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Section 1

Introduction



Mathamatics and Computer Science



Mathamatics and Computer Science

I Until the advent of digital computers (c. 1950),
mathematics and computing science were a single joint
discipline.

I Mathematicians routinely formulated algorithms (or
constructions), and studied the properties of algorithms as
well as the products of these algorithms.

I Examples:
I algorithms for arithmetic (prehistoric times)
I constructions for geometry (Euclid)
I linear equations (Gauss, Jacobi, Seidel)
I roots of functions (Newton, Viete, Bernoulli)
I solutions for differential equations (Euler, Runge, Kutta)



Functional computation

I A good number of these algorithms were “functional,” i.e.,
the steps of computations were functions, joined together
by function composition.

I Functional computation was given “semantics” by set
theory (c. 1900).

I Formalisms (languages) for functional computation were
devised by Godel, Church and Kleene (c. 1930).

I After the advent of Computer Science, Dana Scott and
Gordon Plotkin extended the classical models to deal with
recursion (domain theory).

I Moral: Functional computation is well-understood.



Procedural (imperative) computation
I Many iterative algorithms were “procedural,” i.e., steps of

computations modify the “state” of “variables.”
I Examples:

I Euclid’s algorithm for greatest common divisor (GCD).
I Gaussian elimination.
I Iterative algorithms for roots, differential equations etc.

I No semantic models or formal languages were devised for
procedural computation prior to Computer Science.

I Turing (1930’s) and von Neumann (1940’s) studied
machine models and mechanical computation, which
became the starting point for Computer Science.

I Automata theory (McCulloch & Pitts, 1943) arose as a
machine model, and developed a significant algebraic
theory (Kleene, Ginzburg, Eilenberg, Krohn, Rhodes, . . . )

I However, algebraic automata theory has not yet made a
significant impact on programming theory.
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Procedural programming languages



Example: Euclid’s algorithm

Elements, Book VII, Proposition 2
Given two (natural) numbers not prime to one
another, to find their greatest common
“measure”.

Let AB, CD be the two given numbers.
. . .
If CD does not measure AB then:

I the lesser of the numbers AB, CD being
continually subtracted from the greater,

I some number will be left which will
measure the one before it.

. . .
Therefore, CF will be a common measure of
AB, CD.



Euclid’s algorithm in Algol 60

integer procedure gcd(integer a, integer b)
{ integer u, v ;

u := a; v := b;
while u 6= v do {

if u > v then
u := u − v

else
v := v − u

}
gcd := u

}

I From the outside gcd appears as a “function”, e.g.,
gcd(10,4).

I However, internally, the procedure of gcd allocates local
variables and continually modifies them.



Euclid’s algorithm in Algol 60 (contd)

I Expressions: e.g., gcd(10, 4), gcd(x + y , 2 ∗ z), u > v ,
u − v . They read the state, but do not change it.

I Commands: e.g., u := u − v . They modify the state.
I Variables: The symbols u and v name variables. They are

modified during the execution.
I Procedures and parameters: The symbols gcd, a, and b

are called “identifiers” in Algol 60. They name things, but
there is no notion of modifying them.



Euclid’s algorithm in Idealized Algol

gcd : exp[int]× exp[int]→ exp[int]
= λ(a,b). {

blockexp[int] g.
{ new[int] u.

new[int] v .
{

u := a; v := b;
. . .
g := u

}
}

}

John Reynolds noted in “The Essence of Algol” (1981) that the
type structure of Algol was that of Church’s simply typed
lambda calculus.



Euclid’s algorithm in Idealized Algol (contd)

I λ(a,b). — function abstraction.
I blockexp[int] g. — Expression created from a command

block with a local variable g. (The value of the expression
is the final value of g.)

I new[int] u. — A command operator for creating a local
variable.

I u := a — an assignment command. (Change the value of
u to the current value of a.)

I −;− sequential composition operator for commands.



Idealized Algol
I Typed lambda calculus with base types:

I exp[int], exp[bool]
I comm
I var[int], var[bool]

I Typed lambda calculus means: for any types A and B,
I unit is a type.
I A× B is a type.
I A→ B is a type.

I Given any terms T , T1 and T2, the following are terms:
I ( ), (T1,T2), fst(T ), snd(T ), λx . T and T1(T2).

I All the primitive operators of Idealized Algol can be treated
as constants of the typed lambda calculus. For example:

−;− : comm× comm→ comm
skip : comm
− := − : var[X ]× exp[X ]→ comm
new[X ] : (var[X ]→ comm)→ comm



Defining semantics

I Find an appropriate mathematical structure to capture the
meaning of the terms.

I Meaning functionM : Terms→ Structure
I Think of the terms as forming a “free algebra” generated by

the operators of the language.
I The semantic structure is a meaningful “algebra” that

identifies all computations with the same behaviour.
I M must be a structure-preserving map, e.g.,

M[[v := e]] = M[[v ]] :=M[[e]]

The brackets [[· · · ]] delineate the symbolic world from the
mathematical world.



The objective of semantics

I The meaning function gives a notion of semantic
equivalence:

T1
∼=sem T2 ⇐⇒ M[[T1]] =M[[T2]]

I On the other hand, by looking at the behaviour of the terms
in all possible contexts, we obtain observational
equivalence:

T1
∼=obs T2 ⇐⇒ ∀ contexts C,

C[T1] and C[T2] have same behaviour

I A semantic model is said to be fully abstract if the two
coincide:

T1
∼=sem T2 ⇐⇒ T1

∼=obs T2



Example equivalences

I Typed lambda calculus equivalences:

fst(T1,T2) ≡ T1
snd(T1,T2) ≡ T2
(λx . {T})(T ′) ≡ T [x → T ′]

(where T [x → T ′] means substitution of T ′ for x).
I Basic equivalences for commands:

(T1;T2);T3 ≡ T1; (T2;T3)
T ;skip ≡ T ≡ skip;T
new[X ] x .skip ≡ skip
new[X ] x .T0 ≡ T0
new[X ] x .new[X ] y .T ≡

new[X ] y .new[X ] x .T



Example equivalences: Locality

I Since a local variable is only available inside its block of
commands, any subterms that occur outside the scope do
not have access to it.

I If p : comm→ comm,

new[int] x . {x := 0; p(x := x + 1)}
≡ p(skip)
≡ new[int] x . {x := 0; p(x := x − 1)}

I If p : exp[int]× comm→ comm,

new[int] x . {x := 0; p(x , x := x + 1)}
≡ new[int] x . {x := 0; p(−x , x := x − 1)}



Example equivalences: irreversible state change

I The execution of a command changes the state irreversibly.
I Suppose p : comm→ comm.

new[int] x . { x := 0;
p(x := x + 1);
if x > 0 then diverge else skip}

≡ p(diverge)

where diverge is any diverging command, e.g., an infinite
loop.

I If p ignores its argument (constant function), then both the
sides are equivalent to p(skip).

I If p runs its argument command, then both the sides
diverge.

I This notion of irreversible state change has proved very
hard to capture in the mathematical models!



The challenge for denotational semantics
I How to capture the intensional aspects of computations in

an extensional model?
I Example of extensionality:

GV(x) =⇒ (x := !x + 1; x := !x + 1) ≡ (x := !x + 2)

I Intensional models
I Object spaces [Reddy, O’Hearn, McCusker]
I Action traces [Hoare, Brookes]
I Game semantics [Abramsky, McCusker, Honda, Murawski]

distinguish between the two sides of the equivalence.

readx(2), writex(3), readx(3), writex(4)
readx(2), writex(4)

I We are after extensional models.
I Another example of extensionality:

stack(s) =⇒ (s.push(v); s.pop) ≡ skip



Naive extensional models have “junk”

I Command snapback (with divergence):

try : comm→ comm

try c = λs.
{

s, if c(s) 6= ⊥
⊥, if c(s) = ⊥

State changes should be irreversible.
I Expression snapback:

do_result_ : comm× exp→ exp
do c result e = λs.e(c(s))

Expressions should only read the state (passivity).
I Intensional models can eliminate such “junk” relatively

easily.
I Eliminating “junk” in extensional models involves inventing

mathematical structure.



Progress in understanding semantics
I Christopher Strachey & Dana Scott, 1960’s:

I models based on global state using sets with added
structure for recursion (“domains”).

I John Reynolds, 1981:
I models based on presheaves
I state varies based on allocation of variables
I the structure of stores based on automata intuitions.

I John Reynolds, 1983:
I Relational parametricty to capture type-based abstraction

of data (“uniformity” or “information hiding”)
I O’Hearn & Tennent, 1993:

I combined presheaves with relational parametricity to
achieve a model of local variables.

I Reddy & Dunphy, 1998–2013
I categorical axiomatization of relational parametricity
I development of automata-theoretic ideas to model

irreversible state change.
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Semantic framework



Cartesian closed categories

I A model of a typed lambda calculus must be a cartesian
closed category.

I For all objects A and B, there is a product A× B and an
exponential A⇒ B (or BA).

I A standard example of a cartesian closed category is Set,
the category of sets and functions.

I From category theory, we also know that presheaves, i.e.,
functors of type C → Set (for any category C), form a
cartesian closed category.

I However, plain category theory is not good enough for our
purposes.



Logical relations
I Logical relations are relations compatible with structure,

just like homomorphisms are functions preserving
structure.

I Other names for logical relations in the literature:
I Regular relation, Homogeneous relation, Compatible

relation (algebra)
I Congruence relation (algebra - for equivalence relations)
I Covering relation (automata theory)

I For example, if A and A′ are monoids, a logical relation
R : A↔ A′ is a relation between their underlying sets such
that

1A
[
R
]

1A′

x
[
R
]

x ′ ∧ y
[
R
]

y ′ =⇒ xy
[
R
]

x ′y ′

A useful abbreviation for the second property is to write

·
[
R × R → R

]
·

(which justifies the name “logical” relation).



Relational parametricity

I Relational parametricity asks for “parametrically
polymorphic” functions to preserve all logical relations.

A

A′

R
?

6

F (A)
tA
> G(A)

F (A′)

F (R)

?

6

tA′
> G(A′)

G(R)

?

6

I The polymorphic family t = {tA}A is said to have the type
∀A F (A)→ G(A).



I In all the structures we use, logical relations subsume
homomorphisms. For every homomorphism h : A→ B,
there is a logical relation 〈h〉 : A↔ B which maps
commutative squares to relation-preservation squares.

A
f

> B

A′

〈g〉

?

6

f ′
> B′

〈h〉

?

6

⇐⇒

A
f

> B

A′

g

∨ f ′
> B′

h

∨

I Relational parametricity strengthens naturality of category
theory as a uniformity criterion.



Why relational parametricity?
I Recall the equivalence (for p : comm→ comm):

new[int] x . {x := 0; p(x := x + 1)}
≡ new[int] x . {x := 0; p(x := x − 1)}

I The argument depends on the fact:
I “x is hidden from p.”

I Equivalent to:
I “p is parametrically polymorphic in the state space of x .”

I I.e., p must preserve all possible relationships between the
state spaces of x .

I For example, R : Z↔ Z given by:

n
[
R
]

n′ ⇐⇒ n ≥ 0 ∧ n′ = −n

I Since x := x + 1 and x := x − 1 preserve this relation,
p(x := x + 1) and p(x := x − 1) must preserve it too.



Reynolds model (Essence of Algol)
I Quite amazingly, Reynolds’s 1981 model had the right

structure to eliminate the command snapback.
(But this requires relational parametricity, which Reynolds
didn’t have in 1981.)

I The types of Algol are functors parameterized by “store
shapes”:

I COMM(X ) = the collection of state transformations for
stores of shape X .

I EXP(X ) = the collection of state readers for stores of
shape X .

I (F ⇒ G)(X ) = the collection of procedures/functions for
stores of shape X , which can work at all future stores Y of
X .

∀f :Y←X F (Y )→ G(Y )
∫

f :Y←X F (Y )→ G(Y )

(Think of this is an intuitionistic function space.)
I VAR(X ) = EXP(X )× [Int → COMM(X )], pairs of read and

write operations for a variable.



What should a store be?

I Idea 1: A store is a collection of locations.
I Idea 2: A store can be abstracted to a set of states.
I Idea 3: A store should be abstracted to a set of states

along with its possible state transformations.
I Reynolds arrived at Idea 3 in 1981! But, perhaps, he didn’t

have a strong reason to pursue it.
I Oles produced a variant of the model using Idea 2. It

became standard from then on.
I However, the tension between category theory and

relational parametricity, which exists with the Oles model,
is not present in the Reynolds model. (This problem led me
to reinvent it in 1998.)
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Transformation monoids



Reynolds transformation monoids
I A store X is represented as a tuple

(QX , TX , αX , readX )

(Reynolds transformation monoid) where:
I QX - a (small) set of states,
I TX - a monoid of state transformations TX ⊆ [QX → QX ],
I αX : TX ↪→ [QX → QX ] - the implicit monoid action,
I readX : [QX → TX ]→ TX - called “diagonalization”:

readX p = λx .p x x = λx . αX (p x) x

allows a state transformation to be dependent on the initial
state.
For example,

condX b c1 c2 = readX λs. if b(s) 6= 0 then c1 else c2

I Note: Transformation monoids in algebraic automata
theory [Eilenberg, 1974] are triples (QX , TX , αX ).



Logical relations for RTM’s

I A logical relation R : (QX , TX )↔ (QX ′ , TX ′) is a pair
(Rq,Rt) where

X

X ′

R
?

6
=


QX TX

,

QX ′

Rq
?

6

TX ′

Rt
?

6


I Rq : QX ↔ QX ′ is a relation, and
I Rt : TX ↔ TX ′ is a logical relation of monoids,

such that
I αX

[
Rt → [Rq → Rq]

]
αX ′ , and

I readX
[
[Rq → Rt ]→ Rt

]
readX ′ .



Morphisms for RTM’s

I A homomorphism f : (QX , TX )→ (QY , TY ) is a pair (fq, ft)

Y

X

f
6

=


QY TY

,

QX

fq
?

TX

ft
6


where

I fq : QY → QX is a function, and
I ft : TX → TY is a homomorphism of monoids,

such that (〈fq〉`, 〈ft〉) is a logical relation of RTM’s.
I Note that fq and ft run in opposite directions.

(Mixed variance)
I 〈f 〉 means the function graph (a function treated as a

relation). R` means the converse relation.



Interpretation of Algol types

I Algol types are now functors of type RTM→ Set (ignoring
divergence):

COMM(X ) = TX
EXP(X ) = [QX → Int ]

(F ×G)(X ) = F (X )×G(X )
(F ⇒ G)(X ) = ∀f :Y←X F (Y )→ G(Y )

This model does not have command snapback, i.e.,
models irreversible state change.

I Fact: Hom(COMM → COMM) ∼= N, representable by

λc.skip, λc. c, λc. (c; c), . . .

I But it has expression snapback (does not model passivity).



What next?

I I know precious little about the structure of the category
RTM.

I If we restrict to full transformation monoids (Reynolds,
1981), then every morphism X → Y is equivalent to an
isomorphism Y ∼= X × D for some D.

I We need similar characterisations for RTM.
I Functors F : C → Set that are subsumptive form a

cartesian closed category. F (〈g〉) = 〈F (g)〉.
I A more satisfying condition is that of fibration. In a fibred

category with relations, we have preimages (f , f ′)∗S which
“pull S back” along f and f ′.

I I don’t yet have a cartesian closed category result for fibred
functors. We would need something like sheaves instead
presheaves to get such a category.

I Possible connections to Galois theory.
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