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Music modeling
The structure of music is complex with mixed sequential, parallel
and hierarchical features.

A theory of overlapping structures is needed for computer music
analysis and/or production.

Observation
Inverse semigroup theory provides almost everything we need for
music analysis [Jan12c] or for music design and
production [BJM12].
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1. Playground

Within free inverse monoids
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Bi-rooted trees

The free inverse monoid and its Rees’ quotients

Walks

BTrees

(A + Ā)∗

FIM(A)

θ

FIM(A)/⊥
η

(A + Ā)∗/θ−1(⊥)

θ

η

Examples
Typical models defined by choosing adequate ideals.

• directed trees generated by ⊥ = 〈{ab̄}a,b∈A,a 6=b〉.
• McAlister tiles generated by ⊥ = 〈{ab̄, āb}a,b∈A,a 6=b〉.
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Birooted F -terms
Signature
A finite alphabet of function names F and an arity mapping
ρ : F → P(E ) with finite set E of argument names.

Example
F = {f , g , h} with ρ(f ) = {1, 2}, ρ(g) = {1, 2} and ρ(h) = ∅.

F -tree g(f (h, h), h)

g

f h

h h

entry

exit

encoded as a bi-rooted tree

• •
g

• •f
1

• •h
2

• •h
1

• •h
2

entry

exit
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Birooted F -trees
Signature
A finite alphabet of function names F and an arity mapping
ρ : F → P(E ).

Observation
Birooted F -trees can be embedded into FIM(A)/⊥ with alphabet
A = F + {(f , e, g) ∈ F × E × F : e ∈ ρ(f )} and ⊥ the ideal of bad
encodings, i.e. birooted trees that do not define a partial F -tree.

Observation
Complete (finite) birooted F -trees are minimal non zero elements
in the natural order.

Examples

• F = {1} with ρ(1) = A, essentially directed trees,
• F = A with ρ(a) = {1}, essentially McAslister tiles.
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2. Languages of birooted trees

Towards a birooted tree language theory
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Three classical classes of languages

REC
Languages L ⊆ FIM(A) recognizable by morphism, i.e. there is
morphism ϕ : FIM(A)→ S with finite S such that L = ϕ−1(ϕ(L)).

RAT
Languages L ⊆ FIM(A) definable by a rational expression, i.e. a
finite combination of finite languages with sum +, product · and
iterated product (Kleene star) ∗.

MSO
Languages L ⊆ FIM(A) definable by an formula of Monadic
Second Order logic (MSO), i.e. L = {x ∈ FIM(A) : x |= ϕL} for
some MSO definable characteristic property ϕL of L.
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Separation result

Theorem (Buchi, Elgot)
Within A∗ we have REC = RAT = MSO.

Theorem ([Jan13, DJ12])
Within FIM(A) (or even MA) we have REC ⊂ RAT ⊂ MSO with
strict inclusion.
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3. Tile languages
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McAlister monoid

Positive tiles encoded as triples (u, v ,w) ∈ A∗ × A∗ × A∗

• • • •u v w

and negative tiles encoded as (uv , v̄ , vw) ∈ A∗ × Ā∗ × A∗

• • • •u v w
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Tiles product
Given two tiles encoded as u = (u1, u2, u3) and v = (v1, v2, v3),

•A∗ • • • A∗
u1 u2 u3

•A∗ • • • A∗
v1 v2 v3

there is at most one tile w = (w1,w2,w3)

•A∗ • • • A∗
w1 w2 w3

• left match : A∗w1 = A∗u1 ∩ A∗v1ū2,
• right match : w3A∗ = v3A∗ ∩ v̄2u3A∗.

In that case we take u · v = w and otherwise we take u · v = 0.
The resulting tile monoid, McAlister monoid, is denoted by MA.
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MSO

Operators on languages

• Sum: X + Y = X ∪ Y ,
• Product: X · Y = {xy : x ∈ X , y ∈ Y },
• Iterated product (star): X ∗ =

∑
k∈N X k ,

• Idempotent proj.: XE = {x ∈ X : xx = x} = X ∩ E (FIM(A)).
• Inverse: X−1 = {x−1 : x ∈ X}.

Theorem (Robustness [Jan13], [Jan12d])
The class MSO of languages of tiles is closed under complement,
sum, product, iterated product (star), inverses, idempotent
projections.
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MSO

Theorem (Simplicity [Jan13])
For every MSO language L, given L+ (resp. L−) the set of positive
(resp. negative) tiles in L, we have:

L+ =
∑
k∈I

Lk × Ck × Rk and, resp. L− =
∑
k∈J

(Lk × Ck × Rk)−1

for finite I and J and regular word languages Lk , Ck and Rk ⊆ A∗.

Proof.
An MSO definable language of positive tiles is just an MSO
definable language of words in A∗pA∗A∗s with Ap and As two
disjoint copies of A.
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MSO

Definition
Let E-RAT be the class of languages definable by means of sum,
product, star and idempotent projection.

Theorem (MSO = E-RAT [DJ12])
Language L ⊆ MA is MSO if and only if it is definable by sum,
product, star and idempotent projection of finite languages.

Proof.
E-RAT is closed under inverse operator and, for every regular L, C
and R ⊆ A∗, L× C × R = (1× L× 1)L · (1× C × 1) · (1× R × 1)R

with XL = {x−1x : x ∈ X}, XR = {xx−1 : x ∈ X} and that fact
that XL = (X−1X )E = (X−1)R .
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RAT

Fact
There is an ideal ⊥ ⊆ (A + Ā)∗ such that:

(walks)

( structures)

(A + Ā)∗

FIM(A)

(A + Ā)∗/⊥

MA

θ
/⊥

/⊥

θ

Theorem ([DJ12])
Language L ⊆ MA is RAT if and only if L = θ(W ) for some regular
language W ⊆ (A + Ā)∗.
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RAT

Corollary
Language L ⊆ MA is RAT if and only if L recognizable by a finite
walking automaton.

Proof.
Take the one way automaton on alphabet A + Ā that recognizes
W ⊆ (A + Ā)∗ with L = θ(W ).
Interpret it as a two-way automaton on tiles that recognizes
θ(W ) ⊆ MA.

Corollary
The inclusion RAT ⊂ MSO is strict as witnessed by L = E (MA)
and a simple pumping argument (on the underlying walking
automaton).
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RAT

Corollary
If language L ⊆ MA is RAT then L = ψ−1(ψ(L)) for some finite
monoid S and relational morphism ψ : MA → S.

(A + Ā)∗

MA S

θ ϕ

ψ = ϕ ◦ θ−1

Question
Does this lead to an interesting characterization of RAT ?
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REC

Lemma
The inclusion REC ⊂ RAT is strict as witnessed by
L = 1× ba∗ × 1 that has a syntactic congruence of infinite index.

Theorem ([Jan13])
For every morphism ϕ : MA → S, every s ∈ S − 0, there are x and
y ∈ A∗ such that: ϕ−1(s) is essentially a co-finite subset of tiles of
the form (u, v ,w) with ω(xy) ≥s u, v ∈ x(yx)∗, w ≤p (yx)ω.

Proof.
Let ϕ : MA → S for some monoid S (even infinite). Let s ∈ S − 0.
Then ϕ−1(s) is totally ordered both by left and right Green’s
preorder.
. . . and some combinatorics to conclude. . .
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4. Walking in FIM(A)
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Walk languages vs tree languages

Observation
Reading words of (A + Ā)∗ amount to walking on some underlying
birooted trees.

Walk languages
Language W ⊆ (A + Ā)∗ is a walk language of the tree language
L ⊆ FIM(A)/⊥ when L + 0 = η ◦ θ(W ) + 0.

(A + Ā)∗

FIM(A)

FIM(A)/⊥
η ◦ θ

θ η

Question
How classes of tree languages in FIM(A)/⊥ are related with
classes of the underlying walk languages in (A + Ā)∗ ?
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Walking automata

Theorem ([Jan12d, DJ12])

• REC = Strongly deterministic finite state walking Automata,
• RAT = Finite state walking automata,
• MSO = Many-Pebble finite state walking automata.

Fact
REC 6= RAT witnessed by ba∗.
RAT 6= MSO witness by E (FIM(A)).
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MSO and the pebble hierarchy
Idempotent projection
For every language X , let XE = {x ∈ X : xx = x}.

k-rational languages
Language L is k-rational when either L is rational or k > 0 and L is
a finite rational combination of languages of the form X or XE

with X ∈ RAT k−1.

Fact
RAT k is closed under inverses for every k ∈ N.

Theorem ([Jan12d])
REC ⊂ RAT = RAT 0 ⊂ RAT 1 ⊆ RAT 2 ⊆ · · ·

⋃
k RAT k ⊆ MSO

probably with strict inclusions.

Theorem ([Jan13, DJ12])
Over tiles REC ⊂ RAT ⊂ RAT 1 = MSO.
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5. Quasi-recognizability
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A newcomer question

Fact
Within FIM(A), the class REC collapses.

Question
How to relax the notion REC into some (notion of) quasi-REC
(QREC) in such a way MSO = QREC (in relevant case) ?

Ideas
1. relax morphism condition ϕ(xy) = ϕ(x)ϕ(y) into

premorphism condition ϕ(xy) ≤ ϕ(x)ϕ(y).
2. restrict to an adequate class of finite (ordered) monoid and

premorphism in such a way that pre-images remain MSO
definable.
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Adhoc candidates for QREC

QREC points
Stable ordered monoid (S,≤) such that:

• U(S) = {x ≤ 1} ⊆ E (S), i.e. subunits are idempotents,
• for all x ∈ S, both xR =

∧
{e ∈ U(S) : ex = x} and

xL = {f ∈ U(S) : xf = x} exist in U(S),
• for all x and y ∈ S, if x = xRyxL then x ≤ y . .

QREC arrows
Premorphism ϕ : FIM(A)/⊥ → (S,≤), i.e. ϕ(1) = 1 and, for every
x and y , if x ≤ y then ϕ(x) ≤ ϕ(y) and ϕ(xy) ≤ ϕ(x)ϕ(y), such
that:

• for every disjoint product x · y , we have ϕ(x · y) = ϕ(x)ϕ(y),
• for every x , we have ϕ(xL) = (ϕ(x))L and ϕ(xR) = (ϕ(x))R .

with xL = x−1x and xR = xx−1 in FIM(A)/⊥.
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QREC vs MSO

Let M+
A = 0 + A∗ × A∗ × A∗ be the submonoid of MA of positive

tiles.

Theorem ([Jan12b])
If L ⊆ M+

A is QREC then L is MSO.

Theorem ([Jan12b])
If L ⊆ M+

A is MSO and if tiles of L are plugged, i.e. with tiles of
the form (#u, v ,w#) for some marker #, then L is QREC.
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Q-expansion

Monoid Q-expansion
Let S be a monoid. Let Q(S) = 0 + LS × S ×RS with

(L, s,R) · (M, t,N) = (L ∩ (M)s−1, st, t−1(R) ∩ N)

when compatible, and 0 otherwise.

Theorem ([Jan12a])
For every monoid S, monoid Q(S) ordered by (L, s,R) ≤ (M, t,N)
when L ⊆ M, s = t and R ⊆ N is a stable U-semiadequate
monoid.

Theorem
There is an embedding ιA : M+

A → Q(A∗).
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Q-expansion
Morphism Q-expansion
Let ϕ : S → T . Let Q(ϕ) : Q(S)→ Q(T ) defined, on every non
zero positive tile (L, s,R), by

Q(ϕ)(L, s,R) = (Sϕ(L), ϕ(s), ϕ(R)S)

and let ηS : Q(S)→ S0 defined by ηS((L, s,R)) = s.

Theorem ([Jan12a])
For every morphism ϕ : S → T, mapping Q(ϕ) is a well-behaved
premorphism (i.e. QREC arrows) and the following diagram
commutes.

Q(S) Q(T )

S0 T 0

Q(ϕ)

ηS ηT
ϕ
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Theorem
For every plugged language L ⊆ M+

A+#, if L is MSO then, given
ϕ : A∗ → S “recognizing” L ⊆ #A∗ × A∗ × A∗#, then L is QREC
by Q(ϕ) : MA → Q(S).
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6. Conclusion
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Work in progress

Extending/developing QREC towards:
• languages of positive and negative tiles,
• languages of finite directed trees,
• languages of finite and infinite trees (completing FIM(A) with
infinite many rooted trees).
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