A four element semigroup that is inherently nonfinitely based?

Peter R. Jones

Marquette University

NBSAN Workshop, York, November 21, 2012

Finite basis properties

A (finite) algebra A is finitely based if all the identities satisfied by A are consequences of some finite set of such identities.

Otherwise A is nonfinitely based.

It is inherently nonfinitely based if, moreover, any locally finite variety that contains A is also nonfinitely based. In that case, any finite algebra B such that $\mathcal{V}(B)$ contains A is also nonfinitely based.

(A variety is locally finite if each of its finitely generated members is finite. Any finite algebra generates a locally finite variety.)

Finite basis properties for 'plain' semigroups

- Every semigroup of fewer than six elements is finitely based
- The six-element Brandt monoid B_2^1 is inherently nonfinitely based. In fact, there is an algorithm to decide whether a finite semigroup is inherently nonfinitely based (Sapir).

Inverse semigroups, as unary semigroups

- It is known that every inverse semigroup of fewer than six elements is finitely based.
- There are no inherently nonfinitely based inverse semigroups (Sapir).
- But it is conjectured that any finite inverse semigroup such that $\mathcal{V}(S)$ contains B_2^1 is nonfinitely based.

The semigroups B_2 and B_0

- B_2 is the five-element combinatorial, completely 0-simple inverse semigroup. As a semigroup, it may be presented as $\langle a, b \mid aba = a, bab = b, a^2 = b^2 = 0 \rangle$.
- B_0 is the subsemigroup $\{a, ab, ba, 0\}$ of B_2 .

In terms of Green's relations (shaded boxes depict \mathcal{H} -classes containing idempotents):

Bases of identities as 'plain' semigroups

[Trahtman] As a 'plain' semigroup, a basis for the identities of B_2 is:

$$x^3 = x^2$$
, $xyx = xyxyx$, $x^2y^2 = y^2x^2$.

[Edmunds] As a 'plain' semigroup, a basis of identities for B_0 is:

$$x^3 = x^2$$
, $xyx = yxy = (xy)^2 = x^2y^2$

The varieties they generate have been studied intensively as part of the recent interest in Rees-Sushkevich varieties.

B_2 , regarded as an inverse semigroup

As an inverse semigroup, a basis of identities for B_2 is:

$$yxy^{-1} = (yxy^{-1})^2$$

It generates the variety of combinatorial, strict inverse semigroups.

An inverse semigroup is strict if it satisfies \mathcal{D} -majorization: no idempotent is above distinct, \mathcal{D} -related idempotents.

An inverse semigroup is completely semisimple if it contains no distinct, comparable \mathcal{D} -related idempotents.

Ancient history:

- An inverse semigroup is strict if and only if it is a subdirect product of Brandt semigroups and groups.
- An inverse semigroup is completely semisimple if and only if each principal factor is a Brandt semigroup or group, and if and only if it contains no bicyclic subsemigroup.

(A Brandt semigroup is a completely 0-simple inverse semigroup.)

Restriction semigroups

Intuitively – for the purposes of this talk –

- forget the inverse operation x^{-1} in inverse semigroups
- retain only the induced operations $x^+ = xx^{-1}$ and $x^* = x^{-1}x$.
- the restriction semigroups form the variety of biunary semigroups $(S,\cdot,^+,^*)$ generated by the (reducts of) inverse semigroups in this way.

Identities defining restriction semigroups

The restriction semigroups are defined by the identities

$$x^+x = x$$
; $(x^+y)^+ = x^+y^+$; $x^+y^+ = y^+x^+$; $xy^+ = (xy)^+x$,

and their 'duals' (obtained by replacing + by * and reversing the order of each expression) along with $(x^+)^* = x^+$ and $(x^*)^+ = x^*$.

The set $P_S = \{x^+ : x \in S\}$ is the semilattice of projections of S.

Evolution in the language of the 'York' school:

Type-A adequate = ample
$$\downarrow \\ \text{weakly ample} \\ \downarrow \\ \text{weakly E-ample = restriction}$$

In fact, all the specific examples in this talk will actually be ample semigroups. They will be full subsemigroups of Munn semigroups on semilattices.

B_2 and B_0 as restriction semigroups

 B_0 has the natural structure of a restriction semigroup, inherited from the inverse semigroup B_2 .

Varieties of restriction semigroups

- **M** is the variety of monoids: restriction semigroups with only one projection.
- Varieties of monoids play the role that varieties of groups play for inverse semigroup varieties.
- for example, the variety SM = SL ∨ M of semilattices of monoids lies near the bottom of the lattice of varieties.
 - These are the restriction semigroups that satisfy $x^+ = x^*$.
- If a variety does not consist of such semigroups, then it contains either B_0 or one of the semibicyclic semigroups B^+ or B^- .

The semibicyclic semigroup B^+

Generalized Green's relations on restriction semigroups

- $\mathbb{R} = \{(a, b) : a^+ = b^+\}$
- $\mathbb{L} = \{(a, b) : a^* = b^*\}$
- \bullet $\mathbb{H} = \mathbb{L} \cap \mathbb{R}$
- \bullet $\mathbb{D} = \mathbb{L} \vee \mathbb{R}$
- J: defined with respect to 'r-ideals'

These are the usual Green's relations on inverse semigroups (and the restrictions of those relations on their full subsemigroups).

Every \mathbb{R} -class and every \mathbb{L} -class contains a unique projection (a^+ and a^* , respectively).

In the 'York school', they are denoted \mathcal{R}_F , etc.

D-zigzags

Projections e and f are \mathbb{D} -related if there is a \mathbb{D} -zigzag between them. Here is a zigzag of length four that begins and ends in \mathbb{L} :

e_1	<i>a</i> ₁			
	e_2			
	a ₂	<i>e</i> ₃	<i>a</i> ₃	
			e ₄	
			a ₄	<i>e</i> ₅

\mathbb{D} -majorization

A restriction semigroup is strict if it satisfies D-majorization: no projection f is above distinct \mathbb{D} -related projections. This failure can occur in two essentially different manners, as illustrated in the next slide:

- a Λ_k -configuration.
- a Ψ_k -configuration.

A Ψ_4 -configuration. \bullet back

Strictness

Theorem

- If S is a strict restriction semigroup, then it is a subdirect product of its 'principal r-factors', which are completely 0-r-simple semigroups.
- A completely 0-r-simple semigroup is a restriction semigroup with zero in which every projection is primitive and the nonzero elements form a single D-class ('D-0-simple').
- For example B₂ and B₀.
- Any completely 0-r-simple semigroup divides the direct product of a combinatorial Brandt semigroup and a monoid.

The variety of strict restriction semigroups

Theorem

The following are equivalent for a restriction semigroup:

- S belongs to **B**, the variety generated by the Brandt semigroups;
- S is strict:
- S satisfies a certain sequence $(E_k)_{k>1}$ of identities (which encapsulate \mathbb{D} -majorization).

Λ_k

The semigroups Λ_k concretely manifest the failure of \mathbb{D} -majorization in the first scenario. $\Omega \cap \Lambda_k$ is a full subsemigroup of the Munn semigroup on the semilattice exemplified below.

▶ back

No finite set of identities will suffice

$\mathsf{Theorem}$

The semigroup Λ_k satisfies all the identities (E_ℓ) for $\ell < k$ but does not satisfy (E_k) .

Corollary

- The variety B of restriction semigroups generated by the Brandt semigroups is not finitely based.
- The variety $V(B_2)$ (consisting of the \mathbb{H} -combinatorial strict restriction semigroups) is not finitely based.
- The variety $V(B_0)$ is not finitely based.

Moving forward after my talk in Lisbon.

Hmmm... \mathbb{D} -majorization was characterized by lack of both Λ_k -and Ψ_k -configurations. What about the Ψ_k -configurations?

Concurrently, Volkov asked me if the semigroups Λ_k formed a 'critical series' for B_0 , and I could easily see that the answer was 'yes'.

Failure of complete r-semisimplicity

A restriction semigroup is completely r-semisimple if there do not exist distinct, comparable \mathbb{D} -related projections, that is, there are no Ψ_k -configurations.

Lemma

If a restriction semigroup S is not completely r-semisimple then it contains either

- a Ψ_1 -configuration, and so the semibicyclic semigroup B^+
- a dual Ψ_1 -configuration, and so B^-
- or a minimal Ψ_k -configuration for some even k.

Ψ_k -configurations

In mapping form

→ Lambda_k

Making Ψ_k concrete: its The extended Ψ_4 -configuration Ψ_k concrete: is the 0-union of k ω -chains There may be additional relations among the projections

The semigroups Ψ_k

Theorem

For any positive, even integer k, Ψ_k is an infinite, 0- \mathbb{D} -simple restriction semigroup that is generated, as such, by $\{\alpha_1, \ldots, \alpha_k\}$.

The elements α_i generate a null semigroup. In fact, 'almost all' products are zero.

The Ψ_k 's form a critical series for B_0

Theorem

The semigroups Ψ_k comprise a series of critical restriction semigroups for B_0 :

- $\Psi_k \notin \mathcal{V}(B_0)$
- Ψ_k is k-generated
- each restriction subsemigroup of Ψ_k that is generated by fewer than k elements belongs to $\mathcal{V}(B_0)$.

Critical series

$\mathsf{Theorem}$

(Volkov) In general, if algebras A_k form a critical series for an algebra A, then any variety that contains A but no A_k 's is nonfinitely based.

So any variety (of restriction semigroups) that contains B_0 but no Ψ_k is nonfinitely based.

Outline proof: if a variety **V** contains A but has a finite basis Σ of identities, then Σ involves words in no more than k-1 variables. say. But when evaluated in A_k , then each identity in Σ is actually evaluated in a subalgebra that belongs to $\mathcal{V}(A)$ and so to \mathbf{V} , and so is satisfied in A_k , contradicting $A_k \notin \mathbf{V}$.

Failure of complete r-semisimplicity in varietal terms

Theorem

- If a restriction semigroup fails to be completely r-semisimple, it may not contain B^+ , B^- or any Ψ_k . However,
- The variety it generates must contain one of these.
- And if that variety contains B_0 , then it must contain some Ψ_k .

Corollary

A variety of restriction semigroups contains B_0 but no semigroups Ψ_k if and only if it all its members are completely r-semisimple.

In comparison: a variety of restriction semigroups contains B_0 but no semigroups Λ_k if and only if it all its members are strict.

Theorem

- Any variety of completely r-semisimple semigroups that contains B₀ is nonfinitely based.
- Any locally finite variety that contains B₀ is nonfinitely based, that is, B₀ is inherently nonfinitely based.
 Proof. No Ψ_k is locally finite.
- no finite restriction semigroup that is not simply a semilattice of monoids (i.e. doesn't satisfy $x^+ = x^*$) is finitely based.

Theorem

The semigroups Λ_k also form a critical series for B_0 , so B_0 is also not finitely based within the class of finite restriction semigroups.

Conclusion

- The four-element semigroup B_0 is inherently nonfinitely based.
- In fact the same is true for any finite restriction semigroup on which the two unary operations are not the same.
- B_0 and B_2 are finitely based as semigroups.
- B_2 is finitely based as an inverse semigroup.

References

- Peter R. Jones, On lattices of varieties of restriction semigroups, Semigroup Forum (2012), DOI:10.1007/s00233-012-9439-6.
- Peter R. Jones, The semigroups B_2 and B_0 are inherently nonfinitely based, as restriction semigroups, submitted.
- M.V. Volkov, The finite basis problem for finite semigroups, Sci. Math. Jpn. 53 (2001), 171-199.