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Numerical Semigroups

Sylvester’s Problem

Sylvester stated and solved the following problem:

Let sy and sy be two relatively prime natural numbers. Determine the
largest integer g which can not be written as a linear combination
nyS1 + noSp where ny and np are non-negative integers.

(Mathematical Questions with their Solutions, Educational Times vol. 41, 1884)
Answer: $1S; — Sy — Sp.

For example, when s; = 13, s, = 7, we get 71.



Numerical Semigroups

Frobenius problem

Frobenius proposed a generalisation of Sylvester’s problem:

Frobenius problem

Let sy, ... s, be natural numbers with ged(sy, ..., sn) = 1. Determine (or
bound) the largest integer which can not be written as kisy + - - - + knsp for
some non-negative integers ki, ko, . . . , kn.

A related question is, how many non-negative integers can not be written as
kist + ... knsn? (When n= 2, thisiis (sy — 1)(s2 — 1)/2).
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Numerical Semigroups

A numerical semigroup S is a submonoid of (N, +) with [N\ S| < co.

Or equivalently, S = (sq, ..., sn) for some sy, ..., S, € N with
ged(si,...,sn) = 1.

The set G(S) := N\ Sis called the set of gaps of S.

The number |G(S)| is called the genus of S (the Rees index of Sin N).
The element f(S) := max{s | s € G(S)} is called the Frobenius of S.
The element m(S) := min{s | s € S} is called the multiplicity of S.

A numerical semigroup is called ordinary if /(S) < m(S), i.e. all the gaps are
at the beginning.



Numerical Semigroups

How many numerical semigroups are there of a given genus?
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Numerical Semigroups

Fibonacci like growth

In 2008 Maria Bras-Amords conjectured that a, has ‘Fibonacci like’ growth.

(Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum 76, 2008).

In 2009 Bras-Amoros gave upper and lower bounds

(Bounds on the number of numerical semigroups of a given genus. J. Pure Appl. Algebra 213, 2009).

In 2013 Alex Zhai proved that nlim % = C where ¢ = % and Cisa
— 00

constant.

(Fibonacci-like growth of numerical semigroups of a given genus. Semigroup Forum 86, 2013).



Higher rank semigroups

Free semigroups of higher rank

Given a finite alphabet X; := {x1,...,x}, let FS; := X;” denote the free
semigroup of rank r.

Let a(n, r) denote the number of Rees index n subsemigroups of FS;.
Then a(n, 1) has ‘Fibonacci like’ growth.

Can we determine the rate of growth or find bounds for a(n, r) with r > 2?

Every finite (Rees) index subsemigroup of FS; has a finite unique minimal
generating set.

Using the shortlex order, we can define Frobenius, multiplicity, ordinary etc.

We can construct a tree of all finite index subsemigroups of FS; by
considering minimal generators larger than the Frobenius.



Higher rank semigroups

Example for r =2

# descendants of {a}° =6 ‘
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Higher rank semigroups

Example for r =2

# descendants of {b}° =5 ‘
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Higher rank semigroups

Tree of all finite index subsemigroups of FS,
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Higher rank semigroups

Number of index n subsemigroups of FS,
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Ordinary subsemigroups
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Let p(n, r) be the number of minimal generators (= number of descendants)
of the index n ordinary subsemigroup of FS;. Then:
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Lower bound

p(0,2) =2
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This is super exponential for r > 2. (Note that L(n, 1) = Fp).




Upper bound

We first show:

Given an index n subsemigroup S of FS;, the number of minimal generators
of (S\ {m}) U {f} is no less than the number of minimal generators of S.

This gives us:

For a fixed index n, the ordinary subsemigroup of FS; has the maximum
number of descendants.

So for an upper bound, assume every index n subsemigroup of FS; has
p(n, r) descendants.



Upper bound
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Zeta Functions

Zeta Functions

Given a sequence a(n), with s(n) = "7, a(n) the sequence of partial sums,

This is called the “Dirichlet series associated to a(n)”.

If a(n) is polynomially bounded then Z(s) converges for Re(s) > « where
a =inf{d € R| 3¢ € R-g s.t. s(n) < cn for all n}.

The line Re(s) = « is called the abscissa of convergence.
Examples:

@ If a(n) = 1 then Zy(s) := {(s) the Riemann Zeta function which
converges Re(s) > 1.

@ If a(n) = ¢(n), then Zu(s) := <=1 which converges Re(s) > 2.
¢(s)
¢

© If a(n) = ¢(n)n~%, then Zy(s) := (5(52;)1), which converges
Re(s) >2/2 =1.




Zeta Functions

Zeta Functions

Let {,2) be the number of 2 generated index n subsemigroups of N, and
S(n2) = Lkt lk2):

Given some S = (a, b) C N with gcd(a, b) = 1, then b = ja+ i for some j > 1
and i € U, coprime to a, where |Us| = ¢(a).

Then g(a, b) = |G(S)| = (a— 1)(b— 1)/2 is the index or genus of S.



Zeta Functions

Upper bound for Zeta function of ¢, »)

For the upper bound, we count correctly but underestimate index:
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Zeta Functions

Lower bound for Zeta function of £, 5)

For the lower bound we under count with correct index:
9({2,2n+ 1)) = n ~ {(s), which also converges for Re(s) = 1.

Therefore s, 2) has ‘linear growth’, that is Ve > 0,3¢ s.t. 5(52) < cn'te.

‘degree d — 1 growth’ < s5(,.4) < ‘degree d growth’.




Computational results

Computational data

r 1 2 3 4 5 6 7
1 1 2 4 7 12 23 39
2 2 11 62 382 2562 18413 140968
3 3 27 250 2568 28746 347691 4495983
4 4 50 644 9209 143416 2415078 43532832
5 5 80 1320 24150 480736 10340800 238120365
6 6 | 117 | 2354 52437 1269738 33192442 928558122
7 7 | 161 3822 100317 2859878 87935351 2892046165
8 8 | 212 | 5800 175238 5746592 203079088 7672012360
9 9 | 270 | 8364 285849 10596852 423019929 18042714315
10 10 | 335 | 11590 | 442000 18274722 813079415 38632533180
11 11 | 407 | 15554 | 654742 29866914 | 1465238951 76729376515
12 12 | 486 | 20332 | 936327 46708344 | 2504570454 | 143291607432
13 13 | 572 | 26000 | 1300208 | 70407688 | 4096363050 | 254187917217
14 14 | 665 | 32634 | 1761039 | 102872938 | 6453945820 | 431689558638
15 15 | 765 | 40310 | 2334675 | 146336958 | 9847206595 | 706238357145




Ideal growth

Ideal growth

Let A be a (Rees) index n (right) ideal of FS;, then it is clear that no gap of A
can have a non-gap as a parent. For example, there are 5 (right) ideals of
FS; of Rees index 2.




Ideal growth

Ideal Growth

Each of these correspond to a rooted binary tree with 3 vertices.

/\/
<

The number of these is precisely the 3" Catalan number.



Ideal growth

Ideal growth

Let a(n, r) be the number of Rees index n (right/left) ideals of FS,. (These
are the same number as the map FS; — FS;, w — rev(w) is an
anti-isomorphism).

Then a(n, r) is precisely the number of rooted r-ary trees with n+ 1 vertices.

1
a(n+1,f): m(rnn).

These are just the ‘Fuss-Catalan’ numbers.
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