Finite groups are big as semigroups

Igor Dolinka
dockie@dmi.uns.ac.rs
Department of Mathematics and Informatics, University of Novi Sad

The 13th NBSAN Meeting
York, November 21, 2012

Big algebraic structures

Let \mathcal{K} be a class of algebraic structures of a given similarity type (usually a variety or some other well-behaved class).
A finite algebra $B \in \mathcal{K}$ is \mathcal{K}-big if there exists a countably infinite algebra $A \in \mathcal{K}$ such that B is isomorphic to a maximal proper subalgebra of A.

In other words, $A=\langle B, a\rangle$ for any $a \in A \backslash B$.

Motivation: Lattices

In 2001, Freese, Ježek and Nation published a paper where they fully described big lattices.

Theorem
There exist a list of 145 lattices (in fact, only 81 of them, up to dual isomorphism) such that a finite lattice is big if and only if it contains one of the lattices from the list as a sublattice.

Groups: serious issues

Open Problem

Characterise big groups.
This is closely related to difficult Burnside-type problems.
Ol'shanskii (1982): Constructed the first Tarski monster group for each prime $p>10^{75}$ there exists a 2-generated infinite group all of whose nontrivial proper subgroups have order p.
$\Longrightarrow \mathbb{Z}_{p}$ is a big group for any prime $p>10^{75}$.
Adyan \& Lysionok (1991): For any odd $n \geq 1003$ there exists a 2-generated infinite group G such that any proper subgroup of G is contained in a cyclic subgroup of order n.
$\Longrightarrow \mathbb{Z}_{2 k+1}$ is a big group for any $k \geq 501$.

Relaxing the problem

Problem (R. Gray, P. Marković, 2011)
Which finite groups are big with respect to the class of all semigroups?

Theorem (ID \& N. Ruškuc)
A finite group G is big with respect to the class of all semigroups if and only if $|G| \geq 3$.

Theorem (ID \& NR)
Each finite semigroup S such that the kernel (the unique minimal ideal) of S contains a subgroup G such that $|G| \geq 3$ is a big semigroup.

Also: we should take care of \mathbb{Z}_{2} and the trivial group...

A simple, yet important fact

If S is a big (finite) semigroup such that it is \cong a maximal proper subsemigroup of an infinite semigroup T, then T is called a witness for S.

Lemma

If $T \supset S$ is a witness for a big semigroup S, then $T \backslash S$ is contained in a single \mathscr{J}-class of T. In particular, if S is a group, then T can have at most two \mathscr{J}-classes.

Idea: Construct a witness Σ_{S} for S as an ideal extension of an infinite Rees matrix semigroup M by S^{0}, so that $\Sigma=S \cup M$, where S acts on M (from left and right) sufficiently 'transitively' to move around an arbitrary $a \in M$ along a generating set of M.

The kernel K of S

By assumption, we must have $\left|G_{e}\right| \geq 3$.
Thus we may fix two non-identity elements $c, d \in G_{e}=e S e$.
Σ_{S}

M : Choosing the structure group and the sandwich matrix

Let H be a 2-generated infinite periodic group, $H=\left\langle\gamma_{1}, \gamma_{2}\right\rangle$ (i.e. a counterexample to the Burnside conjecture).

Remark

By this, we have ensured that M is infinite, periodic, finitely generated, and has finitely many left and right ideals.

Consider a function $\lambda: L_{e} \cup R_{e} \rightarrow H$ with the following properties:

1. $\lambda(e)=1_{H}$,
2. $\lambda(c)=\gamma_{1}$,
3. $\lambda(d)=\gamma_{2}$,
4. $\lambda(s e)=\lambda$ (ese) for all $s \in S$. (That is, the value of λ on $L_{e}=S e$ is completely determined by its values on $G_{e}=e S e$.)

M : Choosing the sandwich matrix (2)

Recall that

$$
M=\mathcal{M}\left(L_{e}, H, R_{e}, P\right)
$$

where $P=\left[p_{a, b}\right]$ is a $R_{e} \times L_{e}$ matrix.
For $a \mathscr{R} e \mathscr{L} b$ we define

$$
p_{a, b}=\lambda(a)^{-1} \lambda(a b) \lambda(b)^{-1}
$$

Remark
Since $b e=b$ we have $p_{e, b}=1_{H}$.
The multiplication between S and M is defined by:

$$
\begin{aligned}
& s \cdot(a, h, b)=\left(s a, \lambda(s a) \lambda(a)^{-1} h, b\right) \\
& (a, h, b) \cdot s=\left(a, h \lambda(b)^{-1} \lambda(b s), b s\right)
\end{aligned}
$$

The definition is OK

Lemma

Σ_{S} is a semigroup.

Remark

In the particular case when S is a group, the associativity of Σ_{S} boils down to an elementary fact in geometric group theory: there is a balanced labelling of the Cayley graph of S by elements of H such that two given non-loop edges are labelled by γ_{1} and γ_{2} respectively. (A spanning tree argument...)

The definitions of λ, P and \cdot between S and M are motivated by (and are one implementation of) this.

Proof of the Main Theorem (1)

Let $h_{0} \in H$ and $a \mathscr{R} e \mathscr{L} b$ be arbitrary.
Goal: Prove $T \equiv\left\langle S,\left(a, h_{0}, b\right)\right\rangle=\Sigma_{S}$.
There is no loss of generality in assuming that $a=b=e$, for otherwise $\exists s, t \in S$ such that $s a=b t=e$, and so

$$
s\left(a, h_{0}, b\right) t=\left(e, \lambda(s a) \lambda(a)^{-1} h_{0} \lambda(b)^{-1} \lambda(b t), e\right) \in T
$$

and we may continue working with

$$
h_{0}^{\prime}=\lambda(s a) \lambda(a)^{-1} h_{0} \lambda(b)^{-1} \lambda(b t)
$$

instead of h_{0}.

Proof of the Main Theorem (2)

Revised goal: Prove $T \equiv\left\langle S,\left(e, h_{0}, e\right)\right\rangle=\Sigma_{S}$.
Recall that we have picked $c, d \in G_{e} \backslash\{e\}$ carrying λ-labels γ_{1} and γ_{2}, respectively. Since H is periodic, $h_{0}^{m}=1_{H}$ for some $m \in \mathbb{N}$. So, the following are elements of T :

$$
\begin{aligned}
\left(e, h_{0}, e\right)^{m} c\left(e, h_{0}, e\right)^{m} & =\left(e, 1_{H}, e\right)(c, \lambda(c), e) \\
& =\left(e, p_{e, c} \lambda(c), e\right) \\
& =\left(e, \gamma_{1}, e\right) \\
\left(e, h_{0}, e\right)^{m} d\left(e, h_{0}, e\right)^{m} & =\left(e, 1_{H}, e\right)(d, \lambda(d), e) \\
& =\left(e, p_{e, d} \lambda(d), e\right) \\
& =\left(e, \gamma_{2}, e\right)
\end{aligned}
$$

Proof of the Main Theorem (3)

Therefore, $H_{e}=\{e\} \times H \times\{e\} \subseteq T$.
However, then for any a \mathscr{R} e $\mathscr{L} b$ we have

$$
a H_{e} b=\{a\} \times H \times\{b\} \subseteq T,
$$

because

$$
a(e, h, e) b=(a, \lambda(a) h \lambda(b), b)
$$

and $x \mapsto \lambda(a) x \lambda(b)$ is a permutation of H.
Hence, $L_{e} \times H \times R_{e} \subseteq T$, so $T=\Sigma_{S}$, Q.E.D.

The trivial (semi)group is not big

Suppose, to the contrary, that S is a witness for $\{e\}, e \in E(S)$.
Both $S e$ and $e S$ are subsemigroups of S containing e, so $S e, e S \in\{\{e\}, S\}$.
If $S e=e S=S$, then e is an identity element of S, and if $S e=e S=\{e\}$, then e is the zero of S.

In either case, for any $s \in S \backslash\{e\}$ we have
$S=\langle e, s\rangle=\left\{e, s, s^{2}, \ldots\right\}$, where s is not periodic (because S is infinite), so $\left\{e, s^{2}, s^{4}, \ldots\right\}$ is a proper subsemigroup of S containing e.
If $S e=S$ and $e S=\{e\}(S e=\{e\}$ and $e S=S)$ then S is a left (resp. right) zero semigroup \Longrightarrow every subset of S is a subsemigroup. Contradiction!

Yet another useful...

Lemma

Let S be a big semigroup, and let T be any witness for S. Let J be the unique \mathscr{J}-class of T containing $T \backslash S$. Then J contains a J-primitive idempotent, that is, a minimal element in the restriction of the Rees order of idempotents of T to $J \cap E(T)$.

Steps:
(i) There exist $a, b \in J$ such that $a b \in J$.
(ii) There exists $t \in J$ such that $t^{n} \in J$ for all $n \in \mathbb{N}$.
(iii) J contains an idempotent.
(iv) J contains a J-primitive idempotent.

\mathbb{Z}_{2} is not a big semigroup (1)

Assume to the contrary, that T is a witness for $\mathbb{Z}_{2}=\{e, a\}$.
Since $T \backslash \mathbb{Z}_{2}$ is contained in a single \mathscr{J}-class J of T, there are two possibilities:

1. $T=J$ is simple, or
2. T has precisely two \mathscr{J}-classes: \mathbb{Z}_{2} and J.

In either case, J is the kernel of T and, since it contains a J-primitive idempotent that must also be T-primitive, it follows that J is completely simple.

\mathbb{Z}_{2} is not a big semigroup (2)

Case 1: $T \cong \mathcal{M}(I, G, \Lambda, P)$, and G has a subgroup of order 2 .
Now \mathbb{Z}_{2} is not big as a group ($\mathrm{F}+\mathrm{J}+\mathrm{N}$ - easy), so if G is infinite, there is a proper subgroup G_{1} of G properly containing \mathbb{Z}_{2}, destroying T as a witness.

Thus G must be finite, so at least one of the index sets I, Λ are infinite.

At the same time, notice that we must have

$$
T=\left\langle G_{i \mu},(j, h, \nu)\right\rangle
$$

for some $i \in I, \mu \in \Lambda$, and any $(j, h, \nu) \in T \backslash G_{i \mu}$.
However, $\left\langle G_{i \mu},(j, h, \nu)\right\rangle \subseteq G_{i \mu} \cup G_{j \mu} \cup G_{i \nu} \cup G_{j \nu} \subsetneq T$.
Contradiction!

\mathbb{Z}_{2} is not a big semigroup (3)

Case 2: T is an ideal extension of a completely simple semigroup J by \mathbb{Z}_{2}^{0}.
So, T has an idempotent $f \neq e$, whence $T=\langle a, f\rangle$. Furthermore, e can be assumed to be the identity of T, for otherwise $\{e, a\} \subsetneq e T e \subsetneq T$.

Hence, each element of T is an alternating product of a and f.
We have faf $\mathscr{J} f \Longrightarrow f=t_{1}(f a f) t_{2}=f t_{1} f a f t_{2} f$ for some $t_{1}, t_{2} \in J^{1}$.

Therefore, for some $k \geq 1$ we have

$$
(f a f)^{k}=f a f \cdots f a f=f
$$

$\Longrightarrow|J| \leq 4 k+1$ (i.e. J is finite). Contradiction!

OK, girls \& boys, the last slide of this talk is SOOOOO predictable...

Open Problem

Characterise big semigroups.

Igor, now remember to make a sketch on the black-/white-board...
(For what is a lecture without a nice drawing...?)
Also, don't forget some handwaving to finish it off nicely.

$$
\nabla
$$

THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at: http://sites.dmi.rs/personal/dolinkai

