
Transformation Monoids in
Programming Language Semantics

Uday S. Reddy1

1University of Birmingham

NBSAN Manchester, July 2013

This talk is dedicated to the memory of
John C. Reynolds, 1935-2013

Section 1

Introduction

Mathamatics and Computer Science

Mathamatics and Computer Science

I Until the advent of digital computers (c. 1950),
mathematics and computing science were a single joint
discipline.

I Mathematicians routinely formulated algorithms (or
constructions), and studied the properties of algorithms as
well as the products of these algorithms.

I Examples:
I algorithms for arithmetic (prehistoric times)
I constructions for geometry (Euclid)
I linear equations (Gauss, Jacobi, Seidel)
I roots of functions (Newton, Viete, Bernoulli)
I solutions for differential equations (Euler, Runge, Kutta)

Functional computation

I A good number of these algorithms were “functional,” i.e.,
the steps of computations were functions, joined together
by function composition.

I Functional computation was given “semantics” by set
theory (c. 1900).

I Formalisms (languages) for functional computation were
devised by Godel, Church and Kleene (c. 1930).

I After the advent of Computer Science, Dana Scott and
Gordon Plotkin extended the classical models to deal with
recursion (domain theory).

I Moral: Functional computation is well-understood.

Procedural (imperative) computation
I Many iterative algorithms were “procedural,” i.e., steps of

computations modify the “state” of “variables.”
I Examples:

I Euclid’s algorithm for greatest common divisor (GCD).
I Gaussian elimination.
I Iterative algorithms for roots, differential equations etc.

I No semantic models or formal languages were devised for
procedural computation prior to Computer Science.

I Turing (1930’s) and von Neumann (1940’s) studied
machine models and mechanical computation, which
became the starting point for Computer Science.

I Automata theory (McCulloch & Pitts, 1943) arose as a
machine model, and developed a significant algebraic
theory (Kleene, Ginzburg, Eilenberg, Krohn, Rhodes, . . .)

I However, algebraic automata theory has not yet made a
significant impact on programming theory.

Section 2

Procedural programming languages

Example: Euclid’s algorithm

Elements, Book VII, Proposition 2
Given two (natural) numbers not prime to one
another, to find their greatest common
“measure”.

Let AB, CD be the two given numbers.
. . .
If CD does not measure AB then:

I the lesser of the numbers AB, CD being
continually subtracted from the greater,

I some number will be left which will
measure the one before it.

. . .
Therefore, CF will be a common measure of
AB, CD.

Euclid’s algorithm in Algol 60

integer procedure gcd(integer a, integer b)
{ integer u, v ;

u := a; v := b;
while u 6= v do {

if u > v then
u := u − v

else
v := v − u

}
gcd := u

}

I From the outside gcd appears as a “function”, e.g.,
gcd(10,4).

I However, internally, the procedure of gcd allocates local
variables and continually modifies them.

Euclid’s algorithm in Algol 60 (contd)

I Expressions: e.g., gcd(10, 4), gcd(x + y , 2 ∗ z), u > v ,
u − v . They read the state, but do not change it.

I Commands: e.g., u := u − v . They modify the state.
I Variables: The symbols u and v name variables. They are

modified during the execution.
I Procedures and parameters: The symbols gcd, a, and b

are called “identifiers” in Algol 60. They name things, but
there is no notion of modifying them.

Euclid’s algorithm in Idealized Algol

gcd : exp[int]× exp[int]→ exp[int]
= λ(a,b). {

blockexp[int] g.
{ new[int] u.

new[int] v .
{

u := a; v := b;
. . .
g := u

}
}

}

John Reynolds noted in “The Essence of Algol” (1981) that the
type structure of Algol was that of Church’s simply typed
lambda calculus.

Euclid’s algorithm in Idealized Algol (contd)

I λ(a,b). — function abstraction.
I blockexp[int] g. — Expression created from a command

block with a local variable g. (The value of the expression
is the final value of g.)

I new[int] u. — A command operator for creating a local
variable.

I u := a — an assignment command. (Change the value of
u to the current value of a.)

I −;− sequential composition operator for commands.

Idealized Algol
I Typed lambda calculus with base types:

I exp[int], exp[bool]
I comm
I var[int], var[bool]

I Typed lambda calculus means: for any types A and B,
I unit is a type.
I A× B is a type.
I A→ B is a type.

I Given any terms T , T1 and T2, the following are terms:
I (), (T1,T2), fst(T), snd(T), λx . T and T1(T2).

I All the primitive operators of Idealized Algol can be treated
as constants of the typed lambda calculus. For example:

−;− : comm× comm→ comm
skip : comm
− := − : var[X]× exp[X]→ comm
new[X] : (var[X]→ comm)→ comm

Defining semantics

I Find an appropriate mathematical structure to capture the
meaning of the terms.

I Meaning functionM : Terms→ Structure
I Think of the terms as forming a “free algebra” generated by

the operators of the language.
I The semantic structure is a meaningful “algebra” that

identifies all computations with the same behaviour.
I M must be a structure-preserving map, e.g.,

M[[v := e]] = M[[v]] :=M[[e]]

The brackets [[· · ·]] delineate the symbolic world from the
mathematical world.

The objective of semantics

I The meaning function gives a notion of semantic
equivalence:

T1
∼=sem T2 ⇐⇒ M[[T1]] =M[[T2]]

I On the other hand, by looking at the behaviour of the terms
in all possible contexts, we obtain observational
equivalence:

T1
∼=obs T2 ⇐⇒ ∀ contexts C,

C[T1] and C[T2] have same behaviour

I A semantic model is said to be fully abstract if the two
coincide:

T1
∼=sem T2 ⇐⇒ T1

∼=obs T2

Example equivalences

I Typed lambda calculus equivalences:

fst(T1,T2) ≡ T1
snd(T1,T2) ≡ T2
(λx . {T})(T ′) ≡ T [x → T ′]

(where T [x → T ′] means substitution of T ′ for x).
I Basic equivalences for commands:

(T1;T2);T3 ≡ T1; (T2;T3)
T ;skip ≡ T ≡ skip;T
new[X] x .skip ≡ skip
new[X] x .T0 ≡ T0
new[X] x .new[X] y .T ≡

new[X] y .new[X] x .T

Example equivalences: Locality

I Since a local variable is only available inside its block of
commands, any subterms that occur outside the scope do
not have access to it.

I If p : comm→ comm,

new[int] x . {x := 0; p(x := x + 1)}
≡ p(skip)
≡ new[int] x . {x := 0; p(x := x − 1)}

I If p : exp[int]× comm→ comm,

new[int] x . {x := 0; p(x , x := x + 1)}
≡ new[int] x . {x := 0; p(−x , x := x − 1)}

Example equivalences: irreversible state change

I The execution of a command changes the state irreversibly.
I Suppose p : comm→ comm.

new[int] x . { x := 0;
p(x := x + 1);
if x > 0 then diverge else skip}

≡ p(diverge)

where diverge is any diverging command, e.g., an infinite
loop.

I If p ignores its argument (constant function), then both the
sides are equivalent to p(skip).

I If p runs its argument command, then both the sides
diverge.

I This notion of irreversible state change has proved very
hard to capture in the mathematical models!

The challenge for denotational semantics
I How to capture the intensional aspects of computations in

an extensional model?
I Example of extensionality:

GV(x) =⇒ (x := !x + 1; x := !x + 1) ≡ (x := !x + 2)

I Intensional models
I Object spaces [Reddy, O’Hearn, McCusker]
I Action traces [Hoare, Brookes]
I Game semantics [Abramsky, McCusker, Honda, Murawski]

distinguish between the two sides of the equivalence.

readx(2), writex(3), readx(3), writex(4)
readx(2), writex(4)

I We are after extensional models.
I Another example of extensionality:

stack(s) =⇒ (s.push(v); s.pop) ≡ skip

Naive extensional models have “junk”

I Command snapback (with divergence):

try : comm→ comm

try c = λs.
{

s, if c(s) 6= ⊥
⊥, if c(s) = ⊥

State changes should be irreversible.
I Expression snapback:

do_result_ : comm× exp→ exp
do c result e = λs.e(c(s))

Expressions should only read the state (passivity).
I Intensional models can eliminate such “junk” relatively

easily.
I Eliminating “junk” in extensional models involves inventing

mathematical structure.

Progress in understanding semantics
I Christopher Strachey & Dana Scott, 1960’s:

I models based on global state using sets with added
structure for recursion (“domains”).

I John Reynolds, 1981:
I models based on presheaves
I state varies based on allocation of variables
I the structure of stores based on automata intuitions.

I John Reynolds, 1983:
I Relational parametricty to capture type-based abstraction

of data (“uniformity” or “information hiding”)
I O’Hearn & Tennent, 1993:

I combined presheaves with relational parametricity to
achieve a model of local variables.

I Reddy & Dunphy, 1998–2013
I categorical axiomatization of relational parametricity
I development of automata-theoretic ideas to model

irreversible state change.

Section 3

Semantic framework

Cartesian closed categories

I A model of a typed lambda calculus must be a cartesian
closed category.

I For all objects A and B, there is a product A× B and an
exponential A⇒ B (or BA).

I A standard example of a cartesian closed category is Set,
the category of sets and functions.

I From category theory, we also know that presheaves, i.e.,
functors of type C → Set (for any category C), form a
cartesian closed category.

I However, plain category theory is not good enough for our
purposes.

Logical relations
I Logical relations are relations compatible with structure,

just like homomorphisms are functions preserving
structure.

I Other names for logical relations in the literature:
I Regular relation, Homogeneous relation, Compatible

relation (algebra)
I Congruence relation (algebra - for equivalence relations)
I Covering relation (automata theory)

I For example, if A and A′ are monoids, a logical relation
R : A↔ A′ is a relation between their underlying sets such
that

1A
[
R
]

1A′

x
[
R
]

x ′ ∧ y
[
R
]

y ′ =⇒ xy
[
R
]

x ′y ′

A useful abbreviation for the second property is to write

·
[
R × R → R

]
·

(which justifies the name “logical” relation).

Relational parametricity

I Relational parametricity asks for “parametrically
polymorphic” functions to preserve all logical relations.

A

A′

R
?

6

F (A)
tA
> G(A)

F (A′)

F (R)

?

6

tA′
> G(A′)

G(R)

?

6

I The polymorphic family t = {tA}A is said to have the type
∀A F (A)→ G(A).

I In all the structures we use, logical relations subsume
homomorphisms. For every homomorphism h : A→ B,
there is a logical relation 〈h〉 : A↔ B which maps
commutative squares to relation-preservation squares.

A
f

> B

A′

〈g〉

?

6

f ′
> B′

〈h〉

?

6

⇐⇒

A
f

> B

A′

g

∨ f ′
> B′

h

∨

I Relational parametricity strengthens naturality of category
theory as a uniformity criterion.

Why relational parametricity?
I Recall the equivalence (for p : comm→ comm):

new[int] x . {x := 0; p(x := x + 1)}
≡ new[int] x . {x := 0; p(x := x − 1)}

I The argument depends on the fact:
I “x is hidden from p.”

I Equivalent to:
I “p is parametrically polymorphic in the state space of x .”

I I.e., p must preserve all possible relationships between the
state spaces of x .

I For example, R : Z↔ Z given by:

n
[
R
]

n′ ⇐⇒ n ≥ 0 ∧ n′ = −n

I Since x := x + 1 and x := x − 1 preserve this relation,
p(x := x + 1) and p(x := x − 1) must preserve it too.

Reynolds model (Essence of Algol)
I Quite amazingly, Reynolds’s 1981 model had the right

structure to eliminate the command snapback.
(But this requires relational parametricity, which Reynolds
didn’t have in 1981.)

I The types of Algol are functors parameterized by “store
shapes”:

I COMM(X) = the collection of state transformations for
stores of shape X .

I EXP(X) = the collection of state readers for stores of
shape X .

I (F ⇒ G)(X) = the collection of procedures/functions for
stores of shape X , which can work at all future stores Y of
X .

∀f :Y←X F (Y)→ G(Y)
∫

f :Y←X F (Y)→ G(Y)

(Think of this is an intuitionistic function space.)
I VAR(X) = EXP(X)× [Int → COMM(X)], pairs of read and

write operations for a variable.

What should a store be?

I Idea 1: A store is a collection of locations.
I Idea 2: A store can be abstracted to a set of states.
I Idea 3: A store should be abstracted to a set of states

along with its possible state transformations.
I Reynolds arrived at Idea 3 in 1981! But, perhaps, he didn’t

have a strong reason to pursue it.
I Oles produced a variant of the model using Idea 2. It

became standard from then on.
I However, the tension between category theory and

relational parametricity, which exists with the Oles model,
is not present in the Reynolds model. (This problem led me
to reinvent it in 1998.)

Section 4

Transformation monoids

Reynolds transformation monoids
I A store X is represented as a tuple

(QX , TX , αX , readX)

(Reynolds transformation monoid) where:
I QX - a (small) set of states,
I TX - a monoid of state transformations TX ⊆ [QX → QX],
I αX : TX ↪→ [QX → QX] - the implicit monoid action,
I readX : [QX → TX]→ TX - called “diagonalization”:

readX p = λx .p x x = λx . αX (p x) x

allows a state transformation to be dependent on the initial
state.
For example,

condX b c1 c2 = readX λs. if b(s) 6= 0 then c1 else c2

I Note: Transformation monoids in algebraic automata
theory [Eilenberg, 1974] are triples (QX , TX , αX).

Logical relations for RTM’s

I A logical relation R : (QX , TX)↔ (QX ′ , TX ′) is a pair
(Rq,Rt) where

X

X ′

R
?

6
=


QX TX

,

QX ′

Rq
?

6

TX ′

Rt
?

6


I Rq : QX ↔ QX ′ is a relation, and
I Rt : TX ↔ TX ′ is a logical relation of monoids,

such that
I αX

[
Rt → [Rq → Rq]

]
αX ′ , and

I readX
[
[Rq → Rt]→ Rt

]
readX ′ .

Morphisms for RTM’s

I A homomorphism f : (QX , TX)→ (QY , TY) is a pair (fq, ft)

Y

X

f
6

=


QY TY

,

QX

fq
?

TX

ft
6


where

I fq : QY → QX is a function, and
I ft : TX → TY is a homomorphism of monoids,

such that (〈fq〉`, 〈ft〉) is a logical relation of RTM’s.
I Note that fq and ft run in opposite directions.

(Mixed variance)
I 〈f 〉 means the function graph (a function treated as a

relation). R` means the converse relation.

Interpretation of Algol types

I Algol types are now functors of type RTM→ Set (ignoring
divergence):

COMM(X) = TX
EXP(X) = [QX → Int]

(F ×G)(X) = F (X)×G(X)
(F ⇒ G)(X) = ∀f :Y←X F (Y)→ G(Y)

This model does not have command snapback, i.e.,
models irreversible state change.

I Fact: Hom(COMM → COMM) ∼= N, representable by

λc.skip, λc. c, λc. (c; c), . . .

I But it has expression snapback (does not model passivity).

What next?

I I know precious little about the structure of the category
RTM.

I If we restrict to full transformation monoids (Reynolds,
1981), then every morphism X → Y is equivalent to an
isomorphism Y ∼= X × D for some D.

I We need similar characterisations for RTM.
I Functors F : C → Set that are subsumptive form a

cartesian closed category. F (〈g〉) = 〈F (g)〉.
I A more satisfying condition is that of fibration. In a fibred

category with relations, we have preimages (f , f ′)∗S which
“pull S back” along f and f ′.

I I don’t yet have a cartesian closed category result for fibred
functors. We would need something like sheaves instead
presheaves to get such a category.

I Possible connections to Galois theory.

	Introduction
	Procedural programming languages
	Semantic framework
	Transformation monoids

