, 0)).$

Applications to bisimple inverse monoids

We specialise Theorem 2 and Theorem 3 to obtain corresponding results for bisimple inverse monoids.

Example

The bicyclic semigroup *B* is the Zappa-Szép product of $L = L_1$ and $R = R_1$, where

 $L = \{(m, 0) : m \in \mathbb{N}^0\} \cong \mathbb{N}^0$ $R = \{(0, n) : n \in \mathbb{N}^0\} \cong \mathbb{N}^0$

under the actions of R on L and L on R defined respectively as:

$$(0, m) \cdot (n, 0) = (\max(m, n) - m, 0)$$

and

$$(0,m)^{(n,0)} = (0,\max(m,n) - n).$$

