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Abstract. Mitsch�s natural partial order on the semigroup of binary relations
has a complex relationship with the compatible partial order of inclusion. This
relationship is explored by means of a sublattice of the lattice of preorders on
the semigroup. The natural partial order is also characterised by equations in
the theory of relation algebras.

1. Natural partial orders

Having formulated a characterisation of the natural partial order � on the
full transformation semigroup TX which did not require inverses or idempotents,
Mitsch [6] went on to de�ne the natural partial order � on any semigroup S by
(1) a � b if a = b or there are x; y 2 S such that a = ax = bx = yb
for a; b 2 S. Observe that a = ya follows. Mitsch�s natural partial order has now
been characterised, and its properties investigated, for several concrete classes of
non-regular semigroups� in [5, 8] for some semigroups of (partial) transformations,
and by Namnak and Preechasilp [7] for the semigroup BX of all binary relations
on the set X.
The partial order of inclusion which is carried by BX may also be thought of

as �natural�, and it is the broad purpose of this note to discuss the relationship
between these two partial orders on BX : So we shall use a slightly di¤erent nomen-
clature here for the sake of clarity, mostly referring to partial orders as just orders,
and the natural partial order as Mitsch�s order. We �rst collect some information
about BX :

2. Binary relations

The notation used here for binary relations follows that found in, for example,
Cli¤ord and Preston [1], with the addition of complementation of relations de�ned
by

x�c y () (x; y) 62 �
for x; y 2 X: Note that the symbol � for composition will be suppressed, except for
the composites of order relations on BX :We will make use of the identity relation
on X; � = f(x; x) : x 2 Xg ; and the universal relation ! = X �X:
The following logical equivalence will also be required; it is the �Theorem K�of

De Morgan [2, p. xxx ] (see also e.g. [3]).

Result 2.1. For �; �; � 2 BX ;
�� � � () � �

�
��1�c

�c () � �
�
�c��1

�c
:
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Result 2.1 will be used in the following form:

Corollary 2.2. (i) If the set f� 2 BX : �� = �g is non-empty, it has greatest
element (��1�c)c in the inclusion order.
(ii) If the set f� 2 BX : �� = �g is non-empty, it has greatest element (�c��1)c in
the inclusion order.

Proof. (i) By Result 2.1 above, �� = � implies � � (��1�c)c; but the latter implies,
again using Result 2.1, that

� = �� � �
�
��1�c

�c � �:
Part (ii) is proven dually. �

3. Equational criterion for the Mitsch order on BX
The basic de�nition (1) of � � � is existentially quanti�ed. In BX there is a

purely equational equivalent:

Theorem 3.1. For �; � 2 BX ; � � � if and only if
� = �

�
��1�c

�c
= �

�
��1�c

�c
=
�
�c��1

�c
�:

Proof. Suppose � � �: By de�nition there are �; � such that
� = �� = �� = ��

and hence both
�� = ��� = �� = �

and
� = �

�
��1�c

�c
=
�
�c��1

�c
�;

the latter by Corollary 2.2. Now

� = �� = ��
�
��1�c

�c
= �

�
��1�c

�c
= �

�
��1�c

�c
=
�
�c��1

�c
�:

Conversely,
� = �

�
��1�c

�c
= �

�
��1�c

�c
=
�
�c��1

�c
�

demonstrates � � �: �

Regarded as a computation, this criterion is of polynomial time complexity in
jXj, as is also the case for tests of the divisibility preorders (by Corollary 2.2,
� = �� if and only if � = � (��1�c)c ; etc.), but in contrast to the NP-complete
tests for the J -preorder [4]. Of course algorithmic complexity is not the only
issue. Namnak and Preechasilp [7] characterise Mitsch�s order for binary relations
with the aid of Zaretski¼¬�s criteria for divisibility [9] which, though also of worst-
case exponential complexity, proved very convenient for the purposes of �nding
compatible elements, atoms and maximal elements in the Mitsch order [7]. The
equations of Theorem 3.1 are complex in the di¤erent sense that they belong to a
theory of semigroups enriched by operations of inversion and complementation, in
fact, to the theory of relation algebras [3]. However, Theorem 3.1 suggested some
results found in the later sections of this paper, although the proofs used here are
simpler ones based directly on the de�nition (1). It may be observed that all the
proofs apply to (abstract) relation algebras [3] and not just the representable ones
BX :
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4. Connexions with the inclusion order

In discussing Mitsch�s order and the inclusion order on BX , [7] notes their logical
independence. In fact, we can see that every inclusion atom is a Mitsch atom, and
every non-empty relation on X is in an inclusion interval between two Mitsch
atoms. Moreover, permutations of X are Mitsch-maximal, but far from being
either maximal elements or atoms in the inclusion order. Yet the relationship
between the two orders is subtle, and worthy of further exploration. We illustrate
this by next �nding a substructure of BX in which � agrees with � ; and others
where � agrees with reverse inclusion � : We shall use the following statement,
easily proved.

Lemma 4.1. Let S be a semigroup, T be a regular subsemigroup of S; and a; b 2 T:
Then a � b in T if and only if a � b in S:

The symmetric inverse monoid IX is a regular subsemigroup of BX ; and the
natural partial order on IX coincides with inclusion. So we may apply Lemma 4.1
to IX :

Corollary 4.2. (i) If �; � 2 IX ; then � � � if and only if � � �:
(ii) If � 2 IX ; then � � � implies � � �:

Part (ii) relies on the observation that � 2 IX and � � � imply � 2 IX . Of
course, � � � need not entail � 2 IX :
To obtain pairs (�; �) such that � agrees with reverse inclusion �; �rst let �

be a re�exive and transitive relation on X (so, a preorder), and de�ne a subset of
BX by

F (�) = f� 2 BX : �� = � = ��g :

Proposition 4.3. For all � 2 F (�) ; � � � if and only if � � �:

Proof. Clearly F (�) is a subsemigroup of BX ; with zero element �: So for all
� 2 F (�) ; we have � � � and, since � � �; also � � �� = �: �

Corollary 4.2 shows that it may be instructive to consider the conjunction of
the natural partial order with set inclusion, which is an order on BX which we
naturally write as � \ � : Similarly, Proposition 4.3 suggests investigating the
conjuction of � with reverse inclusion, an order written as � \ � . The next
Proposition, which extends Proposition 4.3, gives an alternative characterisation
for � \ � ; there seems to be no analogous description of � \ � .

Proposition 4.4. For all �; � 2 BX ; � � � and � � � if and only if there are
" = "2 and � = �2 such that � � " and � = �" = ��:

Proof. Let � � �: From Corollary 2.2 there exists the element "; maximum with
respect to � such that � = �"; and � = �" also holds by Theorem 3.1. Then also
� = �"2 and thus "2 � ": But from �� � � we have � � "; so " � "2 and " = "2:
Similarly � = �2 with � = ��:
Conversely, if the conditions hold then plainly � � � as in the regular case, but

also � � " implies � � "� = �: �
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5. The sublattice of preorders generated by �; � and �
The subsemigroups F (�) and IX of section 4 clearly show that, if jXj � 2;

there can be no order relation on BX which contains � and either of � and � .
However the set of preorders on BX is bounded by the relation of equality = and
the universal relation on BX ; and is closed under arbitrary intersections, and so
forms a lattice. In a similar situation, the papers [5] and [8] derive interesting
results from considering the composite of inclusion with �, and this idea also
turns out to be useful here.

Proposition 5.1. For all �; � 2 BX ; there exists  2 BX such that � �  � � if
and only if �!� � �!�:
Proof. Suppose � �  � �: Then there are �; � such that  = �� = ��; so

�!� � ! = ��!�� � �!�:
Since � � ���1� � �!�; we have

�!� � �!�!� � �!�:
But now �!� = �!�!� shows that �!� � �: As above we have � � �!�; so
�!� � �!� implies � � �!� � �: �
Remark 5.2. The relation of two-sided divisibility �H ; de�ned on BX by

� �H � if there are �; � 2 BX such that � = �� = ��;
is a preorder containing � : The proof of Proposition 5.1 also shows that � � �H
=� � � :

As a corollary, we have the join of the Mitsch and inclusion orders in the lattice
of preorders on BX :
Corollary 5.3. (i) The composite � � � is contained in � � � :

(ii) � � � is the join of � and � in the lattice of preorders on BX :
Proof. (i) First let us note that � and � are subsets of � � � : It is clear from
Proposition 5.1 that � � � is transitive, i.e.,

(� � �) � (� � �) = (� � �)
and it follows that (� � �) is contained in (� � �) :
(ii) Also it is immediate that � � � is re�exive, and so it is a preorder on BX :

Any preorder on BX containing both � and � also contains � � � : Hence � � �
is the join of � and � : �
That the containment in (i) is proper (for jXj � 2) is shown by the following

instance. Consider a pair of distinct permutations �; �: we have � � ! � �; but
� � � � � implies � = � = �; a contradiction. It also follows that � � � is not a
preorder.
We turn to the composites and join of � with reverse inclusion.

Proposition 5.4. The composite � � � is the universal relation on BX and the
join of � and � in the lattice of preorders on BX :
Proof. For any �; � 2 BX ; � � ? � �; so BX � BX coincides with � � � . Now
BX � BX is plainly a preorder, and any preorder containing both � and � must
contain � � � and hence BX � BX : �
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Here too, we see that the reverse composite � � � is properly contained in
� � �= BX � BX when jXj � 2 (and so is not a preorder), since � � � � !
implies both � = � and � = !:
Thus we are able to describe the relationships between � ; � and � in terms

of the sublattice generated by � ;� and �within the lattice of preorders on BX :
This sublattice is summarised by a Hasse diagram in Fig. 1; �lled circles denote
orders, and additional labels in parentheses summarise conditions for �; � to be
related by the preorder.

Fig. 1. A sublattice of preorders on BX : Filled circles denote orders.
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