A four element semigroup that is inherently nonfinitely based? Peter R. Jones Marquette University NBSAN Workshop, York, November 21, 2012 ## Finite basis properties A (finite) algebra A is finitely based if all the identities satisfied by A are consequences of some finite set of such identities. Otherwise A is nonfinitely based. It is inherently nonfinitely based if, moreover, any locally finite variety that contains A is also nonfinitely based. In that case, any finite algebra B such that $\mathcal{V}(B)$ contains A is also nonfinitely based. (A variety is locally finite if each of its finitely generated members is finite. Any finite algebra generates a locally finite variety.) ## Finite basis properties for 'plain' semigroups - Every semigroup of fewer than six elements is finitely based - The six-element Brandt monoid B_2^1 is inherently nonfinitely based. In fact, there is an algorithm to decide whether a finite semigroup is inherently nonfinitely based (Sapir). # Inverse semigroups, as unary semigroups - It is known that every inverse semigroup of fewer than six elements is finitely based. - There are no inherently nonfinitely based inverse semigroups (Sapir). - But it is conjectured that any finite inverse semigroup such that $\mathcal{V}(S)$ contains B_2^1 is nonfinitely based. # The semigroups B_2 and B_0 - B_2 is the five-element combinatorial, completely 0-simple inverse semigroup. As a semigroup, it may be presented as $\langle a, b \mid aba = a, bab = b, a^2 = b^2 = 0 \rangle$. - B_0 is the subsemigroup $\{a, ab, ba, 0\}$ of B_2 . In terms of Green's relations (shaded boxes depict \mathcal{H} -classes containing idempotents): # Bases of identities as 'plain' semigroups [Trahtman] As a 'plain' semigroup, a basis for the identities of B_2 is: $$x^3 = x^2$$, $xyx = xyxyx$, $x^2y^2 = y^2x^2$. [Edmunds] As a 'plain' semigroup, a basis of identities for B_0 is: $$x^3 = x^2$$, $xyx = yxy = (xy)^2 = x^2y^2$ The varieties they generate have been studied intensively as part of the recent interest in Rees-Sushkevich varieties. ## B_2 , regarded as an inverse semigroup As an inverse semigroup, a basis of identities for B_2 is: $$yxy^{-1} = (yxy^{-1})^2$$ It generates the variety of combinatorial, strict inverse semigroups. An inverse semigroup is strict if it satisfies \mathcal{D} -majorization: no idempotent is above distinct, \mathcal{D} -related idempotents. An inverse semigroup is completely semisimple if it contains no distinct, comparable \mathcal{D} -related idempotents. ## Ancient history: - An inverse semigroup is strict if and only if it is a subdirect product of Brandt semigroups and groups. - An inverse semigroup is completely semisimple if and only if each principal factor is a Brandt semigroup or group, and if and only if it contains no bicyclic subsemigroup. (A Brandt semigroup is a completely 0-simple inverse semigroup.) ## Restriction semigroups Intuitively – for the purposes of this talk – - forget the inverse operation x^{-1} in inverse semigroups - retain only the induced operations $x^+ = xx^{-1}$ and $x^* = x^{-1}x$. - the restriction semigroups form the variety of biunary semigroups $(S,\cdot,^+,^*)$ generated by the (reducts of) inverse semigroups in this way. ## Identities defining restriction semigroups The restriction semigroups are defined by the identities $$x^+x = x$$; $(x^+y)^+ = x^+y^+$; $x^+y^+ = y^+x^+$; $xy^+ = (xy)^+x$, and their 'duals' (obtained by replacing + by * and reversing the order of each expression) along with $(x^+)^* = x^+$ and $(x^*)^+ = x^*$. The set $P_S = \{x^+ : x \in S\}$ is the semilattice of projections of S. ## Evolution in the language of the 'York' school: Type-A adequate = ample $$\downarrow \\ \text{weakly ample} \\ \downarrow \\ \text{weakly E-ample = restriction}$$ In fact, all the specific examples in this talk will actually be ample semigroups. They will be full subsemigroups of Munn semigroups on semilattices. # B_2 and B_0 as restriction semigroups B_0 has the natural structure of a restriction semigroup, inherited from the inverse semigroup B_2 . ## Varieties of restriction semigroups - **M** is the variety of monoids: restriction semigroups with only one projection. - Varieties of monoids play the role that varieties of groups play for inverse semigroup varieties. - for example, the variety SM = SL ∨ M of semilattices of monoids lies near the bottom of the lattice of varieties. - These are the restriction semigroups that satisfy $x^+ = x^*$. - If a variety does not consist of such semigroups, then it contains either B_0 or one of the semibicyclic semigroups B^+ or B^- . The semibicyclic semigroup B^+ # Generalized Green's relations on restriction semigroups - $\mathbb{R} = \{(a, b) : a^+ = b^+\}$ - $\mathbb{L} = \{(a, b) : a^* = b^*\}$ - \bullet $\mathbb{H} = \mathbb{L} \cap \mathbb{R}$ - \bullet $\mathbb{D} = \mathbb{L} \vee \mathbb{R}$ - J: defined with respect to 'r-ideals' These are the usual Green's relations on inverse semigroups (and the restrictions of those relations on their full subsemigroups). Every \mathbb{R} -class and every \mathbb{L} -class contains a unique projection (a^+ and a^* , respectively). In the 'York school', they are denoted \mathcal{R}_F , etc. # D-zigzags Projections e and f are \mathbb{D} -related if there is a \mathbb{D} -zigzag between them. Here is a zigzag of length four that begins and ends in \mathbb{L} : | e_1 | <i>a</i> ₁ | | | | |-------|-----------------------|-----------------------|-----------------------|-----------------------| | | e_2 | | | | | | a ₂ | <i>e</i> ₃ | <i>a</i> ₃ | | | | | | e ₄ | | | | | | a ₄ | <i>e</i> ₅ | # \mathbb{D} -majorization A restriction semigroup is strict if it satisfies D-majorization: no projection f is above distinct \mathbb{D} -related projections. This failure can occur in two essentially different manners, as illustrated in the next slide: - a Λ_k -configuration. - a Ψ_k -configuration. A Ψ_4 -configuration. \bullet back ## Strictness #### Theorem - If S is a strict restriction semigroup, then it is a subdirect product of its 'principal r-factors', which are completely 0-r-simple semigroups. - A completely 0-r-simple semigroup is a restriction semigroup with zero in which every projection is primitive and the nonzero elements form a single D-class ('D-0-simple'). - For example B₂ and B₀. - Any completely 0-r-simple semigroup divides the direct product of a combinatorial Brandt semigroup and a monoid. # The variety of strict restriction semigroups #### Theorem The following are equivalent for a restriction semigroup: - S belongs to **B**, the variety generated by the Brandt semigroups; - S is strict: - S satisfies a certain sequence $(E_k)_{k>1}$ of identities (which encapsulate \mathbb{D} -majorization). # Λ_k The semigroups Λ_k concretely manifest the failure of \mathbb{D} -majorization in the first scenario. $\Omega \cap \Lambda_k$ is a full subsemigroup of the Munn semigroup on the semilattice exemplified below. ▶ back ## No finite set of identities will suffice #### $\mathsf{Theorem}$ The semigroup Λ_k satisfies all the identities (E_ℓ) for $\ell < k$ but does not satisfy (E_k) . ## Corollary - The variety B of restriction semigroups generated by the Brandt semigroups is not finitely based. - The variety $V(B_2)$ (consisting of the \mathbb{H} -combinatorial strict restriction semigroups) is not finitely based. - The variety $V(B_0)$ is not finitely based. # Moving forward after my talk in Lisbon. Hmmm... \mathbb{D} -majorization was characterized by lack of both Λ_k -and Ψ_k -configurations. What about the Ψ_k -configurations? Concurrently, Volkov asked me if the semigroups Λ_k formed a 'critical series' for B_0 , and I could easily see that the answer was 'yes'. # Failure of complete r-semisimplicity A restriction semigroup is completely r-semisimple if there do not exist distinct, comparable \mathbb{D} -related projections, that is, there are no Ψ_k -configurations. #### Lemma If a restriction semigroup S is not completely r-semisimple then it contains either - a Ψ_1 -configuration, and so the semibicyclic semigroup B^+ - a dual Ψ_1 -configuration, and so B^- - or a minimal Ψ_k -configuration for some even k. # Ψ_k -configurations ## In mapping form → Lambda_k Making Ψ_k concrete: its The extended Ψ_4 -configuration Ψ_k concrete: is the 0-union of k ω -chains There may be additional relations among the projections # The semigroups Ψ_k #### Theorem For any positive, even integer k, Ψ_k is an infinite, 0- \mathbb{D} -simple restriction semigroup that is generated, as such, by $\{\alpha_1, \ldots, \alpha_k\}$. The elements α_i generate a null semigroup. In fact, 'almost all' products are zero. # The Ψ_k 's form a critical series for B_0 #### Theorem The semigroups Ψ_k comprise a series of critical restriction semigroups for B_0 : - $\Psi_k \notin \mathcal{V}(B_0)$ - Ψ_k is k-generated - each restriction subsemigroup of Ψ_k that is generated by fewer than k elements belongs to $\mathcal{V}(B_0)$. ## Critical series #### $\mathsf{Theorem}$ (Volkov) In general, if algebras A_k form a critical series for an algebra A, then any variety that contains A but no A_k 's is nonfinitely based. So any variety (of restriction semigroups) that contains B_0 but no Ψ_k is nonfinitely based. Outline proof: if a variety **V** contains A but has a finite basis Σ of identities, then Σ involves words in no more than k-1 variables. say. But when evaluated in A_k , then each identity in Σ is actually evaluated in a subalgebra that belongs to $\mathcal{V}(A)$ and so to \mathbf{V} , and so is satisfied in A_k , contradicting $A_k \notin \mathbf{V}$. # Failure of complete r-semisimplicity in varietal terms #### Theorem - If a restriction semigroup fails to be completely r-semisimple, it may not contain B^+ , B^- or any Ψ_k . However, - The variety it generates must contain one of these. - And if that variety contains B_0 , then it must contain some Ψ_k . ## Corollary A variety of restriction semigroups contains B_0 but no semigroups Ψ_k if and only if it all its members are completely r-semisimple. In comparison: a variety of restriction semigroups contains B_0 but no semigroups Λ_k if and only if it all its members are strict. #### Theorem - Any variety of completely r-semisimple semigroups that contains B₀ is nonfinitely based. - Any locally finite variety that contains B₀ is nonfinitely based, that is, B₀ is inherently nonfinitely based. Proof. No Ψ_k is locally finite. - no finite restriction semigroup that is not simply a semilattice of monoids (i.e. doesn't satisfy $x^+ = x^*$) is finitely based. ### **Theorem** The semigroups Λ_k also form a critical series for B_0 , so B_0 is also not finitely based within the class of finite restriction semigroups. ## Conclusion - The four-element semigroup B_0 is inherently nonfinitely based. - In fact the same is true for any finite restriction semigroup on which the two unary operations are not the same. - B_0 and B_2 are finitely based as semigroups. - B_2 is finitely based as an inverse semigroup. ## References - Peter R. Jones, On lattices of varieties of restriction semigroups, Semigroup Forum (2012), DOI:10.1007/s00233-012-9439-6. - Peter R. Jones, The semigroups B_2 and B_0 are inherently nonfinitely based, as restriction semigroups, submitted. - M.V. Volkov, The finite basis problem for finite semigroups, Sci. Math. Jpn. 53 (2001), 171-199.