K-Theory of Inverse Semigroups

Alistair R. Wallis
Supervisor: Mark V. Lawson

Heriot-Watt University

24 July 2013

Background

Dualities in mathematics:

- Order structures and discrete spaces (Stone duality)
- Locally compact Hausdorff spaces and commutative C^{*}-algebras (Gelfand representation theorem)
Also, (von Neumann) regular rings similar to regular semigroups

Background

Paterson (1980's) and Renault (1980) generalised this to deep connections between 3 different "discrete" mathematical structures:

- Inverse semigroups (generalised order structures)
- Topological groupoids (generalised discrete spaces)
- C^{*}-algebras

Background

Some successful applications:

- Topological K-theory and operator / algebraic K-theory (Serre-Swan theorem)
- Module theory for rings (Dedekind + others) and act theory for monoids
- Morita equivalence of semigroups (Knauer, Talwar) vs. Morita equivalence for rings (Morita)
- Morita equivalence for inverse semigroups (Afara, Funk, Laan, Lawson, Steinberg) vs. Morita equivalence for C^{*}-algebras (Rieffel + others)

Examples

- Polycyclic / Cuntz monoid / Cuntz groupoid / Cuntz algebra
- Graph inverse semigroups / Cuntz-Krieger semigroups / Cuntz-Krieger groupoid / Cuntz-Krieger algebra
- Boolean inverse monoids / Boolean groupoids
- Tiling semigroups / tiling groupoids / tiling C^{*}-algebras

Grothendieck group

Theorem
Let S be a commutative semigroup. Then there is a unique (up to isomorphism) commutative group $G=\mathcal{G}(S)$, called the Grothendieck group, and a homomorphism $\phi: S \rightarrow G$, such that for any commutative group H and homomorphism $\psi: S \rightarrow H$, there is a unique homomorphism $\theta: G \rightarrow H$ with $\psi=\theta \circ \phi$.

Algebraic K-theory

- R - ring
- Proj_{R} - finitely generated projective modules of R.
- $\left(\operatorname{Proj}_{R}, \oplus\right)$ is a commutative monoid.
- Define

$$
K_{0}(R)=\mathcal{G}\left(\operatorname{Proj}_{R}\right)
$$

- If X is a compact Hausdorff space and $C(X)$ is the ring of \mathbb{F}-valued continuous functions on X then

$$
K_{\mathbb{F}}^{0}(X) \cong K_{0}(C(X)) .
$$

Idempotent matrices

- Let $M(R)$ denote the set of \mathbb{N} by \mathbb{N} matrices over R with finitely many non-zero entries.
- Idempotent matrices correspond to projective modules
- Say idempotent matrices $E, F \in M(R)$ are similar and write $E \sim F$ if $E=X Y$ and $F=Y X$ where $X, Y \in M(R)$.

Proposition

Idempotent matrices E and F define the same projective module if and only if $E \sim F$.

Idempotent matrices

- Denote the set of idempotent matrices by $\operatorname{Idem}(R)$ and define a binary operation on $\operatorname{Idem}(R) / \sim$ by

$$
[E]+[F]=\left[E^{\prime}+F^{\prime}\right]
$$

where if a row in E^{\prime} has non-zero entries then that row in F^{\prime} has entries only zeros, similarly for columns of E^{\prime}, and for rows and columns of F^{\prime}, and such that $E^{\prime} \sim E$ and $F^{\prime} \sim F$.

Theorem
This is a well-defined operation and the monoids $\operatorname{Idem}(R) / \sim$ and Proj_{R} are isomorphic.

- This gives us an alternative way of viewing $K_{0}(R)$:

$$
K_{0}(R)=\mathcal{G}(\operatorname{Idem}(R) / \sim)
$$

K-theory of inverse semigroups

- Idea: want to define $K_{0}(S)$ for S an inverse semigroup.
- Need to restrict the class of inverse semigroups - will not be a problem.
- Give definition in terms of projective modules and definition in terms of idempotent matrices.
- Want $K_{0}(S) \cong K_{0}(C(S))$, where $C(S)$ is some C^{*}-algebra associated to S.

Some inverse semigroup theory

- An inverse semigroup is a semigroup S such that for every element $s \in S$ there exists a unique element $s^{-1} \in S$ with $s s^{-1} s=s$ and $s^{-1} s s^{-1}=s^{-1}$ (without uniqueness, we have a regular semigroup).
- A regular semigroup is inverse if and only if its idempotents commute.
- Natural partial order (NPO): $s \leq t$ iff $s=t s^{-1} s$.
- Remark: the set of idempotents form a meet semilattice under the operation $e \wedge f=e f$.

Orthogonally complete inverse semigroups

- Firstly, we will assume our inverse semigroup S has a zero ($0 s=s 0=0$).
- Next, we want our inverse semigroup to be sufficiently ring like, namely we require orthogonal completeness - this will not be a problem as every inverse semigroup with 0 has an orthogonal completion and the examples we are interested in are orthogonally complete.
- Elements $s, t \in S$ are orthogonal, written $s \perp t$, if $s t^{-1}=s^{-1} t=0$.
- S is orthogonally complete if

1. $s \perp t$ implies there exists $s \vee t$
2. $s \perp t$ implies $u(s \vee t)=u s \vee u t$ and $(s \vee t) u=s u \vee t u$.

Rook matrices

- Throughout what follows S will be an orthogonally complete inverse semigroup.
- A matrix A with entries in S is said to be a rook matrix if it satisfies the following conditions:

1. (RM1): If a and b lie in the same row of A then $a^{-1} b=0$.
2. (RM2): If a and b lie in the same column of A then $a b^{-1}=0$.

- $R(S)=$ all finite-dimensional rook matrices
- $M_{n}(S)=$ all $n \times n$ matrices
- $M_{\omega}(S)=\mathbb{N} \times \mathbb{N}$ rook matrices with finitely many non-zero entries.

Facts about rook matrices

- $R(S)$ is an inverse semigroupoid.
- $M_{n}(S)$ and $M_{\omega}(S)$ are orthogonally complete inverse semigroups.
- Let

$$
A(S)=E\left(M_{\omega}(S)\right) / \mathcal{D}
$$

- Define $[E]+[F]=\left[E^{\prime} \vee F^{\prime}\right]$.
- We will define

$$
K(S)=\mathcal{G}(A(S))
$$

- $S \mapsto M_{\omega}(S)$ and $S \mapsto K(S)$ have functorial properties.

Pointed étale sets

A pointed étale set is a set X together with a right action of S on X, a map $p: X \rightarrow E(S)$ and a distinguished element 0 satisfying the following:

- $x \cdot p(x)=x$.
- $p(x \cdot s)=s^{-1} p(x) s$.
- $p\left(0_{X}\right)=0$ and if $p(x)=0$ then $x=0 x$.
- $0_{X} \cdot s=0_{X}$ for all $s \in S$.
- $x \cdot 0=0_{X}$ for all $x \in X$.

Define a partial order on X : $x \leq y$ iff $x=y \cdot p(x)$.
Define $x \perp y$ if $p(x) p(y)=0$ and say that x and y are orthogonal. We will say elements $x, y \in X$ are strongly orthogonal if $x \perp y$, $\exists x \vee y$ and $p(x) \vee p(y)=p(x \vee y)$.

Premodules and modules

A premodule is a pointed étale set such that

- If $x, y \in X$ are strongly orthogonal then for all $s \in S$ we have $x \cdot s$ and $y \cdot s$ are strongly orthogonal and
$(x \vee y) \cdot s=(x \cdot s) \vee(y \cdot s)$.
- If $s, t \in S$ are orthogonal then $x \cdot s$ and $x \cdot t$ are strongly orthogonal for all $x \in X$.
A module is a pointed étale set such that
- If $x \perp y$ then $\exists x \vee y$ and $p(x \vee y)=p(x) \vee p(y)$.
- If $x \perp y$ then $(x \vee y) \cdot s=x \cdot s \vee y \cdot s$.

Examples

- 0 is a module with $0 \cdot s=0$ for all $s \in S$ (initial object in category).
- eS is a premodule with es $\cdot t=$ est and $p(e s)=s^{-1} e s$.
- S itself is a premodule with $s \cdot t=s t$ and $p(s)=s^{-1} s$.
- In fact, every right ideal is a premodule.

Categories

- We will define premodule morphisms and module morphisms $f:(X, p) \rightarrow(Y, q)$ to be structure preserving maps between, respectively, premodules and modules.
- Note that we require $q(f(x))=p(x)$.
- We denote the category of premodules of S by Premod $_{S}$ and modules by Mods.
- Monics in Premod ${ }_{S}$ and Mod $_{S}$ are injective and epics in Mods $_{S}$ are surjective.
- Mods $_{S}$ is cocomplete.

Proposition

There is a functor $\operatorname{Premod}_{S} \rightarrow \operatorname{Mod}_{S}, X \mapsto X^{\sharp}$, which is left adjoint to the forgetful functor.

Coproducts

Can define coproduct in Mod_{S} for $(X, p),(Y, q)$ by

$$
X \bigoplus Y=\{(x, y) \in X \times Y \mid p(x) q(y)=0\}
$$

with

$$
(p \oplus q)(x, y)=p(x) \vee q(y)
$$

and

$$
(x, y) \cdot s=(x \cdot s, y \cdot s)
$$

Projective modules

- A projective module P is one such that for all morphisms $f: P \rightarrow Y$ and epics $g: X \rightarrow Y$ there is a map $h: P \rightarrow X$ with $g h=f$.
- If P_{1}, P_{2} projective then $P_{1} \bigoplus P_{2}$ is projective.
- $(e S)^{\sharp}$ is projective.
- Denote by Proj_{S} the category of modules X with

$$
X \cong \bigoplus_{i=1}^{m}\left(e_{i} S\right)^{\sharp} .
$$

Theorem

Let $\mathbf{e}=\left(e_{1}, \ldots, e_{m}\right), \mathbf{f}=\left(f_{1}, \ldots, f_{n}\right)$ and $\Delta(\mathbf{e}), \Delta(\mathbf{f})$ be the associated diagonal matrices in $M_{\omega}(S)$. Then

$$
\bigoplus_{i=1}^{m}\left(e_{i} S\right)^{\sharp} \cong \bigoplus_{i=1}^{n}\left(f_{i} S\right)^{\sharp}
$$

if, and only if,

$$
\Delta(\mathbf{e}) \mathcal{D} \Delta(\mathbf{f})
$$

Corollary

$$
K(S)=\mathcal{G}\left(\operatorname{Proj}_{S}\right)
$$

- Can define states and traces on S
- If S commutative, then $K(S) \cong K(E(S))$.
- If S commutative or nice then can form tensor products of matrices and modules - sometimes gives a ring structure on $K(S)$.

Examples

- Symmetric inverse monoids:

$$
K\left(I_{n}\right)=\mathbb{Z}
$$

- (Unital) Boolean algebras:

$$
K(A)=K^{0}(S(A))
$$

- Cuntz-Krieger semigroups:

$$
K\left(C K_{\mathcal{G}}\right)=K^{0}\left(\mathcal{O}_{\mathcal{G}}\right)
$$

Thank you for listening

