K-Theory of Inverse Semigroups

Alistair R. Wallis Supervisor: Mark V. Lawson

Heriot-Watt University

24 July 2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Background

Dualities in mathematics:

- Order structures and discrete spaces (Stone duality)
- Locally compact Hausdorff spaces and commutative C*-algebras (Gelfand representation theorem)

Also, (von Neumann) regular rings similar to regular semigroups

Background

Paterson (1980's) and Renault (1980) generalised this to deep connections between 3 different "discrete" mathematical structures:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Inverse semigroups (generalised order structures)
- Topological groupoids (generalised discrete spaces)
- C*-algebras

Background

Some successful applications:

- Topological K-theory and operator / algebraic K-theory (Serre-Swan theorem)
- Module theory for rings (Dedekind + others) and act theory for monoids
- Morita equivalence of semigroups (Knauer, Talwar) vs. Morita equivalence for rings (Morita)
- Morita equivalence for inverse semigroups (Afara, Funk, Laan, Lawson, Steinberg) vs. Morita equivalence for C*-algebras (Rieffel + others)

Examples

- Polycyclic / Cuntz monoid / Cuntz groupoid / Cuntz algebra
- Graph inverse semigroups / Cuntz-Krieger semigroups / Cuntz-Krieger groupoid / Cuntz-Krieger algebra
- Boolean inverse monoids / Boolean groupoids
- ► Tiling semigroups / tiling groupoids / tiling C*-algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Grothendieck group

Theorem

Let S be a commutative semigroup. Then there is a unique (up to isomorphism) commutative group $G = \mathcal{G}(S)$, called the *Grothendieck group*, and a homomorphism $\phi : S \to G$, such that for any commutative group H and homomorphism $\psi : S \to H$, there is a unique homomorphism $\theta : G \to H$ with $\psi = \theta \circ \phi$.

Algebraic K-theory

- ► R ring
- ▶ **Proj**_R finitely generated projective modules of *R*.
- $(\mathbf{Proj}_R, \oplus)$ is a commutative monoid.
- Define

$$K_0(R) = \mathcal{G}(\mathbf{Proj}_R).$$

► If X is a compact Hausdorff space and C(X) is the ring of F-valued continuous functions on X then

$$\mathcal{K}^0_{\mathbb{F}}(X) \cong \mathcal{K}_0(\mathcal{C}(X)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Idempotent matrices

- Let M(R) denote the set of N by N matrices over R with finitely many non-zero entries.
- Idempotent matrices correspond to projective modules
- Say idempotent matrices $E, F \in M(R)$ are similar and write $E \sim F$ if E = XY and F = YX where $X, Y \in M(R)$.

Proposition

Idempotent matrices *E* and *F* define the same projective module if and only if $E \sim F$.

Idempotent matrices

▶ Denote the set of idempotent matrices by Idem(R) and define a binary operation on Idem(R)/ ~ by

$$[E] + [F] = [E' + F'],$$

where if a row in E' has non-zero entries then that row in F' has entries only zeros, similarly for columns of E', and for rows and columns of F', and such that $E' \sim E$ and $F' \sim F$.

Theorem

This is a well-defined operation and the monoids $\text{Idem}(R)/\sim$ and Proj_R are isomorphic.

• This gives us an alternative way of viewing $K_0(R)$:

$$K_0(R) = \mathcal{G}(\operatorname{Idem}(R)/\sim).$$

K-theory of inverse semigroups

- ▶ Idea: want to define $K_0(S)$ for S an inverse semigroup.
- Need to restrict the class of inverse semigroups will not be a problem.
- Give definition in terms of projective modules and definition in terms of idempotent matrices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Want K₀(S) ≅ K₀(C(S)), where C(S) is some C*-algebra associated to S.

Some inverse semigroup theory

- An *inverse semigroup* is a semigroup S such that for every element $s \in S$ there exists a unique element $s^{-1} \in S$ with $ss^{-1}s = s$ and $s^{-1}ss^{-1} = s^{-1}$ (without uniqueness, we have a *regular semigroup*).
- A regular semigroup is inverse if and only if its idempotents commute.
- Natural partial order (NPO): $s \le t$ iff $s = ts^{-1}s$.
- ► Remark: the set of idempotents form a meet semilattice under the operation e ∧ f = ef.

Orthogonally complete inverse semigroups

- ► Firstly, we will assume our inverse semigroup S has a zero (0s = s0 = 0).
- Next, we want our inverse semigroup to be sufficiently ring like, namely we require *orthogonal completeness* - this will not be a problem as every inverse semigroup with 0 has an *orthogonal completion* and the examples we are interested in are orthogonally complete.
- ▶ Elements $s, t \in S$ are *orthogonal*, written $s \perp t$, if $st^{-1} = s^{-1}t = 0$.
- ► *S* is orthogonally complete if
 - 1. $s \perp t$ implies there exists $s \lor t$
 - 2. $s \perp t$ implies $u(s \lor t) = us \lor ut$ and $(s \lor t)u = su \lor tu$.

Rook matrices

- Throughout what follows S will be an orthogonally complete inverse semigroup.
- ► A matrix A with entries in S is said to be a *rook matrix* if it satisfies the following conditions:
 - 1. (RM1): If a and b lie in the same row of A then $a^{-1}b = 0$.
 - 2. (RM2): If a and b lie in the same column of A then $ab^{-1} = 0$.

- R(S) = all finite-dimensional rook matrices
- $M_n(S) = \text{all } n \times n \text{ matrices}$
- *M*_ω(*S*) = ℕ × ℕ rook matrices with finitely many non-zero entries.

Facts about rook matrices

- R(S) is an inverse semigroupoid.
- ► M_n(S) and M_ω(S) are orthogonally complete inverse semigroups.

Let

$$A(S) = E(M_{\omega}(S))/\mathcal{D}.$$

- Define $[E] + [F] = [E' \lor F'].$
- We will define

$$K(S) = \mathcal{G}(A(S)).$$

• $S \mapsto M_{\omega}(S)$ and $S \mapsto K(S)$ have functorial properties.

Pointed étale sets

A pointed étale set is a set X together with a right action of S on X, a map $p: X \to E(S)$ and a distinguished element 0 satisfying the following:

 $\triangleright x \cdot p(x) = x.$

$$p(x \cdot s) = s^{-1}p(x)s.$$

•
$$p(0_X) = 0$$
 and if $p(x) = 0$ then $x = 0_X$.

•
$$0_X \cdot s = 0_X$$
 for all $s \in S$.

•
$$x \cdot 0 = 0_X$$
 for all $x \in X$.

Define a partial order on X: $x \le y$ iff $x = y \cdot p(x)$. Define $x \perp y$ if p(x)p(y) = 0 and say that x and y are orthogonal. We will say elements $x, y \in X$ are strongly orthogonal if $x \perp y$, $\exists x \lor y$ and $p(x) \lor p(y) = p(x \lor y)$.

Premodules and modules

A premodule is a pointed étale set such that

• If $x, y \in X$ are strongly orthogonal then for all $s \in S$ we have $x \cdot s$ and $y \cdot s$ are strongly orthogonal and $(x \lor y) \cdot s = (x \cdot s) \lor (y \cdot s)$.

A D N A 目 N A E N A E N A B N A C N

If s, t ∈ S are orthogonal then x ⋅ s and x ⋅ t are strongly orthogonal for all x ∈ X.

A module is a pointed étale set such that

• If $x \perp y$ then $\exists x \lor y$ and $p(x \lor y) = p(x) \lor p(y)$.

• If
$$x \perp y$$
 then $(x \lor y) \cdot s = x \cdot s \lor y \cdot s$.

Examples

- ▶ 0 is a module with 0 · s = 0 for all s ∈ S (initial object in category).
- eS is a premodule with $es \cdot t = est$ and $p(es) = s^{-1}es$.
- ▶ S itself is a premodule with $s \cdot t = st$ and $p(s) = s^{-1}s$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

In fact, every right ideal is a premodule.

Categories

- We will define premodule morphisms and module morphisms f : (X, p) → (Y, q) to be structure preserving maps between, respectively, premodules and modules.
- Note that we require q(f(x)) = p(x).
- We denote the category of premodules of S by Premod_S and modules by Mod_S.
- Monics in Premod_S and Mod_S are injective and epics in Mod_S are surjective.
- ▶ **Mod**_S is cocomplete.

Proposition

There is a functor **Premod**_S \rightarrow **Mod**_S, $X \mapsto X^{\sharp}$, which is left adjoint to the forgetful functor.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Coproducts

Can define coproduct in Mod_S for (X, p), (Y, q) by

$$X \bigoplus Y = \{(x, y) \in X \times Y | p(x)q(y) = 0\}$$

with

$$(p\oplus q)(x,y)=p(x)\vee q(y)$$

and

$$(x, y) \cdot s = (x \cdot s, y \cdot s).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Projective modules

- A projective module P is one such that for all morphisms f : P → Y and epics g : X → Y there is a map h : P → X with gh = f.
- If P_1, P_2 projective then $P_1 \bigoplus P_2$ is projective.
- ► (eS)[‡] is projective.
- Denote by **Proj**_S the category of modules X with

$$X\cong igoplus_{i=1}^m (e_iS)^{\sharp}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem Let $\mathbf{e} = (e_1, \dots, e_m)$, $\mathbf{f} = (f_1, \dots, f_n)$ and $\Delta(\mathbf{e}), \Delta(\mathbf{f})$ be the associated diagonal matrices in $M_{\omega}(S)$. Then

$$\bigoplus_{i=1}^m (e_i S)^{\sharp} \cong \bigoplus_{i=1}^n (f_i S)^{\sharp}$$

if, and only if,

 $\Delta(\mathbf{e}) \mathcal{D} \Delta(\mathbf{f}).$

Corollary

 $K(S) = \mathcal{G}(\mathbf{Proj}_S).$

- Can define *states* and *traces* on *S*
- If S commutative, then $K(S) \cong K(E(S))$.
- If S commutative or nice then can form tensor products of matrices and modules - sometimes gives a ring structure on K(S).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Examples

Symmetric inverse monoids:

$$K(I_n) = \mathbb{Z}.$$

(Unital) Boolean algebras:

$$K(A) = K^0(S(A)).$$

Cuntz-Krieger semigroups:

$$K(CK_{\mathcal{G}}) = K^0(\mathcal{O}_{\mathcal{G}}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you for listening

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)