Walkin' in free Inverse Monoids

(how to bring coal to newcastle ?)

NBSAN meeting
York
Wednesday, the 21st of november 2012

David Janin,

LaBRI, Université de Bordeaux

Music modeling

The structure of music is complex with mixed sequential, parallel and hierarchical features.

A theory of overlapping structures is needed for computer music analysis and/or production.

Observation
Inverse semigroup theory provides almost everything we need for music analysis [Jan12c] or for music design and production [BJM12].

1. Playground

Within free inverse monoids

Bi-rooted trees

The free inverse monoid and its Rees' quotients

Examples
Typical models defined by choosing adequate ideals.

- directed trees generated by $\perp=\left\langle\{a \bar{b}\}_{a, b \in A, a \neq b}\right\rangle$.
- McAlister tiles generated by $\perp=\left\langle\{a \bar{b}, \bar{a} b\}_{a, b \in A, a \neq b}\right\rangle$.

Birooted F-terms

Signature
A finite alphabet of function names F and an arity mapping $\rho: F \rightarrow \mathcal{P}(E)$ with finite set E of argument names.

Example
$F=\{f, g, h\}$ with $\rho(f)=\{1,2\}, \rho(g)=\{1,2\}$ and $\rho(h)=\emptyset$.
F-tree $g(f(h, h), h)$
encoded as a bi-rooted tree

Birooted F-trees

Signature
A finite alphabet of function names F and an arity mapping $\rho: F \rightarrow \mathcal{P}(E)$.

Observation
Birooted F-trees can be embedded into $\operatorname{FIM}(A) / \perp$ with alphabet $A=F+\{(f, e, g) \in F \times E \times F: e \in \rho(f)\}$ and \perp the ideal of bad encodings, i.e. birooted trees that do not define a partial F-tree.

Observation
Complete (finite) birooted F-trees are minimal non zero elements in the natural order.

Examples

- $F=\{1\}$ with $\rho(1)=A$, essentially directed trees,
- $F=A$ with $\rho(a)=\{1\}$, essentially McAslister tiles.

2. Languages of birooted trees

Towards a birooted tree language theory

Three classical classes of languages

REC

Languages $L \subseteq F I M(A)$ recognizable by morphism, i.e. there is morphism $\varphi: \operatorname{FIM}(A) \rightarrow S$ with finite S such that $L=\varphi^{-1}(\varphi(L))$.

RAT
Languages $L \subseteq F I M(A)$ definable by a rational expression, i.e. a finite combination of finite languages with sum + , product \cdot and iterated product (Kleene star) *.

MSO
Languages $L \subseteq \operatorname{FIM}(A)$ definable by an formula of Monadic Second Order logic (MSO), i.e. $L=\left\{x \in \operatorname{FIM}(A): x \models \varphi_{L}\right\}$ for some MSO definable characteristic property φL of L.

Separation result

Theorem (Buchi, Elgot)
Within A^{*} we have REC $=R A T=M S O$.
Theorem ([Jan13, DJ12])
Within $\operatorname{FIM}(A)$ (or even M_{A}) we have $R E C \subset R A T \subset M S O$ with strict inclusion.

3. Tile languages

McAlister monoid

Positive tiles encoded as triples $(u, v, w) \in A^{*} \times A^{*} \times A^{*}$

and negative tiles encoded as $(u v, \bar{v}, v w) \in A^{*} \times \bar{A}^{*} \times A^{*}$

Tiles product

Given two tiles encoded as $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$,

there is at most one tile $w=\left(w_{1}, w_{2}, w_{3}\right)$

- left match: $A^{*} w_{1}=A^{*} u_{1} \cap A^{*} v_{1} \bar{u}_{2}$,
- right match : $w_{3} A^{*}=v_{3} A^{*} \cap \bar{v}_{2} u_{3} A^{*}$.

In that case we take $u \cdot v=w$ and otherwise we take $u \cdot v=0$. The resulting tile monoid, McAlister monoid, is denoted by M_{A}.

MSO

Operators on languages

- Sum: $X+Y=X \cup Y$,
- Product: $X \cdot Y=\{x y: x \in X, y \in Y\}$,
- Iterated product (star): $X^{*}=\sum_{k \in \mathbb{N}} X^{k}$,
- Idempotent proj.: $X^{E}=\{x \in X: x x=x\}=X \cap E(F I M(A))$.
- Inverse: $X^{-1}=\left\{x^{-1}: x \in X\right\}$.

Theorem (Robustness [Jan13], [Jan12d])

The class MSO of languages of tiles is closed under complement, sum, product, iterated product (star), inverses, idempotent projections.

MSO

Theorem (Simplicity [Jan13])
For every MSO language L, given L^{+}(resp. L^{-}) the set of positive (resp. negative) tiles in L, we have:

$$
L^{+}=\sum_{k \in I} L_{k} \times C_{k} \times R_{k} \text { and, resp. } L^{-}=\sum_{k \in J}\left(L_{k} \times C_{k} \times R_{k}\right)^{-1}
$$

for finite I and J and regular word languages L_{k}, C_{k} and $R_{k} \subseteq A^{*}$.
Proof.
An MSO definable language of positive tiles is just an MSO definable language of words in $A_{\rho}^{*} A^{*} A_{s}^{*}$ with A_{ρ} and A_{s} two disjoint copies of A.

MSO

Definition

Let E-RAT be the class of languages definable by means of sum, product, star and idempotent projection.

Theorem (MSO = E-RAT [DJ12])
Language $L \subseteq M_{A}$ is MSO if and only if it is definable by sum, product, star and idempotent projection of finite languages.

Proof.
E-RAT is closed under inverse operator and, for every regular L, C and $R \subseteq A^{*}, L \times C \times R=(1 \times L \times 1)^{L} \cdot(1 \times C \times 1) \cdot(1 \times R \times 1)^{R}$ with $X^{L}=\left\{x^{-1} x: x \in X\right\}, X^{R}=\left\{x x^{-1}: x \in X\right\}$ and that fact that $X^{L}=\left(X^{-1} X\right)^{E}=\left(X^{-1}\right)^{R}$.

RAT

Fact
There is an ideal $\perp \subseteq(A+\bar{A})^{*}$ such that:

(walks)
(structures)

Theorem ([DJ12])
Language $L \subseteq M_{A}$ is RAT if and only if $L=\theta(W)$ for some regular language $W \subseteq(A+\bar{A})^{*}$.

RAT

Corollary

Language $L \subseteq M_{A}$ is $R A T$ if and only if L recognizable by a finite walking automaton.

Proof.
Take the one way automaton on alphabet $A+\bar{A}$ that recognizes $W \subseteq(A+\bar{A})^{*}$ with $L=\theta(W)$.
Interpret it as a two-way automaton on tiles that recognizes $\theta(W) \subseteq M_{A}$.

Corollary
The inclusion RAT $\subset M S O$ is strict as witnessed by $L=E\left(M_{A}\right)$ and a simple pumping argument (on the underlying walking automaton).

RAT

Corollary

If language $L \subseteq M_{A}$ is RAT then $L=\psi^{-1}(\psi(L))$ for some finite monoid S and relational morphism $\psi: M_{A} \rightarrow S$.

Question

Does this lead to an interesting characterization of RAT ?

REC

Lemma

The inclusion REC \subset RAT is strict as witnessed by
$L=1 \times b a^{*} \times 1$ that has a syntactic congruence of infinite index.
Theorem ([Jan13])
For every morphism $\varphi: M_{A} \rightarrow S$, every $s \in S-0$, there are x and $y \in A^{*}$ such that: $\varphi^{-1}(s)$ is essentially a co-finite subset of tiles of the form (u, v, w) with ${ }^{\omega}(x y) \geq_{s} u, v \in x(y x)^{*}, w \leq_{p}(y x)^{\omega}$.

Proof.
Let $\varphi: M_{A} \rightarrow S$ for some monoid S (even infinite). Let $s \in S-0$. Then $\varphi^{-1}(s)$ is totally ordered both by left and right Green's preorder.
... and some combinatorics to conclude. . .

4. Walking in $\operatorname{FIM}(A)$

Walk languages vs tree languages

Observation
Reading words of $(A+\bar{A})^{*}$ amount to walking on some underlying birooted trees.

Walk languages
Language $W \subseteq(A+\bar{A})^{*}$ is a walk language of the tree language $L \subseteq F I M(A) / \perp$ when $L+0=\eta \circ \theta(W)+0$.

$$
(A+\bar{A})^{*} \underbrace{\theta}_{\operatorname{FIM}(A)} \underset{\sim}{\eta \circ \theta} \operatorname{FIM}(A) / \perp
$$

Question

How classes of tree languages in $\operatorname{FIM}(A) / \perp$ are related with classes of the underlying walk languages in $(A+\bar{A})^{*}$?

Walking automata

Theorem ([Jan12d, DJ12])

- REC $=$ Strongly deterministic finite state walking Automata,
- RAT $=$ Finite state walking automata,
- MSO = Many-Pebble finite state walking automata.

Fact
REC \neq RAT witnessed by ba*.
$R A T \neq M S O$ witness by $E(\operatorname{FIM}(A))$.

MSO and the pebble hierarchy

Idempotent projection
For every language X, let $X^{E}=\{x \in X: x x=x\}$.
k-rational languages
Language L is k-rational when either L is rational or $k>0$ and L is a finite rational combination of languages of the form X or X^{E} with $X \in R A T^{k-1}$.

Fact
$R A T^{k}$ is closed under inverses for every $k \in \mathbb{N}$.
Theorem ([Jan12d])
$R E C \subset R A T=R A T^{0} \subset R A T^{1} \subseteq R A T^{2} \subseteq \cdots U_{k} R A T^{k} \subseteq M S O$ probably with strict inclusions.

Theorem ([Jan13, DJ12])
Over tiles $R E C \subset R A T \subset R A T^{1}=M S O$.

5. Quasi-recognizability

A newcomer question

Fact

Within FIM(A), the class REC collapses.

Question

How to relax the notion REC into some (notion of) quasi-REC (QREC) in such a way MSO = QREC (in relevant case) ?

Ideas

1. relax morphism condition $\varphi(x y)=\varphi(x) \varphi(y)$ into premorphism condition $\varphi(x y) \leq \varphi(x) \varphi(y)$.
2. restrict to an adequate class of finite (ordered) monoid and premorphism in such a way that pre-images remain MSO definable.

Adhoc candidates for QREC

QREC points

Stable ordered monoid (S, \leq) such that:

- $U(S)=\{x \leq 1\} \subseteq E(S)$, i.e. subunits are idempotents,
- for all $x \in S$, both $x_{R}=\bigwedge\{e \in U(S): e x=x\}$ and $x_{L}=\{f \in U(S): x f=x\}$ exist in $U(S)$,
- for all x and $y \in S$, if $x=x_{R} y x_{L}$ then $x \leq y$. .

QREC arrows

Premorphism $\varphi: \operatorname{FIM}(A) / \perp \rightarrow(S, \leq)$, i.e. $\varphi(1)=1$ and, for every x and y, if $x \leq y$ then $\varphi(x) \leq \varphi(y)$ and $\varphi(x y) \leq \varphi(x) \varphi(y)$, such that:

- for every disjoint product $x \cdot y$, we have $\varphi(x \cdot y)=\varphi(x) \varphi(y)$,
- for every x, we have $\varphi\left(x_{L}\right)=(\varphi(x))_{L}$ and $\varphi\left(x_{R}\right)=(\varphi(x))_{R}$. with $x_{L}=x^{-1} x$ and $x_{R}=x x^{-1}$ in $\operatorname{FIM}(A) / \perp$.

QREC vs MSO

Let $M_{A}^{+}=0+A^{*} \times A^{*} \times A^{*}$ be the submonoid of M_{A} of positive tiles.

Theorem ([Jan12b])
If $L \subseteq M_{A}^{+}$is $Q R E C$ then L is $M S O$.
Theorem ([Jan12b])
If $L \subseteq M_{A}^{+}$is MSO and if tiles of L are plugged, i.e. with tiles of the form ($\# u, v, w \#$) for some marker \#, then L is QREC.

Q-expansion

Monoid \mathcal{Q}-expansion
Let S be a monoid. Let $\mathcal{Q}(S)=0+\mathcal{L}_{S} \times S \times \mathcal{R}_{S}$ with

$$
(L, s, R) \cdot(M, t, N)=\left(L \cap(M) s^{-1}, s t, t^{-1}(R) \cap N\right)
$$

when compatible, and 0 otherwise.
Theorem ([Jan12a])
For every monoid S, monoid $\mathcal{Q}(S)$ ordered by $(L, s, R) \leq(M, t, N)$ when $L \subseteq M, s=t$ and $R \subseteq N$ is a stable U-semiadequate monoid.

Theorem
There is an embedding $\iota_{A}: M_{A}^{+} \rightarrow \mathcal{Q}\left(A^{*}\right)$.

Q-expansion

Morphism \mathcal{Q}-expansion
Let $\varphi: S \rightarrow T$. Let $\mathcal{Q}(\varphi): \mathcal{Q}(S) \rightarrow \mathcal{Q}(T)$ defined, on every non zero positive tile (L, s, R), by

$$
\mathcal{Q}(\varphi)(L, s, R)=(S \varphi(L), \varphi(s), \varphi(R) S)
$$

and let $\eta_{S}: \mathcal{Q}(S) \rightarrow S^{0}$ defined by $\eta_{S}((L, s, R))=s$.
Theorem ([Jan12a])
For every morphism $\varphi: S \rightarrow T$, mapping $\mathcal{Q}(\varphi)$ is a well-behaved premorphism (i.e. QREC arrows) and the following diagram commutes.

Theorem
For every plugged language $L \subseteq M_{A+\#}^{+}$, if L is MSO then, given $\varphi: A^{*} \rightarrow S$ "recognizing" $L \subseteq \# A^{*} \times A^{*} \times A^{*} \#$, then L is QREC by $\mathcal{Q}(\varphi): M_{A} \rightarrow \mathcal{Q}(S)$.

6. Conclusion

Work in progress

Extending/developing QREC towards:

- languages of positive and negative tiles,
- languages of finite directed trees,
- languages of finite and infinite trees (completing $\operatorname{FIM}(A)$ with infinite many rooted trees).

围 F．Berthaut，D．Janin，and B．Martin．
Advanced synchronization of audio or symbolic musical patterns．
In Sixth IEEE International Conference on Semantic Computing，pages 202－209．IEEE Society Press， 2012.

國 A．Dicky and D．Janin．
Two－way automata and regular languages of overlapping tiles． Technical Report RR－1463－12，LaBRI，Université de Bordeaux， 2012.
（1）．Janin．
Quasi－inverse monoids（and premorphisms）．
Technical Report RR－1459－12，LaBRI，Université de Bordeaux， 2012.

目 D．Janin．
Quasi－recognizable vs MSO definable languages of one－dimentionnal overlaping tiles． volume 7464 of LNCS, pages 516-528, 2012.

圊 D. Janin.
Vers une modélisation combinatoire des structures rythmiques simples de la musique.
Revue Francophone d'Informatique Musicale (RFIM), 2, 2012.
D. Janin.

Walking automata in the free inverse monoid.
Technical Report RR-1464-12, LaBRI, Université de Bordeaux, 2012.

目 D. Janin.
On languages of one-dimensional overlapping tiles.
In International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM), volume (to appear)
of LNCS, 2013.

