Free idempotent-generated semigroups

Dandan Yang joint work with Victoria Gould

The University of York NBSAN (21st Nov. 2012) S - semigroup, E = E(S) - idempotents of S.

Definition. *S* is *idempotent-generated* if $S = \langle E \rangle$. Example 1 (Howie 1966)

 \mathcal{T}_n - full transformation monoid, $S(\mathcal{T}_n) = \{ \alpha \in \mathcal{T}_n : \operatorname{rank} \alpha < n \}$. Example 2 (J.A. Erdös, 1967, Laffey, 1973) $M_n(D)$ - full linear monoid, $S(M_n(D)) = \{ A \in M_n(D) : \operatorname{rank} A < n \}$. Example 3 (Fountain and Lewin, 1992)

A - independence algebra, $S(\operatorname{End} A) = \{ \alpha \in \operatorname{End}(A) : \operatorname{rank} \alpha < n \}.$

Free idempotent-generated semigroups

S - semigroup, E = E(S) - idempotents of S.

E - satisfies a number of axioms: that of a *biordered set*.

S - regular, an extra axiom holds: that of a *regular biordered set*.

Nambooripad and Easdown (regular) biordered sets \longleftrightarrow (regular) semigroups.

 $\mathcal{A}:$ family of all semigroups whose biordered set are isomorphic to a fixed $\mathcal{E}.$

Within this family, there exists an unique free object $IG(E) \in A$, free *idempotent-generated semigroup* defined by

$$\mathsf{IG}(E) = \langle \overline{E} : \overline{e}\overline{f} = \overline{ef}, \, e, f \in E, \{e, f\} \cap \{ef, fe\} \neq \emptyset \rangle.$$

where $\overline{E} = \{\overline{e} : e \in E\}$.

Facts

(I) $IG(E) = \langle \overline{E} \rangle$.

(II) The natural map $\phi : IG(E) \to S$, given by $\overline{e}\phi = e$, is a morphism onto $S' = \langle E(S) \rangle$.

(III) The restriction of ϕ to the set of idempotents of IG(*E*) is a bijection.

(IV) The morphism ϕ induces a bijection between the set of all \mathcal{R} -classes (resp. \mathcal{L} -classes) in the \mathcal{D} -class of \overline{e} in IG(E) and the corresponding set in $S' = \langle E(S) \rangle$.

Question: Which groups can arise as the maximal subgroups of free idempotent-generated semigroups IG(E)?

Note: For any semigroup S, the maximal subgroup with identity e of S is the \mathcal{H} -class H_e of S.

Idea: Compare the \mathcal{H} -class $H_{\overline{e}}$ in IG(E) and H_e in $S = \langle E \rangle$.

Work of Pastijn (1977, 1980), Nambooripad and Pastijn (1980), McElwee (2002) led to a conjecture that all these groups must be free groups. .

Brittenham, Margolis and Meakin (2009)

 $\mathbb{Z} \oplus \mathbb{Z}$ can be a maximal subgroup of IG(*E*), for some *E*.

Gray, Ruskuc (2011)

Every group occurs as the maximal subgroup of IG(E) by using a general presentation and a special choice of E.

 \mathcal{T}_n - full transformation monoid, $E = E(\mathcal{T}_n)$ - its biordered set.

Gray and Ruskuc (2011)

 $\operatorname{rank} e = r < n - 1, \ H_{\overline{e}} \cong H_e \cong \mathcal{S}_r.$

Brittenham, Margolis and Meakin (2010)

 $M_n(D)$ - full linear monoid, $E = E(M_n(D))$ - its biordered set.

rank e = 1 and $n \ge 3$, $H_{\overline{e}} \cong H_e \cong D^*$.

Dolinka and Gray (2011)

rank e = r < n/3 and $n \ge 4$, $H_{\overline{e}} \cong H_e \cong GL_r(D)$.

Note rank e = n - 1, $H_{\overline{e}}$ is free; rank e = n, $H_{\overline{e}}$ is trivial.

Observation Sets and vector spaces are examples of *independence* algebras, as is any rank *n* free (left) *G*-act $F_n(G)$.

Let G be a group and $n \in \mathbb{N}$. The *free* G-act $F_n(G)$ is given by

$$F_n(G) = Gx_1 \cup Gx_2 \cup \cdots \cup Gx_n$$

where $g(hx_i) = (gh)x_i$. Note $S(\text{End } F_n(G)) = \{ \alpha \in \text{End } F_n(G) : \text{rank } \alpha < n \} = \langle E \rangle$.

$$\begin{array}{ll} \alpha \, \mathcal{R} \beta & \Leftrightarrow & \ker \alpha = \ker \beta \\ \alpha \, \mathcal{L} \beta & \Leftrightarrow & \operatorname{im} \alpha = \operatorname{im} \beta \\ \alpha \, \mathcal{D} \beta & \Leftrightarrow & \operatorname{rank} \alpha = \operatorname{rank} \beta. \end{array}$$

rank e = 1, $D_1 - D$ -class of e in End $F_n(G)$, $1 \in I \cap \Lambda$.

Note D_1 is a completely simple semigroup and $H_{11} \cong H_{i\lambda} \cong G$.

Endomorphism monoids of free G-acts: rank e = 1

 $e_{i\lambda}$ - the identity of $H_{i\lambda}$, $H_{11} = H_{e_{11}}$.

Hall Let $E_1 = \{e_{i\lambda} : (i, \lambda) \in I \times \Lambda\}$. Then $D_1 = \langle E_1 \rangle$. $H_{11} = \{e_{11}e_{i\lambda}e_{11} : i \in I, \lambda \in \Lambda\}$.

Endomorphism monoids of free G-acts: rank e = 1

 $\overline{D_1}$ - \mathcal{D} -class of \overline{e} in IG(E).

By Facts (I-IV), $\overline{D_1}$ is completely simple.

$$H_{\overline{e_{11}}} = \langle \overline{e_{11}} \, \overline{e_{i\lambda}} \, \overline{e_{11}} : (i,\lambda) \in I \times \Lambda \rangle_{Gp} = \overline{H_{11}}.$$

Endomorphism monoids of free G-acts: rank e = 1

We show that

• $e_{11}e_{i\lambda}e_{11} = e_{11}$ implies that $\overline{e_{11}} \overline{e_{i\lambda}} \overline{e_{11}} = \overline{e_{11}}$.

2 $e_{11}e_{i\lambda}e_{11} = e_{11}e_{j\mu}e_{11}$ implies that $\overline{e_{11}} \overline{e_{i\lambda}} \overline{e_{11}} = \overline{e_{11}} \overline{e_{j\mu}} \overline{e_{11}}$. 3 $(a_1, a_2, a_3)(a_1, a_2, a_3) = (a_1, a_2, a_3)$

$$(e_{11}e_{i\lambda}e_{11})(e_{11}e_{k\nu}e_{11})=e_{11}e_{j\mu}e_{11}$$

implies that

$$(\overline{e_{11}} \overline{e_{i\lambda}} \overline{e_{11}})(\overline{e_{11}} \overline{e_{k\nu}} \overline{e_{11}}) = \overline{e_{11}} \overline{e_{j\mu}} \overline{e_{11}}.$$

- Similarly for inverses.
- It follows easily that $\overline{H_{11}} \cong H_{11} \cong G$.

Corollary Every group occurs as $H_{\overline{e}}$ in some IG(*E*)

Note Our proof is very easy; we do not need presentations; we use a natural biordered set.

(V. Gould and D. Yang)

rank e = 2 and $n \ge 4$, $H_{\overline{e}} \cong H_e \cong \operatorname{Aut} F_2(G)$ rank $e = r \le n/3$ and $n \ge 3$, $H_{\overline{e}} \cong H_e \cong \operatorname{Aut} F_r(G)$ Note rank e = 2 and n = 3, H is free.

Conjecture: rank e = r < n - 1, $H_e \cong H_e \cong Aut F_r(G)$ - we will need some new techniques.

Endomorphism monoids of free G-acts: higher ranks

rank
$$e = r$$
, $D_r - D$ -class of e , $H = H_e$
 $D_r^0 \cong \mathcal{M}^0(H; I, \Lambda; P)$, $P = (p_{\lambda i})$.
 $H_{i\lambda} = R_i \cap L_{\lambda}$, $K = \{(i, \lambda) \in I \times \Lambda : H_{i\lambda} \text{ is a group.}\}$.
 $H_{\overline{e}} - \mathcal{H}$ -class of \overline{e} in IG(E). $H_{\overline{e}} \cong H_e \cong \operatorname{Aut} F_r(G)$?
R. Gray and N. Ruskuc (2011)

 $H_{\overline{e}}$ is defined by the presentation \mathcal{P} with generators:

$$F = \{f_{i,\lambda} : (i,\lambda) \in K\}.$$

Defining relations R1, R2 and R3.

Idea: To find the relationship between $f_{i,\lambda}$ and $p_{\lambda i}$.

Proofs

(1)
$$p_{\lambda i} = e$$
 implies $f_{i,\lambda} = 1$.
(11) $p_{\lambda i} = p_{\mu j} = A \in \text{Aut } F_r$ implies $f_{i,\lambda} = f_{j,\mu}$.
Proof: (1) If $p_{\lambda i} = p_{\mu i} = A$ with one of the following simple form

Proof: (1) If $p_{\lambda i} = p_{\mu j} = A$ with one of the following simple forms, then $f_{i,\lambda} = f_{j,\mu}$.

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_{k-1} & x_k & x_{k+1} & \cdots & x_r \\ x_1 & x_2 & \cdots & x_{k-1} & ax_k & x_{k+1} & \cdots & x_r \end{pmatrix}$$

$$\begin{pmatrix} x_1 & \cdots & x_{k-1} & x_k & x_{k+1} & \cdots & x_{k+m-1} & x_{k+m} & x_{k+m+1} & \cdots & x_r \\ x_1 & \cdots & x_{k-1} & x_{k+1} & x_{k+2} & \cdots & x_{k+m} & ax_k & x_{k+m+1} & \cdots & x_r \end{pmatrix}$$

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_r \\ ax_1 & x_2 & \cdots & x_r \end{pmatrix}$$

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_r \\ ax_1 & x_2 & \cdots & x_r \end{pmatrix}$$

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_r \\ x_2 & x_3 & \cdots & x_{k+1} & ax_1 & x_{k+2} & \cdots & x_r \end{pmatrix},$$
where $k \ge 2, m \ge 1$.

(V. Gould and D. Yang)

Proofs

(2) For every
$$A \in \operatorname{Aut} F_r$$
, we have

$$A=A_1\cdots A_r,$$

where A_i has one of the simple forms, for all $i \in [1, r]$. Moreover, $p_{\lambda i} = A$ implies

$$f_{i,\lambda} = f_{i_1,\lambda_1} \cdots f_{i_r,\lambda_r},$$

where $p_{\lambda_1 i_1} = A_r, \cdots, p_{\lambda_r i_r} = A_1$.

(III) Denote generator $f_{i,\lambda}$ with $p_{\lambda i} = A$ by f_A . (IV) For $r \leq n/3$, $f_{AB} = f_B f_A$, $f_{A^{-1}} = f_A^{-1}$. (V) A mapping $\phi : H_{\overline{e}} \longrightarrow H_e$ defined by $f_A \mapsto A^{-1}$ is an isomorphism, i.e. $H_{\overline{e}} \cong H_e \cong \operatorname{Aut} F_r(G)$. What if n/3 < r < n - 1?

What will happen for independence algebras?

Question Let A be an independence algebra with rank A = n and $S = S(End(A)) = \{\alpha \in End A : rank \alpha < n\}.$

If $e \in E(S)$ with rank e = n - 1, then $H_{\overline{e}}$ is free.

Is it true that for $e \in E(S)$ with rank $e \leq n-2$,

$$H_{\overline{e}} \cong H_e \cong \operatorname{Aut} F_r$$
?

What if rank e = 1?

Thank you !